首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Zhang  Hongqi  Zhang  Mei 《Solar physics》2000,196(2):269-277
Simultaneous observations of chromospheric (H) and photospheric (Fei 5324.19 Å) magnetograms in quiet solar regions enable us to study the spatial configuration of the magnetic field in the solar atmosphere. With the typical spatial resolution of the Huairou magnetograph, the photospheric and chromospheric magnetic structures of the quiet Sun maintain a very similar pattern. Moreover, the vertical magnetic flux is almost the same from the photosphere to the chromosphere. As an intermediate step, we analyze the formation of the working lines used by the Huairou video magnetograph of the Beijing Astronomical Observatory. The Stokes V contribution function of H and Fei 5324.19 Å are calculated. It is found that our H magnetograms provide the distribution of the chromospheric magnetic field at a height some 1000–1500 km above the photosphere.  相似文献   

2.
The profiles of six photospheric absorption spectral lines (Fei 5250 Å, Fei 5324 Å, Fei 5576 Å, Cai 5590 Å, Cai 6103 Å and Fei 6165 Å), measured in the kernel of a 2N solar flare and in a quiet-Sun area, were compared. The observations were carried out with an echelle spectrograph of the Crimean Astrophysical Observatory. It was shown that, compared to the quiet-Sun profiles, the flare profiles are shallower in the line core and are less steep in the wings. Therefore, measurements of the longitudinal magnetic field made with a magnetograph system which uses the Cai 6103 Å  spectral line, can be underestimated by 18–25% in areas of bright H ribbons of a moderate solar flare. Modeling of the solar photosphere performed by using a synthesis method showed that, in a solar flare, the enhanced core emission seems to be related to heating of the photosphere by the flare, whereas the decrease of the slope of the wings was presumably caused by the inhomogeneity of the photospheric magnetic field.  相似文献   

3.
Spectral scans of the coma of comet P/Crommelin 1818. I have been obtained in the wavelength range 3200–6500 Å. Strong emission features of CN(3883 Å) and C2 Swan bands (4695, 5165, and 5538 Å) have been identified. Some weak emission features of CH(3890 Å), C3(4050 Å), CN(4200 »), and C2 + CH(4358 ») were also detected. Sodium was found to be absent in this comet. An estimate of CN and C2 abundances has been made and their production rate have been derived.  相似文献   

4.
Ravindra  B.  Venkatakrishnan  P. 《Solar physics》2003,215(2):239-259
The length scale and life time of the transition region network cells were studied using Heii 304 filtergrams. The temporal structure function was calculated from spatially aligned Heii 304 images. The estimated life time of the network cell was about 27 hr. We compared this life time with the life time of photospheric magnetic network and of the extrapolated magnetic network. The spatial structure function was calculated from the Heii 304 filtergrams. The calculated spatial structure function saturates at 25000 km. The transition region network elements are bigger in size than the photospheric magnetic network element. The magnetic network element equals the size of the Heii 304 network element when the photospheric magnetic field is extrapolated to a height of 3000 km above the photosphere where the magnetic fluxes are deployed. The derived value of the diffusion speed of the network elements was 0.098 km s–1.  相似文献   

5.
Kulagin  E.S. 《Solar physics》1999,188(1):81-87
A narrow-band tunable solar filter was constructed for the near-infrared spectral region. It is a pre-monochromator consisting of a double monochromator with dispersion subtraction, while the final passband is formed by a scanning Fabry–Pérot interferometer. Such a filter can be realized in practice for any optical spectral region. The tuning range of the filter for the near-infrared is 9000–11000 Å, FWHM of the passband equals 0.24 Å at the Hei 10830 Å line. The angular field of view on the sky is 3.6 for a diameter of the telescope of 100 mm. Filtergrams of the active region NOAA 8076 in the Hei 10830 Å line were obtained on 28 August 1997, the profiles of this line in the selected points of the image, and radial velocity field are presented.  相似文献   

6.
In this paper we present the results of inversion of Stokes polarization profiles of a sunspot, to recover the vector magnetic field parameters of the spectral-line-forming region, using the Fei 5324.19 Å line and a nonlinear least-squares fitting. Observations of the simple sunspot were obtained using the Video Vector Magnetograph at the Huairou Solar Observing Station (HSOS) of the National Astronomical Observatories of China, over the wavelength interval of 150 mÅ redward of line center of Fei 5324.19 Å to 150 mÅ to the blue, in steps of 10 mÅ. The curves of the observed variation of azimuth with wavelength are also compared with model calculations of the azimuth at each wavelength, as derived from the inverse Zeeman effect modified by Faraday rotation. The results show that the rotation of azimuth is less significant in the observations taken near the center of the Fei 5324.19 Å line than those taken near the center of the Fei 5250.22 Å line.  相似文献   

7.
Since 1986, we have made some improvements to the multichannel solar spectrograph at Purple Mountain Observatory (PMO) step by step, and now we have developed and added to it a multichannel infrared imaging solar spectrograph. The original spectrograph can be used to observe simultaneously solar activity at 9 wave bands including Caii H and K line, Mgi b line, Hei D3 line and H through H. The newly developed infrared imaging spectrograph can work in three wavelengths, i.e., Hei 10830 Å, Caii 8542 Å, and H. We replaced plates in the original system with CCDs and placed an image reducer before each CCD in order to match the CCD pixel size. The dispersions for Hei 10830 Å, Caii 8542 Å, and H of the new imaging solar spectrograph are 0.0693 Å, 0.0767 Å, and 0.0754 Å per CCD pixel respectively, and each vertical CCD pixel represents 0.34 arc sec of solar disk. We can obtain the line-center and off-band intensities of the three lines and the intensities of continua adjacent to these lines through the new instrument. We can also acquire velocity maps and line profiles. Therefore, it is specially suitable for two-dimensional (2D) spectroscopic observations of solar flares and active regions. We carry out scanning observation by rotating the second mirror of the coelostat system. In this paper, we introduce the improvements we made and the new imaging solar spectrograph. Some observation results are also presented in this article.  相似文献   

8.
Zhang  Mei  Zhang  Hongqi 《Solar physics》2000,194(1):19-28
Photospheric (Fei 5324.19 Å line) and chromospheric (H line) magnetic fields in quiet-Sun regions have been observed in the solar disk center by using the vector video magnetograph at Huairou Solar Observing Station of Beijing Astronomical Observatory. Observational results show that the quiet-Sun magnetic elements in the solar photosphere and chromosphere present similar magnetic structures. Photospheric and chromospheric magnetograms show corresponding time variations. This suggests that the magnetic fields in quiet-Sun regions present different 3-D magnetic configurations compared to those in solar active regions.  相似文献   

9.
Computations of polarization and intensity of radiation from a unit stellar surface area are presented, as well as a study of the numerical characteristics of atmospheres — single-scattering albedo and the initial source function(), which define the polarization behaviour of atmospheres. The radiatively stable models of stellar atmospheres presented by Kuruczet al. (1974) and Kurucz (1979) have been used for calculations. Since the versus optical depth dependence is rather weak, it has been assumed that (=cost. With a fixed effective temperatureT eff maximum values of are characteristic of stars featuring the lowest surface gravity accelerationg. Among stars with radiatively stable atmospheres, maximum values of (=5000 Å) 0.4–0.6 are exhibited by supergiants withT eff=8000–20 000 K. The plot of () is characterized by discontinuities at the boundaries of spectral series for hydrogen and, sometimes, for helium. Maximum are attained in the Lyman region of =912–1200 Å, where can reach the value 0.7–0.9 for supergiants, this value being 0.3 for Main-Sequence stars. For stars withT eff 35 000 K, high values of also are attained for <912 Å. Within the infrared region, is always small because of bremsstrahlung absorption.A rapid growth of the source functionB with < typical for ultraviolet range (within the Wien part of spectrum), together with high values of results in the strong polarization of emission from a unit stellar surface element, sometimes exceeding the values for the case of a pure electron scattering. For longer wavelengths, where the limb-darkening coefficient is smaller, the plane of polarization abruptly turns 90° in the central parts of the visible stellar disk.  相似文献   

10.
Spectro-polarimetric observations of active regions were carried out in the spectral lines of Sii 10827.1 Å and Hei 10830 Å to study the three-dimensional magnetic field structure and associated plasma flow properties. Comparison of Sii and Hei magnetograms with the potential field model shows that a large fraction of the magnetic field is consistent with the potential field structure, by assuming that the height difference between the origin of the two lines is about 1200 km. The slope of the scatter plot between Sii and Hei magnetograms is 0.5, 0.76 in an emerging flux and a larger active region, respectively. These values are lower than the scatter plot slopes obtained from Kitt Peak photospheric and chromospheric magnetograms, in which case the corresponding values are 0.83 and 0.9, respectively. Considering the height difference between these two sets of chromospheric magnetograms, this implies that the magnetic field spreads out faster near the transition region heights. Dopplergrams obtained by determining the centroid of the asymmetric line profiles show that, in case of emerging flux region, the chromospheric upflow regions are located in the magnetic neutral line areas.  相似文献   

11.
12.
. - . . , . - . - , , , -. ., , .
The structure of rotating magnetic polytropes is considered in Roche approximation. Investigation of the influence of poloidal as well as toroidal magnetic fields on the conditions of the beginning of matter outflow due to rotational instability is carried out. The influence of the turbulent convection and twisting of magnetic force-lines on the time of smoothing of differential rotation is considered. The estimate of the magneto-turbulence energy generated by differential rotation is presented. Both maximum possible energy output and duration of the quasi-statical evolution phase up to the appearance of hydrodynamic instability due to the effects of general relativity are calculated for supermassive magnetic polytropes of index three with uniform or differential rotation. The radius-mass relation is obtained for supermassive differentially-rotating magnetic polytropes referring to the longest part of the quasi-statistical evolution stage; some consequences are pointed out, including the period-luminosity relation.The evolution of the considered models of supermassive rotating magnetic polytropes with different character of rotation and different geometry of a magnetic field is discussed.The results obtained are summarized in the last section.


English translation will appear in the next issue ofAstrophys. Space Sci.

Receipt delayed by postal strike in Great Britain  相似文献   

13.
14.
A. Sauval 《Solar physics》1968,3(1):89-105
In order to obtain a better agreement between observed and computed values of the solar intensity, an improved temperature distribution is deduced for the range 0.02<0< 10. The intensity observations here considered refer to the wavelength region between 1980 and 129 500, and the center-limb variations generally go down to cos = 0.1. The improved model, given in Figure 4 and Table II, differs rather little from the Utrecht 1964 model, used here as a reference.It appears necessary to introduce an empirical correction function to be applied to the continuous absorption coefficient. This function was derived for the spectral region between 2000 and 130000 Å; it is shown in Figure 5.Furthermore, an extension of the model (1.10–7<0< 2.10–2) is deduced (see Table III and Figure 8), which reasonably well represents the observations of the ultraviolet solar flux ( 900–1700 Å).  相似文献   

15.
Fredvik  T.  Maltby  P. 《Solar physics》1999,184(1):113-132
Based on EUV observations of eleven sunspot regions obtained with the Coronal Diagnostic Spectrometer, CDS, on SOHO we have studied the spatial distribution, temporal variation and wavelength shift of the Hei 584 line. We find a relatively high spatial correlation between the coronal line Fexvi 360 and the Hei 584 line. This points to coronal back-radiation as an important contributor to the formation of the Hei line in active regions. However, contribution to the line formation from another source is suggested by the following two findings: First, the red-shifted line profiles of both Hei 584 and the transition region lines tend to be more intense than blue-shifted profiles. Second, the Hei 584 emission changes significantly faster than the coronal line emission.  相似文献   

16.
17.
The normalised Hénon–Heiles family exhibits a degenerate bifurcation when passing through the separable case =0. We clarify the relation between this degeneracy and the integrability at =0. Furthermore we show that the degenerate bifurcation carries over to the Hénon–Heiles family itself.  相似文献   

18.
Altrock  Richard C. 《Solar physics》2003,213(1):23-37
Synoptic photoelectric observations of the coronal Fexiv and Fex emission lines at 530.3 nm and 637.4 nm, respectively, are analyzed to study the rotational behavior of the solar corona as a function of latitude, height, time and temperature between 1976 (1983 for Fex) and 2001. An earlier similar analysis of the Fexiv data at 1.15 R over only one 11-year solar activity cycle (Sime, Fisher, and Altrock, 1989, Astrophys. J. 336, 454) found suggestions of solar-cycle variations in the differential (latitude-dependent) rotation. These results are tested over the longer epoch now available. In addition, the new Fexiv 1.15 R results are compared with those at 1.25 R and with results from the Fex line. I find that for long-term averages, both ions show a weakly-differential rotation period that may peak near 80° latitude and then decrease to the poles. However, this high-latitude peak may be due to sensing low-latitude streamers at higher latitudes. There is an indication that the Fexiv rotation period may increase with height between 40° and 70° latitude. There is also some indication that Fex may be rotating slower than Fexiv in the mid-latitude range. This could indicate that structures with lower temperatures rotate at a slower rate. As found in the earlier study, there is very good evidence for solar-cycle-related variation in the rotation of Fexiv. At latitudes up to about 60°, the rotation varies from essentially rigid (latitude-independent) near solar minimum to differential in the rising phase of the cycle at both 1.15 R and 1.25 R . At latitudes above 60°, the rotation at 1.15 R appears to be nearly rigid in the rising phase and strongly differential near solar minimum, almost exactly out of phase with the low-latitude variation.  相似文献   

19.
The coefficients of correlation between spectroscopic data published by Yamashita (1967) and others for carbon stars and the statistical population indices calculated for these stars at the Toru Observatory are calculated (Table II). The intensity estimates of Cai 4227 Å, Nai D lines, the C13/C12 ratio, then=n(Li/Ca) index, as well as CN and probably C2 bands are higher in population I carbon stars. The CH(G) band and probably hydrogen (H, H, H) lines as well as Baii 4554 and 4934 Å lines are stronger in population II carbon stars. The photoelectric colour indices, corrected for interstellar reddening do not show significant population effects. They can be used as spectral type equivalents. For a population criterion the CH/CN intensity ratio is proposed.  相似文献   

20.
In order to study the electron density at the scale of the most encountered structures in coronal active regions a new multichannel coronagraph associated with a photoelectric spectrograph is now used at the Pic-du-Midi Observatory. In its quasi-routine mode this instrument, which is described in this paper, works with a 30 field aperture in a parallel manner with aK-polarimeter. On each observed region it obtains maps of intensities of the 3388, 10747, and 10798 Å emission lines due to Fexiii ion. Each measurement point is associated with a quasi-simultaneous image of the emission corona structures viewed in the light of the5303 Å line of Fexiv. Three examples of observations are given and the capabilities are discussed.Measuring electron density in coronal active regions. II A multichannel photoelectric coronagraph with a photo-electric spectrograph and a reflex monitor at5303 Å.LA du CNRS No. 040285.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号