首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Wind and temperature observations in the mesosphere and lower thermosphere (MLT) from the Upper Atmosphere Research Satellite (UARS) reveal strong seasonal variations of tides, a dominant component of the MLT dynamics. Simulations with the Spectral mesosphere/lower thermosphere model (SMLTM) for equinox and solstice conditions are presented and compared with the observations. The diurnal tide is generated by forcing specified at the model lower boundary and by in situ absorption of solar radiation. The model incorporates realistic parameter-izations of physical processes including various dissipation processes important for propagation of tidal waves in the MLT. A discrete multi-component gravity-wave parameterization has been modified to account for seasonal variations of the background temperature. Eddy diffusion is calculated depending on the gravitywave energy deposition rate and stability of the background flow. It is shown that seasonal variations of the diurnal-tide amplitudes are consistent with observed variations of gravity-wave sources in the lower atmosphere.  相似文献   

2.
3.
A new parameterization of infrared radiative transfer in the 15-m CO2 band has been incorporated into the Spectral mesosphere/lower thermosphere model (SMLTM). The parameterization is applicable to calculations of heating rates above approximately 15 km for arbitrary vertical profiles of the CO2 concentration corresponding to the surface mixing ratio in the range 150–720 ppm. The sensitivity of the mesosphere and lower thermosphere (MLT) to doubling of CO2 has been studied. The thermal response in the MLT is mostly negative (cooling) and much stronger than in the lower atmosphere. An average cooling at the stratopause is about 14 K. It gradually decreases to approximately 8 K in the upper mesosphere and again increases to about 40–50 K in the thermosphere. The cooling and associated thermal shrinking result in a substantial density reduction in the MLT that reaches 40–45% in the thermosphere. Various radiative, chemical, and dynamical feedbacks potentially important for the thermal response in the MLT are discussed. It is noted that the results of simulations are strikingly similar to observations of long-term trends in the MLT. This suggests that during the last 3–4 decades the thermal structure in the real upper atmosphere has undergone substantial changes driven by forcing comparable with that due to doubling of CO2.  相似文献   

4.
Incoherent scatter radars are designed to detect scatter from thermalfluctuations in the ionosphere. These fluctuations contain, among other things,features associated with ion-acoustic waves driven by random motions within theplasma. The resulting spectra are generally broad and noisy, but neverthelessthe technique can, through a detailed analysis of spectra, be used to measure arange of physical parameters in the Earth's upper atmosphere, and provides apowerful diagnostic in studies of magnetosphere-ionosphere coupling,thermosphere dynamics and the geospace environment in general. In recent yearsthere has been much interest in naturally occurring (as opposed to artificiallystimulated) enhanced ion-acoustic spectra seen in the auroral zone andcusp/cleft region. A study of the plasma instability processes that lead tosuch spectra will help us to better understand auroral particle acceleration,wave-particle and wave-wave interactions in the ionosphere, and theirassociation with magnetospheric processes. There is now a substantial body ofliterature documenting observations of enhanced ion-acoustic spectra, but thereremains controversy over generation mechanisms. We present a review ofliterature documenting observations of naturally enhanced ion-acoustic spectra,observed mainly along the geomagnetic field direction, along with a discussionof the theories put forward to explain such phenomena.  相似文献   

5.
We present time series of January–May mean mesosphere/lower thermosphere (MLT) mean winds and planetary wave (PW) proxies over Europe together with stratospheric stationary planetary waves (SPW) at 50°N and time series of European ozone laminae occurrence. The MLT winds are connected with stratospheric PW and laminae at time scales of several years to decades. There is a tendency for increased wave activity after 1990, together with more ozone laminae and stronger MLT zonal winds. However, possible coupling processes are not straightforward. While mean MLT winds before the 1990s show similar interannual variations than stratospheric PW at 100 hPa, later a tendency towards a connection of the MLT with the middle stratosphere SPW is registered. There is also a tendency for a change in the correlation between lower and middle stratosphere SPW, indicating that coupling processes involving the European middle atmosphere from the lower stratosphere to the mesopause region have changed.  相似文献   

6.
The ionospheric D-region (~60 km up to ~95 km) and the corresponding neutral atmosphere, often referred to as the mesosphere–lower thermosphere (MLT), are challenging and costly to probe in situ. Therefore, remote sensing techniques have been developed over the years. One of these is based on very low frequency (VLF, 3–30 kHz) electromagnetic waves generated by various natural and man-made sources. VLF waves propagate within the Earth–ionosphere waveguide and are extremely sensitive to perturbations occurring in the D-region along their propagation path. Hence, measurements of these signals serve as an inexpensive remote sensing technique for probing the lower ionosphere and the MLT region. This paper reviews the use of VLF narrowband (NB) signals (generated by man-made transmitters) in the study of the D-region and the MLT for over 90 years. The fields of research span time scales from microseconds to decadal variability and incorporate lightning-induced short-term perturbations; extraterrestrial radiation bursts; energetic particle precipitation events; solar eclipses; lower atmospheric waves penetrating into the D-region; sudden stratospheric warming events; the annual oscillation; the solar cycle; and, finally, the potential use of VLF NB measurements as an anthropogenic climate change monitoring technique.  相似文献   

7.
Continuous MF and meteor radar observations allow detailed studies of winds in the mesosphere and lower thermosphere (MLT) as well as temperatures around the mesopause. This height region is characterized by a strong variability in winter due to enhanced planetary wave activity and related stratospheric warming events, which are distinct coupling processes between lower, middle and upper atmosphere. Here the variability of mesospheric winds and temperatures is discussed in relation with major and minor stratospheric warmings as observed during winter 2005/06 in comparison with results during winter 1998/99.Our studies are based on MF radar wind measurements at Andenes (69°N, 16°E), Poker Flat (65°N, 147°W) and Juliusruh (55°N, 13°E) as well as on meteor radar observations of winds and temperatures at Resolute Bay (75°N, 95°W), Andenes (69°N, 16°E) and Kühlungsborn (54°N, 12°E). Additionally, energy dissipation rates have been estimated from spectral width measurements using a 3 MHz Doppler radar near Andenes. Particular attention is directed to the changes of winds, turbulence and the gravity wave activity in the mesosphere in relation to the planetary wave activity in the stratosphere.Observations indicate an enhancement of planetary wave 1 activity in the mesosphere at high latitudes during major stratospheric warmings. Daily mean temperatures derived from meteor decay times indicate that strong warming events are connected with a cooling of the 90 km region by about 10–20 K. The onset of these cooling processes and the reversals of the mesospheric circulation to easterly winds occur some days before the changes of the zonal circulation in the stratosphere start indicating a downward propagation of the circulation disturbances from the MLT region to the stratosphere and troposphere during the stratospheric warming events. The short-term reversal of the mesospheric winds is followed by a period of strong westerly winds connected with enhanced turbulence rates and an increase of gravity wave activity in the altitude range 70–85 km.  相似文献   

8.
平流层爆发性增温(SSW)期间,低层大气温度场和风场等的剧烈变化会直接影响潮汐和风剪切作用.此举可能会导致电离层Es的相应变化.本文以2009年1月事件为例,分析了SSW期间Es层的响应.首先,在排除太阳活动和地磁活动对Es层影响的前提下,分析了昆明站附近MLT区域行星波和潮汐波的波动特性,发现此期间存在显著的2日行星波,并伴有日潮汐减弱和半日潮汐增强等波动现象;随后,分析相应时间段内Es层的变化特性发现,重庆和昆明站附近Es层强度明显减弱,且其高度显著抬升.这一现象与低层大气的波动变化具有同步性.最后,通过模拟经典风剪切理论下Es层金属离子的汇聚过程和运动轨迹,再现了SSW期间Es层与低层大气波动的耦合演化过程.该分析结果为研究低层-中层-高层大气的耦合过程提供了一种新的思路.  相似文献   

9.
Analyses of hourly values of zonal and meridional wind near 95 km observed by meteor radar at Yambol (42.5°N, 26.6°E) during January 1991–June 1992 indicate the presence of planetary waves with prevailing periods of 1.5–2.5, 4–6, 9–10 and 16–18 days. About 20% of the whole power of atmospheric motions is connected with these waves, so they play an important role in the dynamics of the mesosphere-lower thermosphere (MLT) region. By dynamic spectral analysis applied to the hourly neutral wind and to the calculated hourly values of tidal amplitudes it has been demonstrated that there is considerable modulation of tidal amplitudes by planetary waves in the neutral wind, as this process is better expressed in the semidiurnal tides. The nonlinear interaction between tides and planetary waves is studied by bispectral analysis. The results of these analyses indicate again that the nonlinear interactions between semidiurnal tides and planetary waves with periods 2–20 days are stronger than those of the diurnal tides and planetary waves. A peculiar feature of dynamics in the MLT region above Bulgaria is the presence of strong oscillations with periods of 20 and 30 h, which indicate significant nonlinear coupling between them.  相似文献   

10.
The main features of upper atmosphere dynamics as an important part of upper atmosphere climatology are presented. The dynamics of the mesosphere and lower thermosphere (MLT) are of special interest. The results are based on the long series of investigations in East Siberia and data from a world-wide network of observatories. We present the regional climatic norms for the prevailing wind and semi-diurnal tide and the main features of the quasi-periodic structure of the wind field. The non-zonality of MLT dynamics is demonstrated as well as regional differences in the response of the wind field to stratospheric disturbances, solar activity variations and geomagnetic storms.  相似文献   

11.
Summary This paper discusses the need for a global network of meteor wind stations for determining the general circulation of the upper mesosphere and lower thermosphere. Continuous observations of horizontal motions from such a network would permit resolution of planetary scale eddy winds, tides, and gravity waves, and hypotheses that such motions propagate vertically from the lower atmosphere or are generated in situ by solar activity could be examined critically with observational data. The observed mean winds from the lower stratosphere to the meteor wind level are summarized to support the hypothesis that a standing wave pattern in the winds extends into the lower thermosphere. Data on tidal meridional momentum transports from meteor wind stations suggest that tides in the lower thermosphere are important for the maintenance of mean winds. Some of the geomagnetic and photochemical processes in the lower thermosphere that could be investigated with meteor wind data are briefly reviewed.This paper is adapted from our presentation at the 1966 Fall URSI meeting at Palo Alto, California  相似文献   

12.
Within the global context, Antarctica has a key role to play in understanding long-term change in the upper atmosphere, both because of its isolation from the rest of the world and because of its unique geophysical attributes. Antarctic upper atmosphere data can provide global change observations regarding the mesosphere, thermosphere, ionosphere, plasmasphere and magnetosphere. It will not only provide trend estimates but, just as importantly, it will define the background variability which exists in the upper atmosphere and against which these trends must be resolved. Upper atmospheric change can be driven both from within the Earth's near environment primarily through changing atmospheric composition, dynamics or geomagnetic field, or it can be driven externally, predominantly by the Sun. Recent observations are discussed in the light of increasing interest in global change issues and sun-weather relationships.  相似文献   

13.
The continuous increase in concentration of greenhouse gases in the atmosphere is expected to cool higher levels of the atmosphere. There is some direct and indirect experimental evidence of long-term trends in temperature and other parameters in the mesosphere and lower thermosphere (MLT). Here we look for long-term trends in the annual and semiannual variations of the radio wave absorption in the lower ionosphere, which corresponds to the MLT region heights. Data from central and southeastern Europe are used. A consistent tendency to a positive trend in the amplitude of the semiannual wave appears to be observed. The reality of a similar tendency in the amplitude of the annual wave is questionable in the sense that the trend in the amplitude of the annual wave is probably induced by the trend in the yearly average values of absorption. The phases of both the annual and semiannual waves display a forward tendency, i.e. shift to an earlier time in the year. A tentative interpretation of these results in terms of changes of the seasonal variation of temperature and wind at MLT heights does not contradict the trends observed in those parameters.  相似文献   

14.
Based on the horizontal winds measured using SKiYMET meteor wind radar during the period of June 2004–May 2007, the seasonal and interannual variability of the diurnal and semidiurnal amplitudes and phases in the mesospheric and lower thermospheric (MLT) region over a low-latitude station Trivandrum (8.5°N) are investigated. The monthly values of amplitudes and phases are calculated using a composite day analysis. The zonal and meridional diurnal tidal amplitudes exhibit both annual and semiannual oscillations. The zonal and meridional components of semidiurnal tide show a significant annual oscillation. The phase values of both diurnal and semidiurnal tides exhibit annual oscillation above 90 km. The effect of background wind in the lower atmosphere on the strength of diurnal tidal amplitudes in the MLT region is studied. The effect of diurnal tides on the background wind in the lower thermosphere is also discussed.  相似文献   

15.
Planetary waves in coupling the lower and upper atmosphere   总被引:1,自引:1,他引:1  
The purpose of the paper is to answer the question if planetary waves (PW) are capable of propagating into the thermosphere. First the simplest vertical structure equation of the classic tidal theory accounting for a realistic vertical temperature profile is considered. Analysis and simulation show that the well-known normal atmospheric modes (NM), which are trapped in the lower and middle atmosphere, exhibit a wave-like vertical structure with a large vertical wavelength in the thermosphere. Moreover, the reflection of these modes from the vertical temperature gradient in the lower thermosphere causes appearance of the wave-energy upward flux in the middle atmosphere, and in a linearized formulation this flux is constant above the source region. To investigate a possibility of the NM forcing by stratospheric vacillations and to consider the propagation of different PW up to the heights of the upper thermosphere, a set of runs with a mechanistic Middle and Upper Atmosphere Model has been performed. The results of the simulation show that quasi-stationary and longer-period PW are not able to penetrate into the thermosphere. The shorter-period NM and ultra-fast Kelvin wave propagate up to the heights of the lower thermosphere. However, above about 150 km they are strongly suppressed by dissipative processes. The role of the secondary waves (nonmigrating tides) arising from nonlinear interaction between the primary migrating tides and quasi-stationary PW is discussed. We conclude that PW are not capable of propagating directly up to the heights of the ionospheric F2 region. It is suggested that other physical processes (for instance, the electrostatic field perturbations) have to be taken into account to explain the observed PW-like structures in ionospheric parameters.  相似文献   

16.
中层顶区Na原子分布昼夜变化的模拟研究   总被引:3,自引:0,他引:3       下载免费PDF全文
Na原子可以作为大气动力学过程(如潮汐波、重力波等)的示踪剂,因而对Na层的探测研究成为研究中层顶区的重要手段. 本文建立了时变的中高层大气光化学模式,并与国际电离层模式 (IRI 95) 与Na层光化学理论相结合,建立完整时变的中高层大气Na层光化学模式,着重研究Na层分布的昼夜变化. 计算结果表明,在Na原子分布的峰值附近,Na层不出现大的昼夜变化,而在Na层的上部和下部,Na原子密度存在明显的昼夜变化. 这些特性与实际的观测结果比较一致.  相似文献   

17.
Continuous wind observations allow detailed investigations of the upper mesosphere circulation in winter and its coupling with the lower atmosphere. During winter the mesospheric/lower thermospheric wind field is characterized by a strong variability. Causes of this behaviour are planetary wave activity and related stratospheric warming events. Reversals of the dominating eastward directed mean zonal winds in winter to summerly westward directed winds are often observed in connection with stratospheric warmings. In particular, the amplitude and duration of these wind reversals are closely related to disturbances of the dynamical regime of the upper stratosphere.The occurrence of long-period wind oscillations and wind reversals in the mesosphere and lower thermosphere in relation to planetary wave activity and circulation disturbances in the stratosphere has been studied for 12 winters covering the years 1989–2000 on the basis of MF radar wind observations at Juliusruh (55°N, since 1989) and Andenes (69°N, since 1998). Mesospheric wind oscillations with long-periods between 10 and 18 days are observed during the presence of enhanced planetary wave activity in the stratosphere and are combined with a reversal of the meridional temperature gradient of the stratosphere or with upper stratospheric warmings.  相似文献   

18.
The tropical Indian Ocean circulation system includes the equatorial and near-equatorial circulations, the marginal sea circulation, and eddies. The dynamic processes of these circulation systems show significant multi-scale variability associated with the Indian Monsoon and the Indian Ocean dipole. This paper summarizes the research progress over recent years on the tropical Indian Ocean circulation system based on the large-scale hydrological observations and numerical simulations by the South China Sea Institute of Oceanology(SCSIO), Chinese Academy of Sciences. Results show that:(1) the wind-driven Kelvin and Rossby waves and eastern boundary-reflected Rossby waves regulate the formation and evolution of the Equatorial Undercurrent and the Equatorial Intermediate Current;(2) the equatorial wind-driven dynamics are the main factor controlling the inter-annual variability of the thermocline in the eastern Indian Ocean upwelling;(3) the equatorial waves transport large amounts of energy into the Bay of Bengal in forms of coastal Kelvin and reflected free Rossby waves. Several unresolved issues within the tropical Indian Ocean are discussed:(i) the potential effects of the momentum balance and the basin resonance on the variability of the equatorial circulation system, and(ii) the potential contribution of wind-driven dynamics to the life cycle of the eastern Indian Ocean upwelling. This paper also briefly introduces the international Indian Ocean investigation project of the SCSIO, which will advance the study of the multi-scale variability of the tropical Indian Ocean circulation system, and provide a theoretical and data basis to support marine environmental security for the countries around the Maritime Silk Road.  相似文献   

19.
Numerical modeling of changes in the zonal circulation and amplitudes of stationary planetary waves are performed with an accounting for the impact of solar activity variations on the thermosphere. A thermospheric version of the Middle/Upper Atmosphere Model (MUAM) is used to calculate the circulation in the middle and upper atmosphere at altitudes up to 300 km from the Earth’s surface. Different values of the solar radio emission flux in the thermosphere are specified at a wavelength of 10.7 cm to take into account the solar activity variations. The ionospheric conductivities and their variations in latitude, longitude, and time are taken into account. The calculations are done for the January–February period and the conditions of low, medium, and high solar activity. It was shown that, during high-activity periods, the zonal wind velocities increases at altitudes exceeding 150 km and decreases in the lower layers. The amplitudes of planetary waves at high solar activity with respect to the altitude above 120 km or below 100 km, respectively, are smaller or larger than those at low activity. These differences correspond to the calculated changes in the refractive index of the atmosphere for stationary planetary waves and the Eliassen–Palm flux. Changes in the conditions for the propagation and reflection of stationary planetary waves in the thermosphere may influence the variations in their amplitudes and the atmospheric circulation, including the lower altitudes of the middle atmosphere.  相似文献   

20.
Theoretical understanding of the earth's atmosphere is not possible without accounting for tidal waves and their interactions. In the thermosphere, tides represent the dominant motion system. Current observational efforts are aimed at providing tidal morphologies, i.e., maps of the vertical profiles of the tidal fields as a function of time for various locations. These are in hand for the mesosphere and have proved extraordinarily useful in deriving appropriate inputs for numerical models of the thermosphere. The basic latitudinal, seasonal, and solar cycle variation of the tides in the thermosphere is much less well known but the advent of coordinated global multi-day campaigns promises to ameliorate the situation. Progress would be facilitated by agreement on a standard data reduction procedure. Theoretical efforts are focused on simulating the observed morphologies and understanding the day to day variations while investigating mutual interactions and feedback between the mean atmosphere and the tidal, gravity, and planetary waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号