首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper discusses a new methodology to estimate soil moisture in agriculture region using SAR data with the use of HH and HV polarization. In this study the semi empirical model derived by Dubois et al. (IEEE Transactions on Geoscience and Remote Sensing, 33(4), 915–926, 1995) was modified to work using σ HH instead of two like polarization equations σHH, σVV so that soil moisture can be obtained for the larger area frequently. The field derived roughness correlated with the cross polarization ratio (HV/HH) to replace the one unknown parameter ‘s’ in the Dubois model and hence the dielectric constant was derived by inverting the Dubois model equation (HH). The Topp et al. (Water Resources Research, 16(3), 574–582, 1980) model was used to retrieve soil moisture using the dielectric constant. The mid incidence angle was used to overcome the incident angle effect and it worked successfully to the larger extent. The result is realistic overall, especially where surface has less variation in the roughness and vegetation since the penetration capability of C-band is limited when plant grows hence model valid in the initial period of cultivation. The derived model is having good scope for soil moisture monitoring with the present availability of Indian RISAT data.  相似文献   

2.
The aim of this study is to estimate the capabilities of forecasting the yield of wheat using an artificial neural network combined with multi-temporal satellite data acquired at high spatial resolution throughout the agricultural season in the optical and/or microwave domains. Reflectance (acquired by Formosat-2, and Spot 4–5 in the green, red, and near infrared wavelength) and multi-configuration backscattering coefficients (acquired by TerraSAR-X and Radarsat-2 in the X- and C-bands, at co- (abbreviated HH and VV) and cross-polarization states (abbreviated HV and VH)) constitute the input variable of the artificial neural networks, which are trained and validated on the successively acquired images, providing yield forecast in near real-time conditions. The study is based on data collected over 32 fields of wheat distributed over a study area located in southwestern France, near Toulouse. Among the tested sensor configurations, several satellite data appear useful for the yield forecasting throughout the agricultural season (showing coefficient of determination (R2) larger than 0.60 and a root mean square error (RMSE) lower than 9.1 quintals by hectare (q ha−1)): CVH, CHV, or the combined used of XHH and CHH, CHH and CHV, or green reflectance and CHH. Nevertheless, the best accurate forecast (R2 = 0.76 and RMSE = 7.0 q ha−1) is obtained longtime before the harvest (on day 98, during the elongation of stems) using the combination of co- and cross-polarized backscattering coefficients acquired in the C-band (CVV and CVH). These results highlight the high interest of using synthetic aperture radar (SAR) data instead of optical ones to early forecast the yield before the harvest of wheat.  相似文献   

3.
Water depth estimation using optical remote sensing offers a reliable and efficient means of mapping coastal zones. Here, we aim to find a suitable model for fast and practical bathymetry of an estuary using Indian Remote Sensing Satellite (IRS) Linear Imaging Self Scanning Sensor (LISS-3) images. The study examines three different models; (1) least square regression model, (2) spectral band-ratio method and (3) multi-tidal bathymetry model. The findings are supported with in situ observed depth values and statistical estimates. Although the least square regression model has provided best results with root mean square error (RMSE) of 0.4 m, it requires a large number of observed data points for absolute depth estimation. Spectral band-ratio and multi-tidal model provides results with RMSEs 2.1 and 0.9 m, respectively. The present investigation demonstrates that multi-date imagery exploitation at disparate tide levels is the best estimation technique for recursive shallow water bathymetry where in situ observation is not possible.  相似文献   

4.
TOPSAR wave spectra model and coastal erosion detection   总被引:2,自引:0,他引:2  
This paper presents work done utilizing TOPSAR data to detect shoreline change along the Terengganu coast (Malaysia). TOPSAR data were used to extract information on wave spectra. This wave spectra information was then used to model shoreline changes by investigating the wave refraction patterns. From these patterns, the volume transport at several locations was estimated. The shoreline change model developed was designed to cover a 20 km stretch of shoreline of Kuala Terengganu. The model utilized data from aerial photographs, TOPSAR data and ground truth data. The location of sedimentation and erosion along the shoreline of Kuala Terengganu was estimated. The wave spectra extracted from TOPSAR data showed wavelengths ranging from 20 m to 175 m. The main direction of the waves given by the spectra was from the northeast. The wave refraction patterns varied, showing both convergence and divergence, indicating erosion and sedimentation locations, respectively. A comparison between the TOPSAR shoreline change model and aerial photographs and ground truth data showed a significant relationship. Finally, the regression model showed that erosion occurred particularly at Sultan Mahmed Airport, at a rate of −1.5 m/year. The maximum rate of sedimentation along the 20 km stretch was 1 m/year.  相似文献   

5.
Designing and validating digital soil mapping (DSM) techniques can facilitate precision agriculture implementation. This study generates and validates a technique for the spatial prediction of soil properties based on C-band radar data. To this end, (i) we focused on working at farm-field scale and conditions, a fact scarcely reported; (ii) we validated the usefulness of Random Forest regression (RF) to predict soil properties based on C-band radar data; (iii) we validated the prediction accuracy of C-band radar data according to the coverage condition (for example: crop or fallow); and (iv) we aimed to find spatial relationship between soil apparent electrical conductivity and C-band radar. The experiment was conducted on two agricultural fields in the southern Argentine Pampas. Fifty one Sentinel 1 Level-1 GRD (Grid) products of C-band frequency (5.36 GHz) were processed. VH and VV polarizations and the dual polarization SAR vegetation index (DPSVI) were estimated. Soil information was obtained through regular-grid sample scheme and apparent soil electrical conductivity (ECa) measurements. Soil properties predicted were: texture, effective soil depth, ECa at 0-0.3m depth and ECa at 0-0.9m depth. The effect of water, vegetation and soil on the depolarization from SAR backscattering was analyzed. Complementary, spatial predictions of all soil properties from ordinary cokriging and Conditioned Latin hypercube sampling (cLHS) were evaluated using six different soil sample sizes: 20, 40, 60, 80, 100 and the total of the grid sampling scheme. The results demonstrate that the prediction accuracy of C-band SAR data for most of the soil properties evaluated varies considerably and is closely dependent on the coverage type and weather dynamics. The polarizations with high prediction accuracy of all soil properties showed low values of σVVo and σVHo, while those with low prediction accuracy showed high values of σVVo and low values of σVHo. The spatial patterns among maps of all soil properties using all samples and all sample sizes were similar. In conditions when summer crops demand large amount of water and there is soil water deficit backscattering showed higher prediction accuracy for most soil properties. During the fallow season, the prediction accuracy decreased and the spatial prediction accuracy was closely dependent on the number of validation samples. The findings of this study corroborates that DSM techniques at field scale can be achieved by using C-band SAR data. Extrapolation y applicability of this study to other areas remain to be tested.  相似文献   

6.
顾晨  黄微  李先华 《测绘科学》2011,36(4):80-82
利用多波束声纳数据重建水下地形,构建高空间分辨率的数字高程模型(DEM)对于在复杂水下区域的物质勘探、目标检测等方面有重要实用意义.然而,多波束声纳系统直接获得的测深数据空间分辨率有限本文基于多波束声纳系统采集的稀疏测深数据(空间位置)和密集回波强度数据(图像性质)来构建水下复杂地形高空间分辨率数字高程模型.利用采集的...  相似文献   

7.
风速风向对SAR浅海水下地形成像影响的仿真研究   总被引:1,自引:0,他引:1  
基于SAR浅海水下地形成像机理和M4S海面微波成像程序,建立了SAR浅海水下地形成像仿真模型,改进了传统浅海水下地形成像仿真模型的缺陷.通过仿真研究和分析浅海水下地形SAR图像特征实例,对风速风向与浅海水下地形SAR图像特征的关系提出了新的认识.低风速条件下,浅海水下地形SAR海面后向散射强度整体偏暗,高风速下整体偏亮;sAR图像条带亮暗的程度与风速有一定的关系,但不是主要的影响因素.风向对SAR浅海水下地形成像的影响明显,表现为,在逆风和顺风情况下,浅海水下地形SAR海面后向散射强度整体偏亮,SAR图像分别以亮条带和暗条带为主;侧风情况下,整体偏暗,SAR图像条带亮暗相当;最佳探测风向是逆风向.  相似文献   

8.
Changes in shoreline, coral reef and seafloor have been mapped using remote sensing satellite data of IRS LISS-III (1998), IRS LISS-II (1988), Survey of India Topographic sheet (1969), Naval Hydrographic Chart (NHO) 1975 and bathymetry data (1999) with ARC-INFO and ARC-VIEW GIS. The analysis of multi-date shoreline maps showed that 4.34 and 23.49 km2 of the mainland coast and 4.14 and 3.31 km2 areas of island coast have been eroded and accreted, respectively, in the Gulf of Mannar. The analysis of multi-date coral reef maps showed that 25.52 km2 of reef area and 2.16 km2 of reef vegetation in Gulf of Mannar have been lost over a period of ten years. The analysis of multi-date bathymetry data indicates that the depth of seafloor has decreased along the coast and around the islands in the study area. The average reduction of depth in seafloor has been estimated as 0.51m over a period of twenty four years. The increased suspended sediment concentration due to coastal and island erosion, and raised reef due to emerging of coast by tectonic movement are responsible for coral reef degradation in the Gulf of Mannar. Validation by ground truth has confirmed these results.  相似文献   

9.
ABSTRACT

Optical satellite data is an efficient and complementary method to hydrographic surveys for deriving bathymetry in shallow coastal waters. Empirical approaches (in particular, the models of Stumpf and Lyzenga) provide a practical methodology to derive bathymetric information from remote sensing. Recent studies, however, have focused on enhancing the performance of such empirical approaches by extending them via spatial information. In this study, the relationship between multibeam depth and Sentinel-2 image bands was analyzed in an optically complex environment using the spatial predictor of kriging with an external drift (KED), where its external drift component was estimated: a) by a ratio of log-transformed bands based on Stumpf’s model (KED_S) and b) by a log-linear transform based on Lyzenga’s model (KED_L). Through the calibration of KED models, the study objectives were: 1) to better understand the empirical relationship between Sentinel-2 multispectral satellite reflectance and depth, 2) to test the robustness of KED to derive bathymetry in a multitemporal series of Sentinel-2 images and multibeam data, and 3) to compare the performance of KED against the existing non-spatial models described by Stumpf et al. and Lyzenga. Results showed that KED could improve prediction accuracy with a decrease in RMSE of 89% and 88%, and an increase in R2 of 27% and 14%, over the Stumpf and Lyzenga models, respectively. The decrease in RMSE provides a worthwhile improvement in accuracy, where results showed effective prediction of depth up to 6 m. However, the presence of higher concentrations of suspended materials, especially river plumes, can reduce this threshold to 4 m. As would be expected, prediction accuracy could be improved through the removal of outliers, which were mainly located in the channel of the river, areas influenced by the river plume, abrupt topography, but also very shallow areas close to the shoreline. These areas have been identified as conflictive zones where satellite-derived bathymetry can be compromised.  相似文献   

10.
This paper presents a spatially distributed support vector machine (SVM) system for estimating shallow water bathymetry from optical satellite images. Unlike the traditional global models that make predictions from a unified global model for the entire study area, our system uses locally trained SVMs and spatially weighted votes to make predictions. By using IKONOS-2 multi-spectral image and airborne bathymetric LiDAR water depth samples, we developed a spatially distributed SVM system for bathymetry estimates. The distributed model outperformed the global SVM model in predicting bathymetry from optical satellite images, and it worked well at the scenarios with a low number of training data samples. The experiments showed the localized model reduced the bathymetry estimation error by 60% from RMSE of 1.23 m to 0.48 m. Different from the traditional global model that underestimates water depth near shore and overestimates water depth offshore, the spatially distributed SVM system did not produce regional prediction bias and its prediction residual exhibited a random pattern. Our model worked well even if the sample density was much lower: The model trained with 10% of the samples was still able to obtain similar prediction accuracy as the global SVM model with the full training set.  相似文献   

11.
为研究中国南海北部海域在CZMIL海道测量模式下的最大可测水深的空间分布情况,首先探讨了现有的南海北部海域漫衰减系数Kd(490)反演算法,运用南海北部海域水色实测数据建立了漫衰减系数Kd(490)和Kd(532)之间的数值关系,总结了漫衰减系数Kd(532)和CZMIL系统最大可测水深之间的关系。通过2014年Aqua-MODIS遥感光谱数据得到了南海北部海域1月、6月、10月的海水漫衰减系数Kd(532)参数,研究发现6月份时该区域平均漫衰减系数相对较小,于是进一步合成了该月份的CZMIL系统测深能力空间分布图。结果表明:CZMIL系统在南海北部海域的可测水深约为0~71.18 m;6月份比1月、10月更适合激光测深作业。该研究为南海北部海域开展激光测深作业的时间选择和飞行方案的制订提供了参考。  相似文献   

12.
In this letter, an algorithm based on a quartic-phase model is discussed for processing highly squinted synthetic aperture radar (SAR) data from a large range swath. In the algorithm, a precise quartic-phase model is adopted to describe a range-dependent property of the SAR signal; a constant factor and a secondary scaling process are introduced to make the algorithm easy to be utilized compared with traditional nonlinear chirp scaling algorithms. The novel algorithm can process SAR data under a squint angle above 50deg and achieve a focus depth over 60 km  相似文献   

13.
Ocean-colour remote sensing in optically shallow waters is influenced by contribution from the water column depth as well as by the substrate type. Therefore, it is required to include the contribution from the water column and substrate bottom type for bathymetry estimation. In this report we demonstrate the use of Artificial Neural Network (ANN) based approach to spectrally distinguish various benthic bottom types and estimate depth of substrate bottom simultaneously in optically shallow waters. We have used in-water radiative transfer simulation modeling to generate simulated top-of-the-water column reflectance the four major benthic bottom types viz. sea grass, coral sand, green algae and red algae using Hydrolight simulation model. The simulated remote sensing reflectance, for the four benthic bottom types having benthic bottom depth up to 30 m were generated for moderately clear waters. A multi-layer perceptron (MLP) type neural network was trained using the simulated data. ANN based approach was used for classification of the benthic bottom type and simultaneous inversion of bathymetry. Simulated data was inverted to yield benthic bottom type classification with an accuracy of ~98% for the four benthic substrate types and the substrate depth were estimated with an error of 0% for sea grass, 1% for coral sand and 1–3% for green and red algae up to 25 m, whereas for substrate bottom deeper than 25 m depth the classification errors increased by 2–5% for three substrate bottom types except sea grass bottom type. The initial results are promising which needs validation using the in-situ measured remote sensing reflectance spectra for implementing further on satellite data.  相似文献   

14.
Crop characterization using Compact-Pol Synthetic Aperture Radar (CP-SAR) data is of prime interest with the rapid advancements of SAR systems towards operational applications. It is noteworthy that as a good compromise between the dual and quad-polarized SAR systems, the CP-SAR offer advantages in terms of the larger swath and lower data rate. The mχ CP decomposition considers two out of the three Stokes child parameters: degree of polarization (m), ellipticity (χ), and orientation angle (ψ) to describe the polarized part of the quasi-monochromatic partially polarized wave. An improvement in the scattering powers was proposed in the S − Ω decomposition, which takes into accounts both the transmitted and received wave ellipticities (χt, χr) and the orientation angles (ψt, ψr). In this decomposition, S denotes the Stokes vector and Ω is the polarized power fraction. However, it may be noted that the S − Ω decomposition intrinsically ignores dominance in the target scattering mechanism while calculating the powers. In this work, improvement is proposed for the S − Ω decomposition by utilizing the degree of dominance in the scattering mechanism. The improved S − Ω (named as iS − Ω) decomposition powers are first compared with the existing mχ and S − Ω powers for elementary (viz., trihedral and dihedral corner reflectors) and distributed targets using simulated CP-SAR data from quad-pol RADARSAT-2 data. An increase of ∼2% for odd and even-bounce powers obtained from the iS − Ω decomposition is observed for the trihedral and dihedral corner reflectors respectively. The analysis of the scattering powers for distributed targets shows that an increase of 15% and 12% in the even and odd-bounce powers is observed from iS − Ω for urban and bare soil areas respectively as compared to the mχ and S − Ω decompositions. Besides, temporal variations in the scattering powers obtained from the iS − Ω decomposition are also analyzed for rice, cotton, and sugarcane crops at different growth stages.  相似文献   

15.
一种基于曲线SAR的三维目标特征提取与自聚焦新算法   总被引:5,自引:0,他引:5  
曲线合成孔径雷达(Curvilinear Synthetic Aperture Radar,简称曲线SAR)是一种新的三维成像模式,通过让载机作曲线飞行,曲线SAR系统能同时在方位维和高度维形成大的合成孔径。本文提出一种曲线SAR的三维目标特征提取和自聚焦新方法。新方法是建立在一种灵活的接收数据模型之上的参数化的新方法。仿真实验证明了所提方法的有效性。  相似文献   

16.
Fast and accurate estimation of rice yield plays a role in forecasting rice productivity for ensuring regional or national food security. Microwave synthetic aperture radar (SAR) data has been proved to have a great potential for rice monitoring and parameters retrieval. In this study, a rice canopy scattering model (RCSM) was revised and then was applied to simulate the backscatter of rice canopy. The combination of RCSM and genetic algorithm (GA) was proposed for retrieving two important rice parameters relating to grain yield, ear length and ear number density, from a C-band, dual-polarization (HH and HV) Radarsat-2 SAR data. The stability of retrieved results of GA inversion was also evaluated by changing various parameter configurations.Results show that RCSM can effectively simulate backscattering coefficients of rice canopy at HH and HV mode with an error of <1 dB. Reasonable selection of GA’s parameters is essential for stability and efficiency of rice parameter retrieval. Two rice parameters are retrieved by the proposed RCSM-GA technology with better accuracy. The rice ear length are estimated with error of <1.5 cm, and ear number density with error of <23 #/m2. Rice grain yields are effectively estimated and mapped by the retrieved ear length and number density via a simple yield regression equation. This study further illustrates the capability of C-band Radarsat-2 SAR data on retrieval of rice ear parameters and the practicability of radar remote sensing technology for operational yield estimation.  相似文献   

17.
Curvilinear synthetic aperture radar (SAR), as a more practicable 3-D SAR imaging system, utilizes parametric target feature estimates extracted from the received data to reconstruct the target image. The reconstructed image quality is then impacted by the estimation accuracy of the features. In this letter, through discussing the correlation between the system parameters and the estimation performance of the curvilinear SAR, a conclusion can be drawn on how the overall location accuracy of a target is determined by the correlation between the azimuth and elevation coordinates of the flight path, compactly characterizing the curvilinear aperture. Consequently, a new index, determined only with the aperture parameters, is proposed as an aperture evaluator, which is referred to as the feature-independent aperture evaluator (FAE). FAE can be used for guiding the operational aperture design  相似文献   

18.
徐三元  王建国 《遥感学报》2010,14(2):267-277
建立双基地SAR的单基地等效模型,分析了系统时间同步误差的机理;提出了双基地SAR回波中的直达波数据进行时间同步误差校正的算法;在双基地SAR单站等效模型的基础上,利用时变阶梯变换算法进行成像处理。经过理论分析,实测数据处理验证,这一算法是有效的,能够校正双基地SAR时间同步误差,较好地进行实测数据的成像处理。  相似文献   

19.
Detecting and Downscaling Wet Areas on Boreal Landscapes   总被引:1,自引:0,他引:1  
This letter presents an approach to classify wet areas from European Remote Sensing 2 (ERS-2) synthetic aperture radar (SAR)-, Landsat Thematic Mapper (TM)-, and Light Detection and Ranging (LiDAR)-derived terrain data and downscale the result from the coarse resolution of satellite images to finer resolutions needed for land managers. Using discrete wavelet transform (DWT) and support vector machines (SVM), the algorithm finds multiple relationships between the radar, optical, and terrain data and wet areas at different spatial scales. Decomposing and reconstructing processes are performed using a 2-D DWT (2D-DWT) and inverse 2D-DWT respectively. The underlying relationships between radar, optical, and terrain data and wet areas are learned by training an SVM at the coarse resolution of the wet-area map. The SVM is then applied on the predictors at a finer resolution to produce wet-area detailing images, which are needed to reconstruct a finer resolution wet-area map. The algorithm is applied to a boreal landscape in northern Alberta, Canada, characterized by many wet-area features including ephemeral and permanent streams and wetlands.  相似文献   

20.
Phytoplankton blooms, particularly in the Southern Ocean, can have significant impact on global biogeochemistry cycling. To investigate the accuracy of chlorophyll-a distribution, and to better understand the spatial and temporal dynamics of phytoplankton biomass, we examine chlorophyll-a estimates (October–March from 2002 to 2012) derived from Moderate Resolution Imaging Spectrometer (MODIS) data following the ocean chlorophyll-a 3 model (OC3M) algorithm. Noticeable seasonality occurs in the temporal distribution of chlorophyll-a concentrations, which shows the highest value in December and January and an increasing tendency during the 2002–2012 period. The spatial distribution of chlorophyll-a varies greatly with latitude, as higher latitudes experience more phytoplankton blooms (chlorophyll-a concentration larger than 1 mg/m3) and marginal seas (Ross Sea and Amundsen Sea) show different bloom anomalies caused by two dominant algae species. Areas at higher latitudes and shallow water (<500 m) experience the shorter ice-free periods with greater seasonality. A noticeable bathymetry gradient exists at 2500-m isobaths, while water at the 500–2500-m depth experiences quite long ice-free periods with a stable water environment. Blooms generally occur near topographic features where currents have strong interactions when the water depth is more than 2500 m. Based on these findings, we can classify the Southern Ocean into two bloom subregions, 0–500 m as an enhanced bloom zone (EBZ), and 500–2500 m as a moderate bloom zone (MBZ). The EBZ has a quite high-bloom probability of about 30%, while the MBZ has only 10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号