首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
采用最新分子吸收数据集HITRAN2004中6种氢氟碳化物(HFCs)的吸收截面数据,建立了它们的相关K-分布的辐射计算方案,研究了这些长寿命温室气体浓度变化引起的辐射强迫,比较了它们的全球增温潜能。结果表明,从1750年到2005年由于这些气体浓度变化引起的总的辐射强迫约为0、0066Wm^-2,未来100a的辐射强迫结果说明它们对未来全球变暖的贡献不容忽视。  相似文献   

3.
Tropical cyclone heat potential (TCHP) in the ocean can affect tropical cyclone intensity and intensification. In this paper, TCHP change under global warming is presented based on 35 models from CMIP5 (Coupled Model Intercomparison Project, Phase 5). As the upper ocean warms up, the TCHP of the global ocean is projected to increase by 140.6% in the 21st century under the RCP4.5 (+4.5 W m-2 Representative Concentration Pathway) scenario. The increase is particularly significant in the western Pacific, northwestern Indian and western tropical Atlantic oceans. The increase of TCHP results from the ocean temperature warming above the depth of the 26°C isotherm (D26), the deepening of D26, and the horizontal area expansion of SST above 26°C. Their contributions are 69.4%, 22.5% and 8.1%, respectively. Further, a suite of numerical experiments with an Ocean General Circulation Model (OGCM) is conducted to investigate the relative importance of wind stress and buoyancy forcing to the TCHP change under global warming. Results show that sea surface warming is the dominant forcing for the TCHP change, while wind stress and sea surface salinity change are secondary.  相似文献   

4.
Using the mathematical formalism of the Brazilian Proposal to the IPCC, we analyse eight power technologies with regard to their past and potential future contributions to global warming. Taking into account detailed bottom-up technology characteristics we define the mitigation potential of each technology in terms of avoided temperature increase by comparing a “coal-only” reference scenario and an alternative low-carbon scenario. Future mitigation potentials are mainly determined by the magnitude of installed capacity and the temporal deployment profile. A general conclusion is that early technology deployment matters, at least within a period of 50–100?years. Our results conclusively show that avoided temperature increase is a better proxy for comparing technologies with regard to their impact on climate change, and that numerous short-term comparisons based on annual or even cumulative emissions may be misleading. Thus, our results support and extend the policy relevance of the Brazilian Proposal in the sense that not only comparisons between countries, but also comparisons between technologies could be undertaken on the basis of avoided temperature increase rather than on the basis of annual emissions as is practiced today.  相似文献   

5.
正The impacts of global warming will be felt most strongly at regional scales.However,great uncertainties exist in climate change projections at these scales,limiting our ability to provide useful information for the planning and implementation of appropriate adaptation measures.Thus,there is an urgent need to reduce these uncertainties.  相似文献   

6.
7.
8.
Sensitivity of global warming to the pattern of tropical ocean warming   总被引:1,自引:1,他引:0  
The current generations of climate models are in substantial disagreement as to the projected patterns of sea surface temperatures (SSTs) in the Tropics over the next several decades. We show that the spatial patterns of tropical ocean temperature trends have a strong influence on global mean temperature and precipitation and on global mean radiative forcing. We identify the SST patterns with the greatest influence on the global mean climate and find very different, and often opposing, sensitivities to SST changes in the tropical Indian and West Pacific Oceans. Our work stresses the need to reduce climate model biases in these sensitive regions, as they not only affect the regional climates of the nearby densely populated continents, but also have a disproportionately large effect on the global climate.
Joseph J. BarsugliEmail: Phone: +1-303-4976042Fax: +1-303-4976449
  相似文献   

9.
The Southern Oscillation Index (SOI)??a measure of air pressure difference across the Pacific Ocean, from Tahiti in the south-east to Darwin in the west??is one of the world??s most important climatic indices. The SOI is used to track and predict changes in both the El Ni?o-Southern Oscillation phenomenon, and the Walker Circulation (WC). During El Ni?o, for example, the WC weakens and the SOI tends to be negative. Climatic variations linked to changes in the WC have a profound influence on climate, ecosystems, agriculture, and societies in many parts of the world. Previous research has shown that (1) the WC and the SOI weakened in recent decades and that (2) the WC in climate models tends to weaken in response to elevated atmospheric greenhouse gas concentrations. Here we examine changes in the SOI and air pressure across the Pacific in the observations and in numerous WCRP/CMIP3 climate model integrations for both the 20th and 21st centuries. The difference in mean-sea level air pressure (MSLP) between the eastern and western equatorial Pacific tends to weaken during the 21st century, consistent with previous research. Here we show that this primarily arises because of an increase in MSLP in the west Pacific and not a decline in the east. We also show, in stark contrast to expectations, that the SOI actually tends to increase during the 21st century, not decrease. Under global warming MSLP tends to increase at both Darwin and Tahiti, but tends to rise more at Tahiti than at Darwin. Tahiti lies in an extensive region where MSLP tends to rise in response to global warming. So while the SOI is an excellent indicator of interannual variability in both the equatorial MSLP gradient and the WC, it is a highly misleading indicator of long-term equatorial changes linked to global warming. Our results also indicate that the observed decline in the SOI in recent decades has been driven by natural, internally generated variability. The externally forced signal in the June?CDecember SOI during 2010 is estimated to be approximately 5% of the standard deviation of variability in the SOI during the 20th century. This figure is projected to increase to 40% by the end of the 21st century under the A2 SRES scenario. The 2010 global warming signal is already a major contributor to interdecadal variability in the SOI, equal to 45% of the standard deviation of 30-year running averages of the SOI. This figure is projected to increase to nearly 340% by the end of the 21st century. Implications that these discoveries have for understanding recent climatic change and for seasonal prediction are discussed.  相似文献   

10.
B. Yu  G. J. Boer 《Climate Dynamics》2006,26(7-8):801-821
Based on the surface energy budget, the sea surface temperature (SST) variance is related to the product of three factors: the sum of the variances of surface radiative and turbulent energy fluxes and of ocean heat transport, an efficiency factor depending on the covariances among them, and a transfer factor involving the persistence of surface temperature via its lagged autocorrelation. These quantities are analyzed for current climate conditions based on results from the NCEP/NCAR reanalyses and a simulation with the CCCma coupled climate model. Potential changes with climate change are considered based on two quasi-equilibrium climate change integrations for which the forcing has been stabilized at years 2050 and 2100 values of the IS92a forcing scenario. The surface energy fluxes, which contribute to the variance of SST, are similar in the modelled and reanalyzed atmosphere but modelled temperature variance is conditioned on the thickness of the upper ocean model layer. Changes of SST variance with global warming show broad scale patterns with decreases in the tropical central-eastern Pacific and the northern extra-tropical Pacific, and increases in both the sub-tropical Pacific and mid-latitudes of the North Atlantic. The changes in SST variance are not associated only with changes in the variances of surface energy fluxes/transports but also with changes in the covariances among them and by changes in the temperature autocorrelation structure.  相似文献   

11.
用中国国家气象信息中心整编的1971—2006年中国693个地面基准站日降水资料、同期美国JTWC最佳路径资料和NCEP/NCAR再分析资料,对热带气旋(TC)远距离暴雨进行统计分析和诊断研究。结果表明:36a中有14.7%的TC产生远距离暴雨。TC远距离暴雨事件遍及中国大陆27个省(市、自治区),其中,环渤海地区和川陕交界处为中国TC远距离暴雨高发区。远距离暴雨集中发生在6—9月。34.6%的TC远距离暴雨具有影响范围广、降水强度大的特点。诊断分析表明,TC远距离暴雨能否产生的关键在于热带气旋东侧环流能否将水汽输送到中纬度槽前,如果有高气压或偏北气流对水汽输送的阻断,就不会形成远距离暴雨。  相似文献   

12.
Simulations of impacts of a double-CO2 climate with the Changed Climate Fire Modeling System in Northern California consistently projected increases in area burned and in the frequency of escaped fires compared with simulations of the present climate. However, the magnitude of those increases was strongly influenced by vegetation type, choice of atmospheric general circulation model (GCM) scenario, and choice of climatic forcing variables. The greatest projected increase in fire severity occurred in grasslands, using the Princeton Geophysical Fluid Dynamics Laboratory GCM, with wind speed, temperature, humidity and precipitation as driving variables.  相似文献   

13.
A wide variety of scenarios for future development have played significant roles in climate policy discussions. This paper presents projections of greenhouse gas (GHG) concentrations, sea level rise due to thermal expansion and glacial melt, oceanic acidity, and global mean temperature increases computed with the MIT Integrated Global Systems Model (IGSM) using scenarios for twenty-first century emissions developed by three different groups: intergovernmental (represented by the Intergovernmental Panel on Climate Change), government (represented by the U.S. government Climate Change Science Program) and industry (represented by Royal Dutch Shell plc). In all these scenarios the climate system undergoes substantial changes. By 2100, the CO2 concentration ranges from 470 to 1020 ppm compared to a 2000 level of 365 ppm, the CO2-equivalent concentration of all greenhouse gases ranges from 550 to 1780 ppm in comparison to a 2000 level of 415 ppm, oceanic acidity changes from a current pH of around 8 to a range from 7.63 to 7.91, in comparison to a pH change from a preindustrial level by 0.1 unit. The global mean temperature increases by 1.8 to 7.0°C relative to 2000. Such increases will require considerable adaptation of many human systems and will leave some aspects of the earth??s environment irreversibly changed. Thus, the remarkable aspect of these different approaches to scenario development is not the differences in detail and philosophy but rather the similar picture they paint of a world at risk from climate change even if there is substantial effort to reduce emissions.  相似文献   

14.
15.
G. J. Boer 《Climate Dynamics》2011,37(11-12):2253-2270
The result in climate simulations, supported in the observation-based record, is that the ratio $\phi = T_{L} /T_{O} $ of land-average to ocean-average temperature change is greater than one and varies comparatively modestly as climate changes. This is investigated in results from the CMIP3 data archive of climate change simulations following the B1 and more strongly forced A1B scenarios as well as in 2×CO2 integrations. The associated precipitation ratio $ \psi = P_{L} /P_{O} $ is also considered briefly. The behaviour of ? is analyzed in terms of a forcing-response view of the energy balance over land and ocean regions. The analysis indicates that the value of ??>?1 is not maintained by separate local balances over land and ocean but by an energetic balance that also involves a change in transport between the regions. The transport change does not restrain the land warming by exporting energy to the ocean region but, rather, the reverse. The anomalous transport is from the ocean to the land region even though the ocean warms less than the land does. Feedbacks in the ocean region, especially in the equatorial Pacific, do not sufficiently counteract the forcing and the result is an excess of energy that is transported to the land. The land warms in order to radiate away both the energy from the forcing over land but also the extra energy imported from the ocean region, thereby maintaining ??>?1. This situation can be understood to parallel the SST-forced case in model studies where ??>?1 despite the forcing being confined to the ocean area. The climate system is effective in redistributing forcing so that it is the local feedbacks, rather than the pattern of the forcing, that determine the temperature response. Land and ocean averaged quantities and budgets behave in a consistent manner to provide a simplified representation of the changes in temperature and energetic processes that are occurring. The geographical distributions of the terms do not, however, display a strong land/ocean demarcation. The land/ocean average budgets and balances are the residual of processes that vary considerably within the land and ocean boundaries.  相似文献   

16.
The response of the Pacific Decadal Oscillation (PDO) to global warming according to the Fast Ocean Atmosphere Model (FOAM) and global warming comparison experiments of 11 IPCC AR4 models is investigated. The results show that North Pacific ocean decadal variability, its dominant mode (i.e., PDO), and atmospheric decadal variability, have become weaker under global warming, but with PDO shifting to a higher frequency. The SST decadal variability reduction maximum is shown to be in the subpolar North Pacific Ocean and western North Pacific (PDO center). The atmospheric decadal variability reduction maximum is over the PDO center. It was also found that oceanic baroclinic Rossby waves play a key role in PDO dynamics, especially those in the subpolar ocean. As the frequency of ocean buoyancy increases under a warmer climate, oceanic baroclinic Rossby waves become faster, and the increase in their speed ratio in the high latitudes is much larger than in the low latitudes. The faster baroclinic Rossby waves can cause the PDO to shift to a higher frequency, and North Pacific decadal variability and PDO to become weaker.  相似文献   

17.
The impacts of global warming on farmers in Brazil and India   总被引:1,自引:0,他引:1  
How big a threat is global warming to climate-sensitive and economically important sectors such as agriculture in developing countries? How well will farmers be able to adapt to the threats of global warming? This paper attempts to shed light on these two important questions. A cross-sectional analysis is employed to estimate the climate sensitivity of agriculture in Brazil and India. Using panel data from both countries, the study measures how net farm income or property values vary with climate, and consequently, how farmers in India and Brazil react and adapt to climate. The estimated relationships are then used to predict the consequence of alternative climate scenarios. Global warming by the end of the next century could cause annual damages in Brazil between 1% and 39% and between 4% and 26% in India, although some of this effect may be potentially offset by carbon fertilization. These estimates do not factor into account climate-induced extreme weather events.  相似文献   

18.
Understanding the response of the global hydrological cycle to recent and future anthropogenic emissions of greenhouse gases and aerosols is a major challenge for the climate modelling community. Recent climate scenarios produced for the fourth assessment report of the Intergovernmental Panel on Climate Change are analysed here to explore the geographical origin of, and the possible reasons for, uncertainties in the hydrological model response to global warming. Using the twentieth century simulations and the SRES-A2 scenarios from eight different coupled ocean–atmosphere models, it is shown that the main uncertainties originate from the tropics, where even the sign of the zonal mean precipitation change remains uncertain over land. Given the large interannual fluctuations of tropical precipitation, it is then suggested that the El Niño Southern Ocillation (ENSO) variability can be used as a surrogate of climate change to better constrain the model reponse. While the simulated sensitivity of global land precipitation to global mean surface temperature indeed shows a remarkable similarity between the interannual and climate change timescales respectively, the model ability to capture the ENSO-precipitation relationship is not a major constraint on the global hydrological projections. Only the model that exhibits the highest precipitation sensitivity clearly appears as an outlier. Besides deficiencies in the simulation of the ENSO-tropical rainfall teleconnections, the study indicates that uncertainties in the twenty-first century evolution of these teleconnections represent an important contribution to the model spread, thus emphasizing the need for improving the simulation of the tropical Pacific variability to provide more reliable scenarios of the global hydrological cycle. It also suggests that validating the mean present-day climate is not sufficient to assess the reliability of climate projections, and that interannual variability is another suitable and possibly more useful candidate for constraining the model response. Finally, it is shown that uncertainties in precipitation change are, like precipitation itself, very unevenly distributed over the globe, the most vulnerable countries sometimes being those where the anticipated precipitation changes are the most uncertain.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号