首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary This paper studies the propagation of Surface Waves on a spherically aeolotropic shell surrounded by vacuum. The elastic constantsc ij and density of the material of the shell are assumed to be of the form ij r l and o r m respectively, where ij o are constants andl, m are any integers.  相似文献   

2.
The World Ocean Atlas 1998 is used to determine the global field of the meridional density ratio R hy =T/S, where temperature and salinity changes T and S are evaluated along meridians, in and below the mixed layer. The focus of the analysis is the identification of regions where the R hy field matches the values R =2 sometimes suggested as the commonly perceived state of the ocean and R =1, the condition of density compensation. Results are presented through fields of the meridional Turner angle Tu hy =arctan(R hy ) and through histograms of Tu hy for the Pacific, Atlantic and Indian Oceans at the ocean surface and at 300 m depth. At the 300-m depth level, which in the subtropics is representative of conditions in the permanent thermocline, the most frequently encountered values of the meridional density ratio are R hy =3.2 in the North and South Pacific, R hy =2.0 in the South Atlantic and Indian and R hy =1.6 in the North Atlantic Ocean. Conditions in the mixed layer are more variable and show seasonal differences, but R hy =2.0 occurs prominently in all ocean regions during winter and in all regions but the Atlantic during summer. Summer values for the Atlantic Ocean are R hy =3.2 in the Northern Hemisphere and R hy =2.4 in the Southern Hemisphere. Detailed analysis of R hy across the Subtropical Front (STF) confirms the most frequently observed values but shows zonal variation along the front in some oceans. Nearly complete density compensation (R hy =1) in the mixed layer is encountered in the STF of the eastern North Pacific, the eastern South Pacific and the eastern Indian Ocean. The eastern Indian Ocean south of Australia is also the only region where complete density compensation in the STF occurs below the mixed layer.Responsible Editor: Neville Smith AcknowledgementWe thank Dan Rudnick for helpful comments and discussion during the preparation of this paper.  相似文献   

3.
Riassunto L'A. mostra corne dal metodo più semplice di misura di rcsistività d'un suolo del polo singolo, si possano dedurrc tutti gli altri (Wenner, Schlumberger, ecc). CiÒ dà la possibilità di risalire immediatamente dai grafici s di un dispositivo a quelli di un altro. L'A., dopo rettificato recenti valutazioni del metodo dei due punti, rimuove la pretesa da altri formulata di porre gerarchie nei dispositivi di misure s .
Summary The Author shows how departing from simplest method of the ground resistivity measurement with the single pole can be deduced all another methods (Wenner, Schlumberger, etc.). That gives the practical possibility to pass immediately the s graphics of one arrangement to these of other types of arrangement. After having rectified recently mades evaluations about the two points method, the Author removes the requirements made from other side to graduate the s measuring arrangements.

Zusammenfassung Der Verfasser zeigt wie man von der einfachsten Methode der Widerstandsmessung eines Bodens mit Einzelpol alle anderen Methoden (Wenner, Schlumberger, usw.) ableiten kann. Dadurch hat man die praktische Möglichkeit, von den s Diagrammen einer Anordnung sofort auf jene anderer Anordnungen überzugehen. Nach Richtigstellung von kürzlich geäusserten Ansichten über die Zweipunktmethode, beseitigt der Verfasser die von Anderen gestellten Ansprüche, die s Messanordnungen vermeintlichen Vorzügen nach staffeln zu wollen.


Relazion e presentata il 5 Aprile 1956 alla Quarta Assemblea Generale dcllaSocietà Italiana di Geofisica e Meteorologia (Genova: 5–8 Aprile 1956).  相似文献   

4.
The physical parameters that affect the formation of Pele's hair and Pele's tears during lava fountaining are discussed. Experiments on ink jets produced from a nozzle under different Weber number (We) and Reynolds number (Re) show the following results: if (Re) is relatively large compared with (We), an ink droplet is produced. However, if (Re) is relatively small and (We) is large, the spurting ink becomes thread-like. I define the Pele number (Pe) as (We)/(Re), which is expressed as v/0, where v is the spuring velocity from an erupting vent, and are viscosity and interfacial tension of the erupting magma, and and 0 are density of air and magma. The experimental results from ink jets suggest that Pele's hair will be produced for larger (Pe), while Pele's tears are very likely produced for relatively small (Pe). I conclude that Pele's hair could be produced when the spurting velocity of erupting magmas is high, and Pele's tears when it is relatively low. As an additional point of interest, the similarity of SEM photographs of the characteristic shape of Pele's hair to those of the failed products of commercial glass fibre are shown.  相似文献   

5.
Summary The object of the present paper is to investigate the propagation of surface waves on a non-homogeneous aeolotropic cylindrical shell surrounded by vacuum. The elastic constantsc ij (i, j=1,2...) and density of the material of the shell are assumed to be of the form and respectively, where ij, 0 are constants andk 1,k 2 are any integers.  相似文献   

6.
Riassunto L'Autore dimostra che, nel sistema di coordinate polari , , , si possono determinare un numeros di funzioni della sola variabile :Q 1,Q 3, ....Q 2s–1 tali che la sommatoria delleQ 2i–1/2i–1 rappresenti il potenzialeV di un geoide di rotazione. La condizione di armonicità determina ciascunaQ (che si riduce a un polinomio nelle potenze di sen ) a meno di una costante arbitraria; si dispone pertanto dis costanti che servono per soddisfare la natura dellaV sulla superficie del geoide. Come esempio l'Autore ha determinato la gravità sul geoide sferico, confermando i risultati delSomigliana, e su uno sferoide generico dove ha ritrovato la relazione diClairaut.
Summary The Author proofs that, in the system of polar coordinates , , , it is possible to determine a numbers of functions only of the variable :Q 1,Q 3 ....Q 2s–1 in such a way as to make the summatory of theQ 2i–1/2i–1 represent the potential function of a rotational geoid. The condition of harmonicity determines, saving an arbitrary constant, each of theQ which is reduced to a polynom developed by the sin powers; therefore one disposes of a number of constants to make use for satisfing theV on the geoid. To illustrate his theory the Author determines the gravity on the spherical geoid, thus confirmingSomigliana's formulas and on a spheroidal on which he pointed outClairaut's relations.
  相似文献   

7.
The Drude law (molecular refraction) for the temperature radiation in a monoatomic model of the Earth's mantle is derived. The considerations are based on the Lorentz electron theory of solids. The characteristic frequency (or eigenfrequency) of independent electron oscillators (in energy units, ) is identified with the band gapE G of a solid. The only assumption is that solid material related to the Earth's mantle has the mean atomic weight A21 g/mole, and its energy gap (E G) is about 9 eV. In this case the value of molecular refraction (in cm3/g) is (n 2–1)/=0.5160.52, where andn are the density and the refractive index at wavelength D=0.5893 m (sodium light), respectively. The average molecular refraction of important silicate and oxide minerals with A21, obtained byAnderson andSchreiber (1965) from laboratory data, is , where denotes the mean arithmetic value calculated from three principal refractive indices of crystal. For the rock-forming minerals with 19A<24 g/mole the new relation was found byAnderson (1975).  相似文献   

8.
New equations and techniques for dealing with drop breakups are developed and applied to the modelling of the evolution of raindrop spectra in rainshafts. Breakup experiments byMcTaggart-Cowan andList (1975) served as data base.No matter what the original size distribution, the spectrum evolution will always lead to a Marshall-Palmer type equilibrium di tributionN=N 0e–D, with =constant andN 0 proportional to the rainfall rateR. (D stands for raindrop diameter.) ForR29 mm h–1 and an original Marshall-Palmer distribution, the required fall height to reach equilibrium is 2 km.The equilibrium distributions are characterized by linear relationships betweenR, the radar reflectivity factorZ, the liquid water content LWC and theN 0 of the Marshall-Palmer distribution. Possible explanations for the discrepancy with observations are given.The fact that the all-water processes cannot produce drops withD2.5 mm (as confirmed by observations) leads to the conclusion that observed large raindrops withD5 mm represent melted hailstones and have not yet reached an equilibrium distribution. These latter conclusions were reached within the original assumption of videspread, steady state precipitation.  相似文献   

9.
Simple models are discussed to evaluate reservoir lifetime and heat recovery factor in geothermal aquifers used for urban heating. By comparing various single well and doublet production schemes, it is shown that reinjection of heat depleted water greatly enhances heat recovery and reservoir lifetime, and can be optimized for maximum heat production. It is concluded that geothermal aquifer production should be unitized, as is already done in oil and gas reservoirs.Nomenclature a distance between doublets in multi-doublet patterns, meters - A area of aquifer at base temperature, m2 drainage area of individual doublets in multidoublet patterns, m2 - D distance between doublet wells, meters - h aquifer thickness, meters - H water head, meters - Q production rate, m3/sec. - r e aquifer radius, meters - r w well radius, meters - R g heat recovery factor, fraction - S water level drawdown, meters - t producing time, sec. - T aquifer transmissivity, m2/sec. - v stream-channel water velocity, m/sec. - actual temperature change, °C - theoretical temperature change, °C - water temperature, °C - heat conductivity, W/m/°C - r rock heat conductivity, W/m/°C - aCa aquifer heat capacity, J/m3/°C - aCr rock heat capacity, J/m3/°C - WCW water heat capacity, J/m3/°C - aquifer porosity, fraction  相似文献   

10.
Janle  P.  Meissner  R. 《Surveys in Geophysics》1986,8(2):107-186
Geo-scientific planetary research of the last 25 years has revealed the global structure and evolution of the terrestrial planets Moon, Mercury, Venus and Mars. The evolution of the terrestrial bodies involves a differentiation into heavy metallic cores, Fe-and Mg-rich silicate mantles and light Ca, Al-rich silicate crusts early in the history of the solar system. Magnetic measurements yield a weak dipole field for Mercury, a very weak field (and local anomalies) for the Moon and no measurable field for Venus and mars. Seismic studies of the Moon show a crust-mantle boundary at an average depth of 60 km for the front side, P- and S-wave velocities around 8 respectively 4.5 km s–1 in the mantle and a considerable S-wave attenuation below a depth of 1000 km. Satellite gravity permits the study of lateral density variations in the lithosphere. Additional contributions come from photogeology, orbital particle, x-and -ray measurements, radar and petrology.The cratered surfaces of the smaller bodies Moon and Mercury have been mainly shaped by meteorite impacts followed by a period of volcanic flows into the impact basins until about 3×109 yr before present. Mars in addition shows a more developed surface. Its northern half is dominated by subsidence and younger volcanic flows. It even shows a graben system (rift) in the equatorial region. Large channels and relics of permafrost attest the role of water for the erosional history. Venus, the most developed body except Earth, shows many indications of volcanism, grabens (rifts) and at least at northern latitudes collisional belts, i.e. mountain ranges, suggesting a limited plate tectonic process with a possible shallow subduction.List of Symbols and Abbreviations a=R e mean equatorial radius (km) - A(r, t) heat production by radioactive elements (W m–3) - A, B equatorial moments of inertia - b polar radius (km) - complex amplitude of bathymetry in the wave number (K) domain (m) - C polar moment of inertia - C Fe moment of inertia of metallic core - C Si moment of inertia of silicate mantle - C p heat capacity at constant pressure (JK–1 mole) - C nm,J nm,S nm harmonic coefficients of degreen and orderm - C/(MR e 2 ) factor of moment of inertia - d distance (km) - d nondimensional radius of disc load of elastic bending model - D diameter of crater (km) - D flexural rigidity (dyn cm) - E Young modulus (dyn cm–2) - E maximum strain energy - E energy loss during time interval t - f frequency (Hz) - f flattening - F magnetic field strength (Oe) (1 Oe=79.58A m–1) - g acceleration or gravity (cms–2) or (mGal) (1mGal=10–3cms–2) - mean acceleration - g e equatorial surface gravity - complex amplitude of gravity anomaly in the wave number (K) domain - g free air gravity anomaly (FAA) - g Bouguer gravity anomaly - g t gravity attraction of the topography - G gravitational constant,G=6.67×10–11 m3kg–1s–2 - GM planetocentric gravitational constant - h relation of centrifugal acceleration (2 R e ) to surface acceleration (g e ) at the equator - J magnetic flux density (magnetic field) (T) (1T=109 nT=109 =104G (Gauss)) - J 2 oblateness - J nm seeC nm - k (0) (zero) pressure bulk modulus (Pa) (Pascal, 1 Pa=1 Nm–2) - K wave number (km–1) - K * thermal conductivity (Jm–1s–1K–1) - L thickness of elastic lithosphere (km) - M mas of planet (kg) - M Fe mass of metallic core - M Si mass of silicate mantle - M(r) fractional mass of planet with fractional radiusr - m magnetic dipole moment (Am2) (1Am2=103Gcm3) - m b body wave magnitude - N crater frequency (km–2) - N(D) cumulative number of cumulative frequency of craters with diameters D - P pressure (Pa) (1Pa=1Nm–2=10–5 bar) - P z vertical (lithostatic) stress, see also z (Pa) - P n m (cos) Legendre polynomial - q surface load (dyn cm–2) - Q seismic quality factor, 2E/E - Q s ,Q p seismic quality factor derived from seismic S-and P-waves - R=R 0 mean radius of the planet (km) (2a+b)/3 - R e =a mean equatorial radius of the planet - r distance from the center of the planet (fractional radius) - r Fe radius of metallic core - S nm seeC nm - t time and age in a (years), d (days), h (hours), min (minutes), s (seconds) - T mean crustal thickness from Airy isostatic gravity models (km) - T temperature (°C or K) (0°C=273.15K) - T m solidus temperature - T sideral period of rotation in d (days), h (hours), min (minutes), s (seconds), =2/T - U external potential field of gravity of a planet - V volume of planet - V p ,V s compressional (P), shear (S) wave velocity, respectively (kms–1) - w deflection of lithosphere from elastic bending models (km) - z, Z depth (km) - z (K) admittance function (mGal m–1) - thermal expansion (°C–1) - viscosity (poise) (1 poise=1gcm–1s–1) - co-latitude (90°-) - longitude - Poisson ratio - density (g cm–3) - mean density - 0 zero pressure density - m , Si average density of silicate mantle (fluid interior) - average density of metallic core - t , top density of the topography - density difference between crustal and mantle material - electrical conductivity (–1 m–1) - r , radial and azimuthal surface stress of axisymmetric load (Pa) - z vertical (lithostatic) stress (seeP z ) - II second invariant of stress deviation tensor - latitude - angular velocity of a planet (=2/T) - ages in years (a), generally 0 years is present - B.P. before present - FAA Free Air Gravity Anomaly (see g - HFT High Frequency Teleseismic event - LTP Lunar Transient Phenomenon - LOS Line-Of-Sight - NRM Natural Remanent Magnetization Contribution No. 309, Institut für Geophysik der Universität, Kiel, F.R.G.  相似文献   

11.
Summary The frequency equation of Rayleigh waves propagating over the free surface of an isotropic, perfectly elastic, heterogeneous semi-infinite medium with material properties varying as = 0 e az , = 0 e az , = 0 e az (a>0) has been obtained. Solution of the frequency equation in closed form is obtained in two cases (i) =0, (ii) =, and the Rayleigh wave dispersion curves for phase and group velocities drawn. In both the cases the medium yields single Rayleigh modes which cannot propagate below certain cut-off frequencies. It is found that in case (i), <c<c 0 and 0.87500 <c g <c 0, and in case (ii), 1.03082 <c<c 1 and 0.90850 <c g <c 1, wherec andc g denote phase nad group velocities respectively, is the constant shear wave velocity of the mediumc 0 andc 1 are the corresponding Rayleigh wave velocities of the homogeneous medium of the same Poisson's ratio. The motion of the surface particles is found to be retrograde elliptical as in the homogeneous case, but the ratic of the major and minor axes now becomes frequency dependent and is plotted against frequency. In both the cases (i) and (ii), the ratio starts at a lower value at the cut-off frequency and approaches the corresponding value of the homogeneous medium at high frequencies.  相似文献   

12.
The dependency on relative humidity of the settling velocity of aerosol particles in stagnant air and of the diffusion coefficient due to Brownian motion of aerosol particles was computed for six aerosol types and different particles sizes in dry state. The computations are based (1) on mean bulk densities of dry aerosol particles obtained from measurements or from the knowledge of the chemical composition of the particles, (2) on micro-balance measurements of the water uptake per unit mass of dry aerosol substance versus water activity at thermodynamic equilibrium, and (3) on measurements of the equilibrium water activity of aqueous sea salt solutions. The results show a significant dependence of the settling velocity and Brownian diffusion of aerosol particles on relative humidity and on the particle's chemical composition.Nomenclature A surface parameter of a particle - B surface parameter of a particle - c L velocity of sound in moist air - C 1+Kn[A+Qexp(–B/Kn]=slip correction - D diffusion coefficient of a particle - D 1 D(=1)=diffusion coefficient of a spherical particle - f P w /P we (T,P)=relative humidity (f=0 dry air,f=1 saturated air) - g acceleration due to gravity - g |g| - k 1.3804×10–16 erg/°K=Boltzmann constant - Kn L /r=Knudsen number of a particle - Kn 0 0L /r 0=Knudsen number of a dry particle - m 4r 3/3=mass of a particle - m L 4r 3 L /3=mass of the moist air displaced by a particle - M mobility of a particle - M 0 molar mass of dry air - M w molar mass of water - Ma |u–u L |/c L =Mach number of the particles motion relative to the ambient air - n particle number per unit volume of air - P P 0+P w =pressure of the moist air - P 0 partial pressure of the dry air - P w partial pressure of the water vapour - P we P we (T,P)=equilibrium partial water vapour pressure over a plane surface of water saturated with air - Q surface parameter of a particle - r equivalent radius of a particle (radius of a sphere with the particles volume) - r 0 equivalent radius of a particle in dry state - R 1+0.13Re 0.85=inertia correction - R 0 specific gas constant of dry air - R w specific gas constant of water - Re 2r L uu L / L =Reynolds number of the particles motion relative to the ambient air - t time - T absolute temperature - u velocity of a particle - u (amount of the) settling velocity of a particle in stagnant air - u 1 u(=1)=(amount of the) settling velocity of a spherical particle in stagnant air - u L velocity of the ambient moist air (far enough from the particle where the flow pattern remains undistorted) - W drag coefficient of a particles equivalent sphere - empirical parameter in equation (3.1) - dynamic viscosity of a particles liquid cover - L dynamic viscosity of moist air - 0L dynamic viscosity of dry air (at the same pressure and temperature like the moist air) - celsius temperature - dynamic shape factor of a particle (=1 for a sphere) - 0 dynamic shape factor of a dry particle - L mean free path of the molecules in moist air - 0L mean free path of the molecules in dry air (at the same pressure and temperature like the moist air) - Po mean free path of the molecules in dry air at the pressureP 0 of the dry air and the temperature given - factor of solid to liquid change-over (=1 for a solid particle) - mean bulk density of a particle - L density of the moist air - 0L density of the dry air at the same pressure and temperature like the moist air - 0 mean bulk density of a dry particle - 0 mean diameter of the molecules of dry air - w diameter of water molecules - relaxation time of a particle - gradient operation - 3.141593  相似文献   

13.
Equilibrium water uptake and the sizes of atmospheric aerosol particles have for the first time been determined for high relative humidities, i.e., for humidities above 95 percent, as a function of the particles chemical composition. For that purpose a new treatment of the osmotic coefficient has been developed and experimentally confirmed. It is shown that the equilibrium water uptake and the equilibrium sizes of atmospheric aerosol particles at large relative humidities are significantly dependent on their chemical composition.List of symbols A proportionality factor - a w activity of water in a solution - c p v specific heat of water vapour at constant pressure - c w specific heat of liquid water - f relative humidity - l w specific heat of evaporation of water - M i molar mass of solute speciesi - M s mean molar mass of all the solute species in a solution - M w molar mass of water - m 0 mass of an aerosol particle in dry state - m i mass of solute speciesi - m s mass of solute - m w mass of water taken up by an aerosol particle in equilibrium state - m total molality=number of mols of solute species in 1000 g of water - m i molality of solute speciesi - m k total molality of a pure electrolytek - O(m 2) remaining terms being of the second and of higher powers ofm - p + standard pressure - p total pressure of the gas phase - p pressure within a droplet - p 1,p 2,p 3 coefficients in the expansion of M - p 1i, p2i, p3i specific parameters of ioni - p s saturation vapour pressure - p w water vapour pressure - R w individual gas constant of water - r radius of a droplet - r 0 equivalent volume radius of an aerosol particle in dry state - T temperature - T 0 standard temperature - T 1 temperature of the pure water drop in the osmometer - v w specific volume of pure water - z i valence of ioni - i relativenumber concentration of ioni in a solution - correction term due to the adsorption of ions at liquid-solid interfaces - activity coefficient of solute speciesi in a solution, related to molalities - I bridge current - T temperature difference between solution and pure water drop in the osmometer - exponential mass increase coefficient - w specific chemical potential of water vapour - w specific chemical potential of water - 0 w specific chemical potential of pure water vapour - 0 w specific chemical potential of pure water - 0 density of an aerosol particle in dry state - w density of pure water - surface tension of a droplet - 0 surface tension of pure water, i.e., at infinite dilution of the solute - osmotic coefficient - k osmotic coefficient of a solution of a pure electrolytek - k osmotic coefficient of a solution of a mixed solute - M fugacity coefficient of water vapour - s i=1 i z 2 i This work is part of a Ph.D. thesis carried out at the Meteorological Institute of the Johannes Gutenberg-Universität, Mainz.  相似文献   

14.
We describe slip-rate dependent friction laws based on the Coulomb failure criteria. Frictional rate dependence is attributed to a rate dependence of cohesionc and friction angle . We show that differences in the stress states developed during sliding result in different Coulomb friction laws for distributed shear within a thick gouge layer versus localized shear within a narrow shear band or between bare rock surfaces. For shear within gouge, shear strength is given by =c cos + n sin, whereas for shear between bare rock surfaces the shear strength is =c cos + n tan, where and n are shear and normal stress, respectively. In the context of rate-dependent Coulomb friction laws, these differences mean that for a given material and rate dependence of the Coulomb parameters, pervasive shear may exhibit velocity strengthening frictional behavior while localized shear exhibits velocity weakening behavior. We derive from experimental data the slip-rate dependence and evolution ofc and for distributed and localized shear. The data show a positive rate dependence for distributed shear and a negative rate dependence for localized shear, indicating that the rate dependence ofc and are not the same for distributed and localized shear, even after accounting for differences in stress state. Our analysis is consistent with the well-known association of instability with shear localization in simulated fault gouge and the observation that bare rock surfaces exhibit predominantly velocity weakening frictional behavior whereas simulated fault gouge exhibits velocity strengthening followed by a transition to velocity weakening with increasing displacement. Natural faults also exhibit displacement dependent frictional behavior and thus the results may prove useful in understanding the seismic evolution of faulting.  相似文献   

15.
Summary One of the important atmospheric levels, the mean energetic level (MEL), which in a sense reflects the energetics of the whole atmosphere, is defined. Its fundamental properties are shown. In order to describe the MEL correctly a new vertical coordinate is introduced and discussed. The new coordinate, , is defined as the ratio of height and temperature. The MEL is shown to be a level with constant value of . Some incorrect conclusions concerning the MEL, derived in the past, have been corrected.List of symbols used c p specific heat of air at constant pressure - c v specific heat of air at constant volume - e base of natural logarithms - E total potential energy - f Coriolis parameter - g acceleration of gravity - i specific internal energy - I internal energy - J enthalpy - k unit vector pointing upwards - p pressure - Q diabatic heating rate - R gas constant of the air - t time - T temperature - v horizontal velocity - v (3) three-dimensional velocity - w vertical velocity in thez-system - z height - temperature growth rate (T/z) - Pechala's vertical coordinate (z/T) - generalized vertical velocity in the -system (d/dt) - specific potential energy - potential energy - density of the air - Ruppert function - T(1–)–1 - ( ) S quantity at the sea level - ( )* quantity at the MEL  相似文献   

16.
An analysis is made of the long-period geomagnetic pulsations as recorded at seven Norilsk meridian stations ( = 162°, latitudinal range: 61°–71°N) following abrupt magnetospheric expansion during the storm of 22 March 1979 caused by a rapid decrease in solar wind density. As with the time interval following an abrupt contraction at the time of sudden storm commencement, there exist two types of pulsations in the pulsation spectra: latitude-independent (T>400 s) and latitude-dependent (T<200 s) pulsations. The first pulsation type is interpreted in terms of forced pulsations associated with magnetopause oscillations. The oscillation period is determined by plasma density in the boundary layer and by the radius of the magnetosphere (T 1/2R4). The latitudinal dependence of the period, amplitude and polarization of the second-type pulsations is in agreement with the resonance mechanism of their origin.  相似文献   

17.
This paper provides a complete generalization of the classic result that the radius of curvature () of a charged-particle trajectory confined to the equatorial plane of a magnetic dipole is directly proportional to the cube of the particles equatorial distance () from the dipole (i.e. 3). Comparable results are derived for the radii of curvature of all possible planar chargedparticle trajectories in an individual static magnetic multipole of arbitrary order m and degree n. Such trajectories arise wherever there exists a plane (or planes) such that the multipole magnetic field is locally perpendicular to this plane (or planes), everywhere apart from possibly at a set of magnetic neutral lines. Therefore planar trajectories exist in the equatorial plane of an axisymmetric (m = 0), or zonal, magnetic multipole, provided n is odd: the radius of curvature varies directly as n=2. This result reduces to the classic one in the case of a zonal magnetic dipole (n = 1). Planar trajectories exist in 2m meridional planes in the case of the general tesseral (0 < m < n) magnetic multipole. These meridional planes are defined by the 2m roots of the equation cos[m()–nm)] = 0, where nm = (1/m) arctan (hnm/gnm); gnm and hnm denote the spherical harmonic coefficients. Equatorial planar trajectories also exist if (nm) is odd. The polar axis ( = O,) of a tesseral magnetic multipole is a magnetic neutral line if m > I. A further 2m(nm) neutral lines exist at the intersections of the 2m meridional planes with the (nm) cones defined by the (nm) roots of the equation Pnm(cos ) = 0 in the range 0 < 9 < , where Pnm(cos ) denotes the associated Legendre function. If (nm) is odd, one of these cones coincides with the equator and the magnetic field is then perpendicular to the equator everywhere apart from the 2m equatorial neutral lines. The radius of curvature of an equatorial trajectory is directly proportional to n=2 and inversely proportional to cos[m(–)]. Since this last expression vanishes at the 2m equatorial neutral ines, the radius of curvature becomes infinitely large as the particle approaches any one of these neutral lines. The radius of curvature of a meridional trajectory is directly proportional to rn+2, where r denotes radial distance from the multiple, and inversely proportional to Pnm(cos )/sin . Hence the radius of curvature becomes infinitely large if the particle approaches the polar magnetic neutral ine (m > 1) or any one of the 2m(nm) neutral ines located at the intersections of the 2m meridional planes with the (nm) cones. Illustrative particle trajectories, derived by stepwise numerical integration of the exact equations of particle motion, are pressented for low-degree (n 3) magnetic multipoles. These computed particle trajectories clearly demonstrate the non-adiabatic scattering of charged particles at magnetic neutral lines. Brief comments are made on the different regions of phase space defined by regular and irregular trajectories.Also Visiting Reader in Physics, University of Sussex, Falmer, Brighton, BN1 9QH, UK  相似文献   

18.
Summary The external field due to plasma within the magnetosphere has been computed as a function ofA p, which is a measure of solar wind velocity, for very quiet to slightly disturbed conditions using mean daily horizontal intensity from 1932 to 1968 at Alibag. The intensity, corrected for secular change and reduced to a common epoch, showed initially a small increase withA p followed by a steady depression with further increase in the index. ForA p7.5, which is representative of conditions over the 33-hour interval during which data relating to low-energy protons were acquired and used byHoffman andBracken [4]2) to compute current distributions, the decrease, computed here from surface data, is 6 . This is in goodagreement with the southward directed field of the quiet-time proton belt 9±5 obtained byHoffman andBracken.  相似文献   

19.
Summary An explicit solution is obtained for the system of equations describing the spheroidal motion in a homogeneous, isotropic, gravitating, elastic medium possessing spherical symmetry. This solution is used to derive the Green's dyad for a homogeneous gravitating sphere. The Green's dyad is then employed to obtain the displacement field induced by tangential and tensile dislocations of arbitrary orientation and depth within the sphere.Notation G Gravitational constant - a Radius of the earth - A o =4/3 G - Perturbation of the gravitational potential - Circular frequency - V p ,V s Compressional and shear wave velocities - k p =/V p - k s =/V s - k p [(2.8)] - , [(2.17)] - f l + Spherical Bessel function of the first kind - f l Spherical Hankel function of the second kind - x =r - y =r - x o =r o - y o =ro - x =r k s - y =r k p - x o =r o k s - y o =r o k p - =a - =a - [(5.17)] - m, l   相似文献   

20.
A comparison of two bivariate extreme value distributions   总被引:1,自引:0,他引:1  
There are two distinct bivariate extreme value distributions constructed from Gumbel marginals, namely Gumbel mixed (GM) model and Gumbel logistic (GL) model. These two models have completely different structures and their dependence ranges are different. The product-moment correlation coefficient for the former is [0,2/3] and the latter is [0,1]. It is natural to ask which one is more appropriate for representing the joint probabilistic behavior of two correlated Gumbel-distributed variables. This study compares these two models by numerical experiments. The comparison is based on that: (i) if the two distribution models are identical, then the joint probability and the joint return period computed by the GM model should be the same as those by the GL model; and (ii) if a selected distribution is the true distribution from which sample data are drawn, then the probabilities computed by the theoretical model should provide a good fit to empirical ones. Comparison results indicate that in the range of correlation coefficient [0,2/3], both models provide identical joint probabilities and joint return periods, and both indicate a good fit to empirical probabilities; while for (2/3,1), only the Gumbel logistic model can be used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号