首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluates how watershed discretization affects estimation of hydrologic parameters using GIS data. Two aggregation methods were evaluated using three GIS data sets for a large watershed in Kansas, which is discretized into five different levels. The two aggregation methods are weighted-average and dominant-value. The three GIS data sets, soils, land use, and temperature, constitute three commonly used hydrologic parameters with distinct spatial patterns. The study evaluated the aggregation effects measured in terms of statistical distribution, spatial distribution, information level, and spatial dependence of the aggregated data. Results indicate that: (1) statistically, the mean and modal values of the source data are well preserved through aggregation but with a reduced standard deviation; (2) changes in spatial patterns are less predictable than those of the statistical distribution, and the changes depend on the geometric similarity and spatial overlap between the source and target polygons; (3) the information level in general decreases with aggregation for the dominant method, and it increases for the average method although the original values are altered; and (4) spatial dependence generally increases with aggregation.  相似文献   

2.
Effects of scale in spatial interaction models   总被引:1,自引:0,他引:1  
We study the effects of aggregation on four different cases of nonlinear spatial gravity models. We present some theoretical results on the relationship between the mean flows at an aggregated level and the mean flow at the disaggregated level. We then focus on the case of perfect aggregation (scale problem) showing some results based on the theoretical expressions previously derived and on some artificial data. The main aim is to test the effects on the aggregated flows of the spatial dependence observed in the origin and in the destination variables. We show that positive spatial dependence in the origin and destination variables moderate the increase of the mean flows connatural with aggregation while negative spatial dependence exacerbates it.  相似文献   

3.
ABSTRACT

Socioeconomic and health analysts commonly rely on areally aggregated data, in part because government regulations on confidentiality prohibit data release at the individual level. Analytical results from areally aggregated data, however, are sensitive to the modifiable areal unit problem (MAUP). Levels of aggregation as well as the arbitrary and modifiable sizes, shapes, and arrangements of zones affect the validity and reliability of findings from analyses of areally aggregated data. MAUP, long acknowledged, remains unresolved. We present an exploratory spatial data analytical approach (ESDA) to understand the scalar effects of MAUP. To characterize relationships between data aggregation structures and spatial scales, we develop a method for statistically and visually exploring the local indicators of spatial association (LISA) exhibited between a variable and itself across varying levels of aggregation. We demonstrate our approach by analyzing the across-scale relationships of aggregated 2010 median income for the State of Pennsylvania and 2005–2009 cancer diagnosis rates for the State of New York between county–tract, tract–block group, and county–block group level US census designated enumeration units. This method for understanding the relationship between MAUP and spatial scale provides guidance to researchers in selecting the most appropriate scales to aggregate, analyze, and represent data for problem-specific analyses.  相似文献   

4.
The performance accuracy of Thiessen-polygon and kriging interpolation methods available in the standard GIS packages was evaluated based on magnitude of errors in predicting potential UV exposure across the continental U.S., and the results were compared with those of the ANUSPLIN routine that runs outside typical GIS through a series of C++ and FORTRAN commands. Input data consisted of global radiation measures recorded at 215 stations, latitude, longitude, and elevation from a 30 arc-second Digital Elevation Model. The objective was to identify the most accurate prediction method for facilitating measurement of potential UV exposure at local (e.g.1km2 grid cell) and county levels. The ANUSPLIN method produced the smallest prediction errors in estimating values of potential UV exposure at 1 km2 resolution; these measurements were aggregated to the county level. We examined how much variation was lost through aggregation, as well as the potential bias associated with the possibility that some counties have predominantly north or south facing slopes. The impact of using inferior procedures on the estimates and geographic patterns of potential UV exposure was also examined. ANUSPLIN generated results that are reproducible and for which uncertainty is known. These measurements will be used in subsequent analysis of the role of UV exposure in melanoma etiology.  相似文献   

5.
大气加权平均温度(Tm)是全球导航卫星系统(global navigation satellite system, GNSS)反演大气水汽(precipitation water vapor, PWV)的关键参数。当前已有Tm模型提供的Tm信息难以捕获其日周期变化,因此限制了其在高时间分辨率GNSS PWV估计中的精度。大气再分析资料可提供高时空分辨率的Tm格点产品,但是在使用时需要对其进行空间插值,且Tm在高程上的变化远大于其在水平方向上变化。同时,针对中国区域地形起伏大等特点,提出顾及垂直递减率的中国区域Tm格点产品空间插值方法,以分布于中国区域的2015年89个探空站资料为参考值,验证了提出的方法在全球大地测量观测系统大气中心Tm格点产品和美国国家航空和太空管理局提供的MERRA-2的Tm格点产品中的空间插值精度。结果表明:(1)在顾及垂直递减率的Tm格点产品空间插值中,反距离加权法的...  相似文献   

6.
Socio‐demographic data are typically collected at various levels of aggregation, leading to the modifiable areal unit problem. Spatial non‐stationarity of statistical associations between variables further influences the demographic analyses. This study investigates the implications of these two phenomena within the context of migration‐environment associations. Global and local statistical models are fit across increasing levels of aggregation using household level survey data from rural South Africa. We raise the issue of operational scale sensitivity, which describes how the explanatory power of certain variables depends on the aggregation level. We find that as units of analysis (households) are aggregated, some variables become non‐significant in the global models, while others are less sensitive to aggregation. Local model results show that aggregation reduces spatial variation in migration‐related local associations but also affects variables differently. Spatial non‐stationarity appears to be the driving force behind this phenomenon as the results from the global model mask this relationship. Operational scale sensitivity appears related to the underlying spatial autocorrelation of the non‐aggregated variables but also to the way a variable is constructed. Understanding operational scale sensitivity can help to refine the process of selecting variables related to the scale of analysis and better understand the effects of spatial non‐stationarity on statistical relationships.  相似文献   

7.
Measurements of photosynthetically active radiation (PAR), which are indispensable for simulating plant growth and productivity, are generally very scarce. This study aimed to compare two extrapolation and one interpolation methods for estimating daily PAR reaching the earth surface within the Poyang Lake national nature reserve, China. The daily global solar radiation records at Nanchang meteorological station and daily sunshine duration measurements at nine meteorological stations around Poyang Lake were obtained to achieve the objective. Two extrapolation methods of PARs using recorded and estimated global solar radiation at Nanchang station and three stations (Yongxiu, Xingzi and Duchang) near the nature reserve were carried out, respectively, and a spatial interpolation method combining triangulated irregular network (TIN) and inverse distance weighting (IDW) was implemented to estimate daily PAR. The performance evaluation of the three methods using the PARs measured at Dahuchi Conservation Station (day number of measurement = 105 days) revealed that: (1) the spatial interpolation method achieved the best PAR estimation (R 2 = 0.89, s.e. = 0.99, F = 830.02, P < 0.001); (2) the extrapolation method from Nanchang station obtained an unbiased result (R 2 = 0.88, s.e. = 0.99, F = 745.29, P < 0.001); however, (3) the extrapolation methods from Yongxiu, Xingzi and Duchang stations were not suitable for this specific site for their biased estimations. Considering the assumptions and principles supporting the extrapolation and interpolation methods, the authors conclude that the spatial interpolation method produces more reliable results than the extrapolation methods and holds the greatest potential in all tested methods, and more PAR measurements should be recorded to evaluate the seasonal, yearly and spatial stabilities of these models for their application to the whole nature reserve of Poyang Lake.  相似文献   

8.
ABSTRACT

In this geo-statistical analysis of change detection, we illustrate the evolution of the built-up environment in Shanghai at the street-block level. Based on two TerraSAR-X image stacks with 36 and 15 images, covering the city centre of Shanghai for the time period from 2008 to 2015, a set of coherence images was created using a small baseline approach. The road network from Open Street Map, a volunteered geographic information product, serves as the input dataset to create street-blocks. A street-block is surrounded by roads and resembles a ground parcel, a real estate property – a cadastral unit. The coherence information is aggregated to these street-blocks for each observation and the variation is analysed over time. An analysis of spatial autocorrelation reveals clusters of similar behaviours. The result is a detailed map of Shanghai highlighting areas of change. We argue that the aggregation and grouping of synthetic aperture radar coherence image information to real-world entities (street-blocks) is comprehensible and relevant to the urban planning process. Therefore, this research is a contribution to the community of urban planners, designers, and government agencies who want to monitor the development of the urban landscape.  相似文献   

9.
ABSTRACT

Spatial variation of Urban Land Surface Temperature (ULST) is a complex function of environmental, climatic, and anthropogenic factors. It thus requires specific techniques to quantify this phenomenon and its influencing factors. In this study, four models, Random Forest (RF), Generalized Additive Model (GAM), Boosted Regression Tree (BRT), and Support Vector Machine (SVM), are calibrated to simulate the ULST based on independent factors, i.e., land use/land cover (LULC), solar radiation, altitude, aspect, distance to major roads, and Normalized Difference Vegetation Index (NDVI). Additionally, the spatial influence and the main interactions among the influential factors of the ULST are explored. Landsat-8 is the main source for data extraction and Tehran metropolitan area in Iran is selected as the study area. Results show that NDVI, LULC, and altitude explained 86% of the ULST °C variation. Unexpectedly, lower LST is observed near the major roads, which was due to the presence of vegetation along the streets and highways in Tehran. The results also revealed that variation in the ULST was influenced by the interaction between altitude – NDVI, altitude – road, and LULC – altitude. This indicates that the individual examination of the underlying factors of the ULST variation might be unilluminating. Performance evaluation of the four models reveals a close performance in which their R2 and Root Mean Square Error (RMSE) fall between 60.6–62.1% and 2.56–2.60 °C, respectively. However, the difference between the models is not statistically significant. This study evaluated the predictive performance of several models for ULST simulation and enhanced our understanding of the spatial influence and interactions among the underlying driving forces of the ULST variations.  相似文献   

10.
The Sentinel-2 Multi-Spectral Imager (MSI) has three spectral bands centered at 705, 740, and 783 nm wavelengths that exploit the red-edge information useful for quantifying plant biochemical traits. This sensor configuration is expected to improve the prediction accuracy of vegetation chlorophyll content. In this work, we assessed the performance of several statistical and physical-based methods in retrieving canopy chlorophyll content (CCC) from Sentinel-2 in a heterogeneous mixed mountain forest. Amongst the algorithms presented in the literature, 13 different vegetation indices (VIs), a non-parametric statistical approach, and two radiative transfer models (RTM) were used to assess the CCC prediction accuracy. A field campaign was conducted in July 2017 to collect in situ measurements of CCC in Bavarian forest national park, and the cloud-free Sentinel-2 image was acquired on 13 July 2017. The leave-one-out cross-validation technique was used to compare the VIs and the non-parametric approach. Whereas physical-based methods were calibrated using simulated data and validated using the in situ reference dataset. The statistical-based approaches, such as the modified simple ratio (mSR) vegetation index and the partial least square regression (PLSR) outperformed all other techniques. As such the modified simple ratio (mSR3) (665, 865) gave the lowest cross-validated RMSE of 0.21 g/m2 (R2 = 0.75). The PLSR resulted in the highest R2 of 0.78, and slightly higher RMSE =0.22 g/m2 than mSR3. The physical-based approach-INFORM inversion using look-up table resulted in an RMSE =0.31 g/m2, and R2 = 0.67. Although mapping CCC using these methods revealed similar spatial distribution patterns, over and underestimation of low and high CCC values were observed mainly in the statistical approaches. Further validation using in situ data from different terrestrial ecosystems is imperative for both the statistical and physical-based approaches' effectiveness to quantify CCC before selecting the best operational algorithm to map CCC from Sentinel-2 for long-term terrestrial ecosystems monitoring across the globe.  相似文献   

11.
Developing models for estimating aboveground biomass (AGB) in naturally growing forests is critical for climate change modelling. AGB models developed using satellite imagery varies with study area, depending on the complexity of vegetation and landscape structure, which affects the upwelling radiance. We assessed the potential of SPOT-6 imagery in predicting AGB of trees planted at different time periods, using image texture combinations. Image texture variables were computed from the SPOT6 pan-sharpened image data, which is characterised by a 1.5 m spatial resolution. In addition, we incorporated the minimal variance technique to select the optimum window sizes that best captures AGB variation in our study area. The results showed that image texture was able to detect AGB for both mature and young trees, however, models detecting mature trees were more superior, with accuracies of R2 = 0.70 and 0.25 for 2009–2011 and 2011–2013 plantation phases, respectively. In addition, our results showed that the three band texture ratios yielded the highest accuracy (R2 = 0.88 and RMSE = 54.54 kg m−2) compared to two texture (R2 = 0.85 and RMSE = 60.65 kg m−2) and single texture band combinations (R2 = 0.64 and RMSE = 94.13 kg m−2). A frequency analysis was also run to determine which bands appeared more frequently in the selected texture band models. The frequency analysis revealed that both the red and green bands appeared more frequently on the selected texture band variables, indicating that they were more sensitive to the variation of AGB in our study area. The results showed high variation in AGB within the Buffelsdraai reforestation site, especially due to varying tree plantation phases as well as topography. In essence, the study demonstrated the possibility of image texture combinations computed from the SPOT-6 image in estimating AGB.  相似文献   

12.
ABSTRACT

Allergic rhinitis (hay fever) resulting from seasonal pollen affects 15–30% of the population in the United States, and can exacerbate several related conditions, including asthma, atopic eczema, and allergic conjunctivitis. Timely monitoring, accurate prediction, and visualization of pollen levels are critical for public health prevention purposes, such as limiting outdoor exposure or physical activity. The low density of pollen detecting stations and complex movement of pollen represent a challenge for accurate prediction and modeling. In this paper, we reconstruct the dynamics of pollen variation across the Eastern United States for 2016 using space–time interpolation. Pollen levels were extracted according to a stratified spatial sampling design, augmented by additional samples in densely populated areas. These measurements were then used to estimate the space–time cross-correlation, inferring optimal spatial and temporal ranges to calibrate the space–time interpolation. Given the computational requirements of the interpolation algorithm, we implement a spatiotemporal domain decomposition algorithm, and use parallel computing to reduce the computational burden. We visualize our results in a 3D environment to identify the seasonal dynamics of pollen levels. Our approach is also portable to analyze other large space–time explicit datasets, such as air pollution, ash clouds, and precipitation.  相似文献   

13.
Within-season forecasting of crop yields is of great economic, geo-strategic and humanitarian interest. Satellite Earth Observation now constitutes a valuable and innovative way to provide spatio-temporal information to assist such yield forecasts. This study explores different configurations of remote sensing time series to estimate of winter wheat yield using either spatially finer but temporally sparser time series (5daily at 100 m spatial resolution) or spatially coarser but denser (300 m and 1 km at daily frequency) time series. Furthermore, we hypothesised that better yield estimations could be made using thermal time, which is closer to the crop physiological development. Time series of NDVI from the PROBA-V instrument, which has delivered images at a spatial resolution of 100 m, 300 m and 1 km since 2013, were extracted for 39 fields for field and 56 fields for regional level analysis across Northern France during the growing season 2014-2015. An asymmetric double sigmoid model was fitted on the NDVI series of the central pixel of the field. The fitted model was subsequently integrated either over thermal time or over calendar time, using different baseline NDVI thresholds to mark the start and end of the cropping season. These integrated values were used as a predictor for yield using a simple linear regression and yield observations at field level. The dependency of this relationship on the spatial pixel purity was analysed for the 100 m, 300 m and 1 km spatial resolution. At field level, depending on the spatial resolution and the NDVI threshold, the adjusted ranged from 0.20 to 0.74; jackknifed – leave-one-field-out cross validation – RMSE ranged from 0.6 to 1.07 t/ha and MAE ranged between 0.46 and 0.90 t/ha for thermal time analysis. The best results for yield estimation (adjusted = 0.74, RMSE =0.6 t/ha and MAE =0.46 t/ha) were obtained from the integration over thermal time of 100 m pixel resolution using a baseline NDVI threshold of 0.2 and without any selection based on pixel purity. The field scale yield estimation was aggregated to the regional scale using 56 fields. At the regional level, there was a difference of 0.0012 t/ha between thermal and calendar time for average yield estimations. The standard error of mean results showed that the error was larger for a higher spatial resolution with no pixel purity and smaller when purity increased. These results suggest that, for winter wheat, a finer spatial resolution rather than a higher revisit frequency and an increasing pixel purity enable more accurate yield estimations when integrated over thermal time at the field scale and at the regional scale only if higher pixel purity levels are considered. This method can be extended to larger regions, other crops, and other regions in the world, although site and crop-specific adjustments will have to include other threshold temperatures to reflect the boundaries of phenological activity. In general, however, this methodological approach should be applicable to yield estimation at the parcel and regional scales across the world.  相似文献   

14.
15.
ABSTRACT

Commercial forest plantations are increasing globally, absorbing a large amount of carbon valuable for climate change mitigation. Whereas most carbon assimilation studies have mainly focused on natural forests, understanding the spatial distribution of carbon in commercial forests is central to determining their role in the global carbon cycle. Forest soils are the largest carbon reservoir; hence soils under commercial forests could store a significant amount of carbon. However, the variability of soil organic carbon (SOC) within forest landscapes is still poorly understood. Due to limitations encountered in traditional systems of SOC determination, especially at large spatial extents, remote sensing approaches have recently emerged as a suitable option in mapping soil characteristics. Therefore, this study aimed at predicting soil organic carbon (SOC) stocks in commercial forests using Landsat 8 data. Eighty-one soil samples were processed for SOC concentration and fifteen Landsat 8 derived variables, including vegetation indices and bands were used as predictors to SOC variability. The random forest (RF) was adopted for variable selection and regression method for SOC prediction. Variable selection was done using RF backward elimination to derive three best subset predictors and improve prediction accuracy. These variables were then used to build the RF final model for SOC prediction. The RF model yielded good accuracies with root mean square error of prediction (RMSE) of 0.704 t/ha (16.50% of measured mean SOC) and 10-fold cross-validation of 0.729 t/ha (17.09% of measured mean SOC). The results demonstrate the effectiveness of Landsat 8 bands and derived vegetation indices and RF algorithm in predicting SOC stocks in commercial forests. This study provides an effective framework for local, national or global carbon accounting as well as helps forest managers constantly evaluate the status of SOC in commercial forest compartments.  相似文献   

16.
Abstract

Geospatial analysis of marine mineral placer deposits along the Gulf of Mannar is attempted. This study develops a method for the spatial anlaysis of data using geographical information system (GIS). Specifically, creating attribute data base structure, data encoding, data interpolation, and view shed analysis are attempted to delineate the opaque and garnet occurrences in the beach sediments. Data integration including the creation of digital files using TNT Mips software is performed. The interpolation of the spaced data is achieved by inverse distance weighed interpolation to define the zone of heavy mineral enrichment. This study has established the digital elevation model (DEM) capability to identify the potential beach placer zones in the study area.  相似文献   

17.
ABSTRACT

A fractional vegetation cover (FVC) estimation method incorporating a vegetation growth model and a radiative transfer model was previously developed, which was suitable for FVC estimation in homogeneous areas because the finer-resolution pixels corresponding to one coarse-resolution FVC pixel were all assumed to have the same vegetation growth model. However, this assumption does not hold over heterogeneous areas, meaning that the method cannot be applied to large regions. Therefore, this study proposes a finer spatial resolution FVC estimation method applicable to heterogeneous areas using Landsat 8 Operational Land Imager reflectance data and Global LAnd Surface Satellite (GLASS) FVC product. The FVC product was first decomposed according to the normalized difference vegetation index from the Landsat 8 OLI data. Then, independent dynamic vegetation models were built for each finer-resolution pixel. Finally, the dynamic vegetation model and a radiative transfer model were combined to estimate FVC at the Landsat 8 scale. Validation results indicated that the proposed method (R2?=?0.7757, RMSE?=?0.0881) performed better than either the previous method (R2?=?0.7038, RMSE?=?0.1125) or a commonly used method involving look-up table inversions of the PROSAIL model (R2?=?0.7457, RMSE?=?0.1249).  相似文献   

18.
Abstract

<title/>

Over the ages, Nigerians have had various indigenous ways of spatial representation, otherwise known as ‘alternative cartographies’. Paradoxically, however, the indigenous cartographic heritage of the Nigerian people has altogether remained unsung despite its immense contributions to societal development. This paper, therefore, is a modest attempt aimed at bringing the forgotten issue of Nigeria’s cartographic legacy to the limelight. The paper takes a bird’s-eye look at Nigeria’s homegrown cartographic heritage. The various local means of representing and communicating geospatial information are discussed. The paper equally highlights the invaluable benefits of indigenous cartographic heritage as well as how to preserve such heritage.  相似文献   

19.
Abstract

This study proposes an automatic procedure for individual fruit tree identification using GeoEye-1 sensor data. Depending on site-specific pruning practices, the morphologic characteristics of tree crowns may generate one or more brightness peaks (tree top) on the imagery. To optimize tree counting and to minimize typical background noises from orchards (i.e. bare soil, weeds, and man-made objects), a four-step algorithm was implemented with spatial transforms and functions suitable for spaced stands (asymmetrical smoothing filter, local minimum filter, mask layer, and spatial aggregation operator). System performance was evaluated through objective criteria, showing consistent results in fast capturing tree position for precision agriculture tasks.  相似文献   

20.
Investigators in many fields are analyzing temporal change in spatial data. Such analyses are typically conducted by comparing the value of some metric (e. g., area, contagion, or diversity indices) measured at time T1 with the value of the same metric measured at time T2 . These comparisons typically include the use of simple interpolation models to estimate the value of the metric of interest at points in time between observations, followed by applications of differential calculus to investigate the rates at which the metric is changing. Unfortunately, these techniques treat the values of the metrics being analyzed as if they were observed values, when in fact the metrics are derived from more fundamental spatial data. The consequence of treating metrics as observed values is a significant reduction in the degrees of freedom in spatial change over time. This results in an oversimplified view of spatio-temporal change. A more accurate view can be produced by (1) applying temporal interpolation models to observed spatial data rather than derived spatial metrics; (2) expanding the metric of interest's computational equation by replacing the terms relating to the observed spatial data with their temporal interpolation equations; and (3) differentiating the expanded computational equation. This alternative, three-step spatio-temporal analysis technique will be described and justified. The alternative technique will be compared to the conventional approach using common metrics and a sample data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号