共查询到20条相似文献,搜索用时 15 毫秒
1.
由于地表空间异质性的普遍存在,遥感反演模型的非线性必然会导致不同分辨率观测的遥感结果不一致,从而产生遥感产品尺度效应。本文研究了遥感产品尺度效应概念、模拟方法和定量计算模型,并利用锡林浩特草原研究区的实测数据,对尺度效应模型和方法进行了定量计算与验证分析。首先,基于不同升尺度方法与多尺度遥感成像机理之间的机理联系,通过“先反演再平均”与“先平均再反演”之间的差异,可计算“高”分辨率与“低”分辨率之间的遥感产品尺度差异。其次,分别以红光、近红外两波段反射率和归一化植被指数(NDVI)为自变量,对叶面积指数(LAI)非线性遥感模型进行泰勒展开,研究了模型非线性、遥感数据空间异质性对LAI遥感产品尺度差异的影响,发现高阶项可忽略,利用二阶导数项和遥感数据方差项可定量计算遥感产品尺度差异,经过二阶导数项纠正后的尺度差异相对偏差从5.6%分别降低到0.78%和1.45%。最后,分析了LAI遥感产品尺度效应的特征规律,得出以下结论:随着植被覆盖的增大,同等遥感空间异质性的LAI遥感产品尺度差异越大,且红光波段比近红外波段的尺度差异敏感性高近2个数量级;对于绝大部分陆地植被区域,存在“低分辨率低估”尺度效应,且遥感产品尺度差异的主导要素为LAI模型非线性,NDVI变量自身非线性对尺度效应贡献占23.5%;对于湿地类植被与水体混合情形,NDVI变量非线性的贡献为主导贡献,出现“低分辨率高估”尺度效应,必须利用红光、近红外两波段的二阶导数项非线性尺度差异,才能解释这一类型的LAI遥感产品尺度效应。本文建立了具有一定普适意义的遥感产品尺度效应定量模拟与尺度纠正方法,对推动定量遥感的尺度问题研究有一定参考价值。 相似文献
2.
Gap probability theory provides a theoretical equation to calculate fractional vegetation cover (FVC). However, the main algorithms used in present FVC products generation are still the linear mixture model and machine learning methods. The reason to limit the gap probability theory applied in the product algorithm is the availability and accuracy of leaf area index (LAI) and clumping index (CI) products. With the improvement of the LAI and CI products, it is necessary to assess whether the algorithm based on gap probability theory using the present products can improve the accuracy of FVC products. In this study, we generated the FVC estimates based on the gap probability theory (FVCgap) with a resolution of 500 m every 8 days for Europe. FVCgap estimates were validated with field FVC measurements of ImagineS from 2013 to 2015 for crop types. Two existing FVC products, Geoland2 Version1 (GEOV1) and Multisource data Synergized Quantitative remote sensing production system (MuSyQ), were used to inter-compare with the FVCgap estimates. FVCgap estimates showed a better agreement with field FVC measurements, with lowest root mean square error (RMSE) (0.1211) and bias (0.0224), than GEOV1 and MuSyQ FVC products. The inter-annual and seasonal variations of FVCgap estimates were also showed the most consistent with field measurements. 相似文献
3.
支持向量机回归SVR (Support Vector Regression)方法作为叶面积指数反演的一种新思路,在LAI反演中具有一定的应用价值和前景,但SVR算法中惩罚系数C、核函数宽度参数g、不敏感损失函数参数ε的取值对回归精度有显著的影响。本文提出了一种基于人工蜂群算法ABC (Artificial Bee Colony)优化SVR参数的遥感影像叶面积指数反演方法。研究数据为美国土壤水分实验(SMEX02) 2002年LAI实测数据和同期的Landsat 7ETM+地表反射率数据,为了验证ABC算法优化SVR各个参数对反演精度的影响,建立了未优化参数(SVR)、优化单个参数(ABC-SVR-C,ABC-SVR-g,ABC-SVR-ε)、优化3个参数(ABC-SVR)的3类LAI反演模型,并比较了其回归拟合精度。在此基础上,分析了3个关键参数对LAI反演模型精度的敏感性,并对ABC算法优化SVR模型的精度进行显著性检验。研究表明:(1)相比未优化参数模型,ABC算法优化模型具有更高的反演精度,优化3个参数优于优化单个参数,回归直线斜率k达到0.797、决定系数r2达到0.775。(... 相似文献
4.
冬小麦叶面积指数的高光谱估算模型研究 总被引:2,自引:0,他引:2
本文以山东禹城为研究区,利用地面实测光谱数据,探讨不同植被指数和红边参数建立高光谱模型反演冬小麦叶面积指数的精度.通过逐波段分析计算了4种植被指数( NDVI、RVI、SAVI、EVI),结合同步观测LAI数据,确定反演叶面积指数的最优波段;计算了5种常用的高光谱植被指数MCARI、MCARI2、OSAVI、MTVI2、MSAVI2,同时利用4种常用方法计算红边位置和红谷,与实测LAI进行回归分析,比较植被指数和红边参数模型对冬小麦LAI的估测精度.结果表明各因子与LAI均具有较高的相关性,整个研究区归一化植被指数具有最高的反演精度,确定了估算冬小麦LAI的最优模型,并使用独立的LAI观测数据 相似文献
5.
对多源遥感数据协同生产的2010年—2015年中国区域1 km空间分辨率5天合成的MuSyQ(Multi-source data Synergized Quantitative remote sensing production system)叶面积指数LAI产品进行验证。参考现有的LAI产品(MODIS c5,GLASS LAI)和中国生态系统研究网络部分农田和森林站点可用的LAI地面测量数据,从时空连续性、时空一致性、精度和准确性等方面对中国区域的MuSyQ LAI产品进行定性和定量分析与评价。结果表明:(1) MuSyQ LAI产品在保证精度优于MODIS产品的情况下,时间分辨率和时空连续性均有提高。MuSyQ LAI与其他LAI产品(MODIS c5,GLASS LAI)在整体上有很好的一致性(RMSE=1.0,RMSE=0.81),但对常绿阔叶林高值处的描述不稳定;(2) 与LAI地面测量数据相比,MuSyQ LAI产品与地面参考图对比结果较好(最高相关性(R2=0.54)和较低总体误差(RMSE=0.96)),其在阔叶作物生长季高值处有些许低估且在某些阔叶林站点有些高估。整体上,MuSyQ LAI产品呈现出较高的精度,可靠的空间分布和连续稳定的时间分布,且对森林LAI的描述具有更可靠的动态范围。 相似文献
6.
7.
植被偏振特性研究对于植被监测与组分定量反演具有极其重要的作用。植被冠层的反射辐射具有偏振特性,这种特性与入射辐射和植被冠层结构相关。本文分析了偏振对光子—叶片—冠层之间细微相互作用及其变化的有效探测能力,并利用研究型扫描式偏振辐射仪RSP(Research Scanning Polarimeter)数据系统对比分析了偏振对不同叶倾角分布的估测。通过上述研究得出以下结论:(1)偏振观测能够对光线在冠层立体结构中的透射反射再出射过程给出精细刻画,若不用偏振手段对这一过程进行甄别并去除,则直接测算的植被散射系数会产生高达140%的误差;(2)利用偏振手段可以为高精度大倾角、多时相遥感观测提供可能,以此可改变目前光学遥感小角度、垂直观测的较严格约束;(3)偏振辐射呈现出随波长的稳定特性(相关系数0.96),使得利用偏振手段可以更好地研究冠层结构;(4)不同叶倾角分布对入射辐射存在不同的偏振反射,为利用多角度偏振信息进行遥感植被精细分类提供了新的途径。本文详细描述冠层结构和植被偏振特性的相互作用,通过对冠层立体结构与叶倾角的研究,刻画了植被定量遥感的方向性信息与高精度实现,为高分辨率遥感定量化的有效信息挖掘提供了新手段。 相似文献
8.
As an important canopy structure indicator, leaf area index (LAI) proved to be of considerable implications for forest ecosystem and ecological studies, and efficient techniques for accurate LAI acquisitions have long been highlighted. Airborne light detection and ranging (LiDAR), often termed as airborne laser scanning (ALS), once was extensively investigated for this task but showed limited performance due to its low sampling density. Now, ALS systems exhibit more competing capacities such as high density and multi-return sampling, and hence, people began to ask the questions like—“can ALS now work better on the task of LAI prediction?” As a re-examination, this study investigated the feasibility of LAI retrievals at the individual tree level based on high density and multi-return ALS, by directly considering the vertical distributions of laser points lying within each tree crown instead of by proposing feature variables such as quantiles involving laser point distribution modes at the plot level. The examination was operated in the case of four tree species (i.e. Picea abies, Pinus sylvestris, Populus tremula and Quercus robur) in a mixed forest, with their LAI-related reference data collected by using static terrestrial laser scanning (TLS). In light of the differences between ALS- and TLS-based LAI characterizations, the methods of voxelization of 3D scattered laser points, effective LAI (LAIe) that does not distinguish branches from canopies and unified cumulative LAI (ucLAI) that is often used to characterize the vertical profiles of crown leaf area densities (LADs) was used; then, the relationships between the ALS- and TLS-derived LAIes were determined, and so did ucLAIs. Tests indicated that the tree-level LAIes for the four tree species can be estimated based on the used airborne LiDAR (R2 = 0.07, 0.26, 0.43 and 0.21, respectively) and their ucLAIs can also be derived. Overall, this study has validated the usage of the contemporary high density multi-return airborne LiDARs for LAIe and LAD profile retrievals at the individual tree level, and the contribution are of high potential for advancing forest ecosystem modeling and ecological understanding. 相似文献
9.
Accurate representation of leaf area index (LAI) from high resolution satellite observations is obligatory for various modelling exercises and predicting the precise farm productivity. Present study compared the two retrieval approach based on canopy radiative transfer (CRT) method and empirical method using four vegetation indices (VI) (e.g. NDVI, NDWI, RVI and GNDVI) to estimate the wheat LAI. Reflectance observations available at very high (56 m) spatial resolution from Advanced Wide-Field Sensor (AWiFS) sensor onboard Indian Remote Sensing (IRS) P6, Resourcesat-1 satellite was used in this study. This study was performed over two different wheat growing regions, situated in different agro-climatic settings/environments: Trans-Gangetic Plain Region (TGPR) and Central Plateau and Hill Region (CPHR). Forward simulation of canopy reflectances in four AWiFS bands viz. green (0.52–0.59 μm), red (0.62–0.68 μm), NIR (0.77–0.86 μm) and SWIR (1.55–1.70 μm) were carried out to generate the look up table (LUT) using CRT model PROSAIL from all combinations of canopy intrinsic variables. An inversion technique based on minimization of cost function was used to retrieve LAI from LUT and observed AWiFS surface reflectances. Two consecutive wheat growing seasons (November 2005–March 2006 and November 2006–March 2007) datasets were used in this study. The empirical models were developed from first season data and second growing season data used for validation. Among all the models, LAI-NDVI empirical model showed the least RMSE (root mean square error) of 0.54 and 0.51 in both agro-climatic regions respectively. The comparison of PROSAIL retrieved LAI with in situ measurements of 2006–2007 over the two agro-climatic regions produced substantially less RMSE of 0.34 and 0.41 having more R2 of 0.91 and 0.95 for TGPR and CPHR respectively in comparison to empirical models. Moreover, CRT retrieved LAI had less value of errors in all the LAI classes contrary to empirical estimates. The PROSAIL based retrieval has potential for operational implementation to determine the regional crop LAI and can be extendible to other regions after rigorous validation exercise. 相似文献
10.
GLASS叶面积指数产品验证 总被引:1,自引:2,他引:1
在国家高技术研究发展计划(863计划)重点项目的支持下,已利用MODIS和AVHRR地表反射率数据生成了1981年—2012年的GLASS(Global LAnd Surface Satellite)叶面积指数(LAI)产品。本文从两个方面对GLASS LAI产品的质量进行分析和评价:(1)与现有的全球LAI产品进行比较,分析GLASS LAI产品的时空变化特征;(2)利用LAI的地面测量数据,对GLASS LAI的精度进行评价。研究结果表明:GLASS LAI与CCRS LAI在高纬度和赤道附近区域的差异较大;相对而言,GLASS LAI与MODIS(主算法反演)和CYCLOPES LAI在空间分布上具有更好的一致性;GLASS和CYCLOPES LAI的时间序列曲线连续平滑,MODIS LAI在一些区域的植被生长季节存在剧烈的跳跃;与LAI的地面测量数据进行比较,GLASS LAI产品的R2为0.76,RMSE为0.51,结果明显优于MODIS和C YCLOPES LAI产品。 相似文献
11.
提出一种基于极化参数优化的面向对象分类方法。该方法结合光学和SAR数据,有效提高了对地物的识别能力。本文方法的关键在于:在■分解中,使用光学影像指导SAR影像选择同质点,使其更精确地估计极化参数并结合光学波谱信息作为输入特征;使用面向对象的分类方法,仅将光学影像作为分割输入,避免SAR噪声引起的分割错误。以美国Bakersfield地区的Sentinel-1/2数据为例,确定7种地物类型,对比分析不同输入与不同分类器对分类结果的影响。研究表明,优化输入参数在纹理丰富区域能够有效提高分类精度;面向对象的分类结果更加稳定并较好地维持地表几何特征;改进分类方法较传统分类方法总体精度提高了近10%,达到92.6%。 相似文献
12.
基于时间序列叶面积指数稀疏表示的作物种植区域提取 总被引:3,自引:0,他引:3
以华北平原黄河以北地区为研究区域,以时间序列叶面积指数LAI(Leaf Area Index)傅里叶变换的谐波特征作为不同作物识别的数据源,利用稀疏表示的分类方法识别2007年—2016年冬小麦、春玉米、夏玉米等主要农作物种植区域。首先利用上包络线Savitzky-Golay滤波分别对2007年—2016年的时间序列MODIS LAI曲线进行重构,进而对重构的年时间序列LAI进行傅里叶变换,以0—5级谐波振幅、1—5级谐波相位作为作物识别的依据,基于各类地物的训练样本,通过在线字典学习算法构建稀疏表示方法的判别字典,对每个待测样本利用正交匹配追踪算法求解稀疏系数,从而计算对应于各类地物的重构误差,根据最小重构误差判定待测样本的作物类型,并对作物识别结果的位置精度进行验证。结果表明,2007年—2016年作物识别的总体精度为77.97%,Kappa系数为0.74,表明本文提出的方法可以用于研究区域主要作物种植区域的提取。 相似文献
13.
Gonipterus scutellatus outbreaks may severely defoliate Eucalyptus plantations growing in South Africa. Therefore, detecting and mapping the severity and extent of G. scutellatus defoliation is essential for the deployment of suppressive measures. In this study, we tested the utility of spatially optimized vegetation indices and an artificial neural network in detecting and mapping G. scutellatus-induced vegetation defoliation, using both visual estimates of percentage defoliation and optical leaf area index (LAI) measures. We tested both field methods to determine which of the two were more superior in detecting vegetation defoliation using optimized vegetation indices. These indices were computed from a WorldView-2 pan-sharpened image, which is characterized with a 0.5-m spatial resolution and eight spectral bands. The indices were resampled to spatial resolutions that best represented levels of G. scutellatus-induced defoliation. The results showed that levels of defoliation, using visual percentage estimates, were detected with an R2 of 0.83 and an RMSE of 1.55 (2.97% of the mean measured defoliation), based on an independent test data-set. Similarly, LAI subjected to defoliation was detected with an R2 of 0.80 and an RMSE of 0.03 (0.06% of the mean measured LAI), based on an independent test data-set. Therefore, the results indicate that the cheaper less-complicated visual percentage estimates of defoliation was the more superior model of the two. A sensitivity analysis revealed that NDRE, MCARI2 and ARI ranked as the top three most influential indices in developing both percentage defoliation and LAI models. Furthermore, we compared the optimized model with a model developed using the original image spatial resolution. The results indicated that the optimized model performed better than the original 0.5-m spatial resolution model. Overall, the study showed that vegetation indices optimized to specific spatial resolutions can effectively detect and map levels of G. scutellatus-induced defoliation and LAI subjected to defoliation. 相似文献
14.
Leaf area index (LAI) and biomass are important indicators of crop development and the availability of this information during the growing season can support farmer decision making processes. This study demonstrates the applicability of RapidEye multi-spectral data for estimation of LAI and biomass of two crop types (corn and soybean) with different canopy structure, leaf structure and photosynthetic pathways. The advantages of Rapid Eye in terms of increased temporal resolution (∼daily), high spatial resolution (∼5 m) and enhanced spectral information (includes red-edge band) are explored as an individual sensor and as part of a multi-sensor constellation. Seven vegetation indices based on combinations of reflectance in green, red, red-edge and near infrared bands were derived from RapidEye imagery between 2011 and 2013. LAI and biomass data were collected during the same period for calibration and validation of the relationships between vegetation indices and LAI and dry above-ground biomass. Most indices showed sensitivity to LAI from emergence to 8 m2/m2. The normalized difference vegetation index (NDVI), the red-edge NDVI and the green NDVI were insensitive to crop type and had coefficients of variations (CV) ranging between 19 and 27%; and coefficients of determination ranging between 86 and 88%. The NDVI performed best for the estimation of dry leaf biomass (CV = 27% and r2 = 090) and was also insensitive to crop type. The red-edge indices did not show any significant improvement in LAI and biomass estimation over traditional multispectral indices. Cumulative vegetation indices showed strong performance for estimation of total dry above-ground biomass, especially for corn (CV ≤ 20%). This study demonstrated that continuous crop LAI monitoring over time and space at the field level can be achieved using a combination of RapidEye, Landsat and SPOT data and sensor-dependant best-fit functions. This approach eliminates/reduces the need for reflectance resampling, VIs inter-calibration and spatial resampling. 相似文献
15.
N. Rama Rao P. K. Garg S. K. Ghosh 《Journal of the Indian Society of Remote Sensing》2006,34(1):69-78
Motivated by the increasingly availability and importance of hyperspectral remote sensing data, this study aims to determine
whether current generation narrowband hyperspectral remote sensing data could be used to estimate vegetation Leaf Area Index
(LAI) accurately than the traditional broadband multispectral data. A comparative study has been carried out to evaluate the
performance of the narrowband Normalized Difference Vegetation Index (NDV1) derived from Hyperion hyperspectral sensor with
that of derived from IRS LISS-III for the estimation of LAI of some major agricultural crops (e.g. cotton, sugarcane and rice)
in part of Guntur district, India. It has been found that the narrowband NDVI derived from Hyperion has shown better results
over its counterpart derived from broadband LISS-III. Linear regression models have been used which with selected subsets
of individual Hyperion bands performed better to predict LAI than those based on the broadband datasets, although the potential
to overfit models using the large number of available Hyperion bands is a concern for further research. 相似文献
16.
We propose 3D triangulations of airborne Laser Scanning (ALS) point clouds as a new approach to derive 3D canopy structures and to estimate forest canopy effective LAI (LAIe). Computational geometry and topological connectivity were employed to filter the triangulations to yield a quasi-optimal relationship with the field measured LAIe. The optimal filtering parameters were predicted based on ALS height metrics, emulating the production of maps of LAIe and canopy volume for large areas. The LAIe from triangulations was validated with field measured LAIe and compared with a reference LAIe calculated from ALS data using logarithmic model based on Beer’s law. Canopy transmittance was estimated using All Echo Cover Index (ACI), and the mean projection of unit foliage area (β) was obtained using no-intercept regression with field measured LAIe. We investigated the influence species and season on the triangulated LAIe and demonstrated the relationship between triangulated LAIe and canopy volume. Our data is from 115 forest plots located at the southern boreal forest area in Finland and for each plot three different ALS datasets were available to apply the triangulations. The triangulation approach was found applicable for both leaf-on and leaf-off datasets after initial calibration. Results showed the Root Mean Square Errors (RMSEs) between LAIe from triangulations and field measured values agreed the most using the highest pulse density data (RMSE = 0.63, the coefficient of determination (R2) = 0.53). Yet, the LAIe calculated using ACI-index agreed better with the field measured LAIe (RMSE = 0.53 and R2 = 0.70). The best models to predict the optimal alpha value contained the ACI-index, which indicates that within-crown transmittance is accounted by the triangulation approach. The cover indices may be recommended for retrieving LAIe only, but for applications which require more sophisticated information on canopy shape and volume, such as radiative transfer models, the triangulation approach may be preferred. 相似文献
17.
18.
时序双极化SAR开采沉陷区土壤水分估计 总被引:1,自引:0,他引:1
开采沉陷地质灾害诱发矿区生态环境恶化的关键因子是土壤水分变化。研究提出了一种利用Sentinel-1A双极化SAR和OLI地表反射率数据联合反演土壤含水量的方法,即基于归一化水体指数(NDWI)反演植被含水量;采用Water-Cloud Model(WCM)模型消除植被对Sentinel-1A后向散射系数产生的影响,将其转化为裸土区的后向散射系数;利用基于AIEM模型和Oh模型建立的经验模型反演研究区地表参数,并用OLI光学反演结果进行验证;最后比较了开采沉陷区内外土壤水分含量。研究表明:(1)与基于OLI的土壤水分监测指数(SMMI)的土壤水分含量反演结果相比,两种极化方式中VH极化反演的水分结果具有更好的一致性,且两种极化方式反演结果也表明荒漠化草原区比黄土丘陵沟壑区反演效果更好,说明地形对后向散射的影响不可忽略。(2)在2016年内72期数据中,VH极化反演结果对比区土壤水分含量大于沉陷区的有41期,所占比例为57%;VV极化反演结果对比区土壤水分含量大于沉陷区的有36期,所占比例为50%,且不同矿区内的沉陷区受到的影响不同。说明开采沉陷造成的地表粗糙度的增加会对地表土壤水分产生负面影响,但不同矿区之间又有差异。 相似文献
19.
Roshanak Darvishzadeh Clement Atzberger Andrew Skidmore Martin Schlerf 《ISPRS Journal of Photogrammetry and Remote Sensing》2011,66(6):894-906
Statistical and physical models have seldom been compared in studying grasslands. In this paper, both modeling approaches are investigated for mapping leaf area index (LAI) in a Mediterranean grassland (Majella National Park, Italy) using HyMap airborne hyperspectral images. We compared inversion of the PROSAIL radiative transfer model with narrow band vegetation indices (NDVI-like and SAVI2-like) and partial least squares regression (PLS). To assess the performance of the investigated models, the normalized RMSE (nRMSE) and R2 between in situ measurements of leaf area index and estimated parameter values are reported. The results of the study demonstrate that LAI can be estimated through PROSAIL inversion with accuracies comparable to those of statistical approaches (R2 = 0.89, nRMSE = 0.22). The accuracy of the radiative transfer model inversion was further increased by using only a spectral subset of the data (R2 = 0.91, nRMSE = 0.18). For the feature selection wavebands not well simulated by PROSAIL were sequentially discarded until all bands fulfilled the imposed accuracy requirements. 相似文献
20.
生物量估测模型中遥感信息与植被光合参数的关系研究 总被引:47,自引:0,他引:47
本文通过对建立估测植被生物量遥感模型中所涉及的遥感信息参数与植被光合参数的关系分析,从理论和实验中阐明了反映植物长势的量发化植被指数和反映植物光合面积的叶面积指数,光合有效辐射及吸收光合有效辐射的相互关系,对在实际中建立更为机理的生物量遥感模型提供可供进一步参考的依据。 相似文献