首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The aim of this study is to investigate the potential of Sentinel-2 imagery for the identification and determination of forest patches of particular interest, with respect to ecosystem integrity and biodiversity and to produce a relevant biodiversity map, based on Simpson’s diversity index in Taxiarchis university research forest, Chalkidiki, North Greece. The research is based on OBIA being developed on to bi-temporal summer and winter Sentinel-2 imagery. Fuzzy rules, which are based on topographic factors, such as terrain elevation and slope for the distribution of each tree species, derived from expert knowledge and field observations, were used to improve the accuracy of tree species classification. Finally, Simpson’s diversity index for forest tree species, was calculated and mapped, constituting a relative indicator for biodiversity for forest ecosystem organisms (fungi, insects, birds, reptiles, mammals) and carrying implications for the identification of patches prone to disturbance or that should be prioritized for conservation.  相似文献   

2.
In this article, we present a fuzzy model for intrinsic quality assessment of Volunteered Geographic Information (VGI) on species occurrences obtained by Citizen Science (CS) biodiversity monitoring programs. The proposed VGI quality assurance approach evaluates the thematic and positional quality of the crowdsourced biodiversity observation in terms of the trustworthiness of the observation by combining three indicators of consistency with habitat, consistency with surroundings, and reputation of contributor, that characterize the geographical and social aspects of trust in VGI. To evaluate the performance and usability of the proposed approach for evaluating the trustworthiness of crowdsourced observations and detecting thematic and positional errors in crowdsourced observations, the developed approach was applied to the crowdsourced observations on Acer macrophyllum collected through the CS biodiversity monitoring projects of E-Flora BC and iNaturalist. The result of a conformity test at the optimal acceptance threshold (sensitivity = 0.99, specificity = 0.8, and Cohen’s kappa = 0.79), the achieved area under the curve (AUC) value (AUC = 0.98), and the results of the complementary investigation on the predictions of the proposed model indicated that the proposed fuzzy trust model exhibited promising predictive performance and was able to flag the majority of attribute and positional errors in the crowdsourced biodiversity observations.  相似文献   

3.
Abstract

Biodiversity is the variety and variability of flora and fauna in an ecosystem. Articulated into genes, species, and ecosystem, it provides the biological plasticity needed by life on the earth to adapt changes. As we approach towards the forthcoming century, the earth's diversity of life is increasingly at risk through a combination of mostly human induced factors leading to erosion of genetic resources, extinction of species and collapse of ecological systems. Insitu conservation, biotechnology tools for conservation and prospecting, species habitat relationship and following evolutionary process of speciation are some of the challenges. India being one of the mega biodiversity centers of the world is also known for its traditional knowledge of conservation. The varied regions of the country, with unique floristic and faunal richness, their vastness, endemism, heterogeneity and also inaccessibility of large areas have necessitated creation of authentic baseline database on biodiversity. With the advent of Internet based Geographic Information System technology an effort is being made to harness the power of these technologies to facilitate biodiversity conservation.

The information system organizes the data base generated under the project on “Biodiversity Characterization at landscape level using remote sensing and Geographic Information System in North East India” of the Department of Biotechnology and Department of Space, Government of India. The entire database is organized in object oriented relational database using Oracle as Backend and Visual Basic, ASP as front end. The web enabling part comes through uploading the entire spatial and non‐spatial data at a common platform using ArcSDE and ArcIMS The spatial characterization of landscape structures and its linkages with attribute information on the floristic composition, economic valuation, endemism are presented in Biodiversity Information System on a sharable environment. It is a step to evolve with new a mechanism to conserve biological diversity at local, regional and national level.  相似文献   

4.
The multivariate total least-squares (MTLS) approach aims at estimating a matrix of parameters, Ξ, from a linear model (YE Y = (XE X ) · Ξ) that includes an observation matrix, Y, another observation matrix, X, and matrices of randomly distributed errors, E Y and E X . Two special cases of the MTLS approach include the standard multivariate least-squares approach where only the observation matrix, Y, is perturbed by random errors and, on the other hand, the data least-squares approach where only the coefficient matrix X is affected by random errors. In a previous contribution, the authors derived an iterative algorithm to solve the MTLS problem by using the nonlinear Euler–Lagrange conditions. In this contribution, new lemmas are developed to analyze the iterative algorithm, modify it, and compare it with a new ‘closed form’ solution that is based on the singular-value decomposition. For an application, the total least-squares approach is used to estimate the affine transformation parameters that convert cadastral data from the old to the new Israeli datum. Technical aspects of this approach, such as scaling the data and fixing the columns in the coefficient matrix are investigated. This case study illuminates the issue of “symmetry” in the treatment of two sets of coordinates for identical point fields, a topic that had already been emphasized by Teunissen (1989, Festschrift to Torben Krarup, Geodetic Institute Bull no. 58, Copenhagen, Denmark, pp 335–342). The differences between the standard least-squares and the TLS approach are analyzed in terms of the estimated variance component and a first-order approximation of the dispersion matrix of the estimated parameters.  相似文献   

5.
ABSTRACT

When defining indicators on the environment, the use of existing initiatives should be a priority rather than redefining indicators each time. From an Information, Communication and Technology perspective, data interoperability and standardization are critical to improve data access and exchange as promoted by the Group on Earth Observations. GEOEssential is following an end-user driven approach by defining Essential Variables (EVs), as an intermediate value between environmental policy indicators and their appropriate data sources. From international to local scales, environmental policies and indicators are increasingly percolating down from the global to the local agendas. The scientific business processes for the generation of EVs and related indicators can be formalized in workflows specifying the necessary logical steps. To this aim, GEOEssential is developing a Virtual Laboratory the main objective of which is to instantiate conceptual workflows, which are stored in a dedicated knowledge base, generating executable workflows. To interpret and present the relevant outputs/results carried out by the different thematic workflows considered in GEOEssential (i.e. biodiversity, ecosystems, extractives, night light, and food-water-energy nexus), a Dashboard is built as a visual front-end. This is a valuable instrument to track progresses towards environmental policies.  相似文献   

6.
Abstract

India has figured with two hotspots ‐ the Western Ghats and the Eastern Himalayas ‐ in an identification of 8 ‘hottest’ biodiversity hotspots (Myers et. al. 2000). The Meghalaya state (study area) in North Eastern India lies within the “Indo‐Burma” area, which is one of the 8 ‘hottest’ biodiversity hotspots. Timber extraction, the age‐old practice of shifting cultivation and mining has been a major cause of extensive changes in this landscape. Human induced disturbance differs from natural disturbance especially in extension, severity and frequency. Spatial presentation of landscape dynamics can be used to infer disturbance regimes horizontally. Disturbance regimes are mostly dominated by landuse practices in Meghalaya and these landuse practices are important contributors for overall interpretation of ecological processes operating within the landscape. In this scenario, the development of models to study landscape dynamics using remote sensing and GIS would be of great importance to ecologists. In this paper, we make an attempt to characterize landscape dynamics using a decision tree based approach. The varying impacts of human interventions reflected in three zones at landscape level have been brought out in the present study. The physiographic zones of Meghalaya (viz. Garo hills, Khasi hills and Jaintia hills) manifest different landscape characteristics and present varying degree of degradation status. Garo hills, experiences maximum shifting cultivation and has shown highest dynamism in the study area followed by Jaintia and Khasi hills. Characterization of landscape dynamics is important in the perspective of decision makers and policy makers in order to prioritize conservation strategies, so that urgent and necessary action can be taken.  相似文献   

7.
Space-based navigation and radar systems operating at single frequencies of <10 GHz require ionospheric corrections of the signal delay or range error. Because this ionospheric propagation error is proportional to the total electron content of the ionosphere along the ray path, a user friendly TEC model covering global scale and all levels of solar activity should be helpful in various applications. Since such a model is not available yet, we present an empirical model approach that allows determining global TEC very easily. Although the number of model coefficients and parameters is rather small, the model describes main ionospheric features with good quality. Presented is the empirical approach describing dependencies on local time, geographic/geomagnetic location and solar irradiance and activity. The non-linear approach needs only 12 coefficients and a few empirically fixed parameters for describing the broad spectrum of TEC variation at all levels of solar activity. The model approach is applied on high-quality global TEC data derived by the Center for Orbit Determination in Europe (CODE) at the University of Berne over more than half a solar cycle (1998–2007). The model fits to these input data with a negative bias of 0.3 TECU and a RMS deviation of 7.5 TECU. As other empirical models too, the proposed Global Neustrelitz TEC Model NTCM-GLis climatological, i.e. the model describes the average behaviour under quiet geomagnetic conditions. During severe space weather events the actual TEC data may deviate from the model values considerably by more than 100%. A preliminary comparison with independent data sets as TOPEX/Poseidon altimeter data reveals similar results for NeQuick and NTCM-GL with RMS deviations in the order of 5 and 11 TECU (1 TECU = 1016 electrons/m2) for low and high-solar activity conditions, respectively. The more extended data base of ionosphere information that accumulates in the coming years will help in further improving the set of coefficients of the model.  相似文献   

8.
Abstract

The paper presents a geospatial modeling approach for the assessment of plant richness in Barsey Rhododendron Sanctuary in Sikkim, a Himalayan State of India located in the “Indo‐Burma” biodiversity hotspot. Remotely sensed data from Indian Remote Sensing Satellite IRS‐1C Linear Imaging Self‐Scanner (LISS‐III) and field‐based methods were synergistically used to model plant richness on 1:50,000 scale. It was found that the sanctuary is dominated by East Himalayan Moist Temperate Forest (55.50%), followed by Rhododendron Forest (23.77%), Degraded Forest (6.66%) and Hemlock Forest (0.78%). The vegetation map prepared through digital interpretation of satellite imagery was subjected to landscape analysis and assessment of biotic disturbance in terms of disturbance index. The disturbance index together with species richness, ecosystem uniqueness, total importance value and terrain complexity was modeled to assess the plant richness in this unique sanctuary. Out of the 120 km2 of the total geographical area of the sanctuary, 28.45 per cent was found to possess very high plant richness followed by high (50.84%), medium (6.96%) and low richness (13.75%). It was noted that plant richness assessment at ecosystem level presents a more realistic picture than at landscape level. The study demonstrated that remote sensing coupled with landscape analysis, ground inventory data and geospatial modeling holds good potential for rapid and operational assessment of plant richness.  相似文献   

9.
ABSTRACT

Global, fast and accessible monitoring of biodiversity is one of the main pillars of the efforts undertaken in order to revert it loss. The Group on Earth Observations Biodiversity Observation Network (GEO-BON) provided an expert-based definition of the biological properties that should be monitored, the Essential Biodiversity Variables (EBVs). Initiatives to provide indicators for EBVs rely on global, freely available remote sensing (RS) products in combination with empirical models and field data, and are invaluable for decision making. In this study, we provide alternatives for the expansion and improvement of the EBV indicators, by suggesting current and future data from the European Space Agencýs COPERNICUS and explore the potential of RS-integrated Dynamic Global Vegetation Models (DGVMs) for the estimation of EBVs. Our review found that mainly due to the inclusion of the Sentinel constellation, Copernicus products have similar or superior potential for EBV indicator estimation in relation to their NASA counterparts. DGVMs simulate the ecosystem level EBVs (ecosystem function and structure), and when integrated with remote sensing data have great potential to not only offer improved estimation of current states but to provide projection of ecosystem impacts. We suggest that focus on producing EBV relevant outputs should be a priority within the research community, to support biodiversity preservation efforts.  相似文献   

10.
Abstract

The development of spatial decision support for environmental resource management, e.g. forest and agroecosystem management, biodiversity conservation, or hydrological planning, started in the 1980s and was the focus of many research groups in the 1990s. The combined availability of spatial data and communication, computing, positioning, geographic information system (GIS)- and remote sensing (RS)-technologies has been responsible for the implementation of complex SDSS since the late 1990s. The regional GIS-based modelling of environmental resources, and therefore ecosystems in general, requires setting-up an extensive geo and model database. Spatial data on topography, soil, climate, land use, hydrology, flora, fauna and anthropogenic activities have to be available. Therefore, GIS- and RS-technologies are of central importance for spatial data handling and analysis. In this context, the structure of spatial environmental information systems (SEIS) is introduced. In SEIS, the input data for environmental resource management are organised in at least seven sub-information systems: base geodata information system (BGDIS), climate information system (CIS), soil information system (SIS), land use information system (LUIS), hydrological information system (HIS), spatial/temporal biodiversity information system (STBIS), forest/agricultural management information system (FAMIS). The major tasks of a SEIS are to (i) provide environmental resource information on a regional level, (ii) analyse the impact of anthropogenic activities and (iii) simulate scenarios of different impacts.  相似文献   

11.
Abstract

In this paper a new approach for generalization of contours is described. The aim of this approach is to obtain both simplified and smoothed contours lying on a minimum number of characteristic points and inside the error bands. Characteristic points of contours are defined in relation to the skeleton lines of the terrain and determined using the deviation angles at the contour points. Error bands for contours are constructed by means of the steepest slope lines and the mean square planimetric errors at the contour points. The new approach is compared to the Li-Openshaw algorithm according to the experimental testing results.  相似文献   

12.
In a linear Gauss–Markov model, the parameter estimates from BLUUE (Best Linear Uniformly Unbiased Estimate) are not robust against possible outliers in the observations. Moreover, by giving up the unbiasedness constraint, the mean squared error (MSE) risk may be further reduced, in particular when the problem is ill-posed. In this paper, the α-weighted S-homBLE (Best homogeneously Linear Estimate) is derived via formulas originally used for variance component estimation on the basis of the repro-BIQUUE (reproducing Best Invariant Quadratic Uniformly Unbiased Estimate) principle in a model with stochastic prior information. In the present model, however, such prior information is not included, which allows the comparison of the stochastic approach (α-weighted S-homBLE) with the well-established algebraic approach of Tykhonov–Phillips regularization, also known as R-HAPS (Hybrid APproximation Solution), whenever the inverse of the “substitute matrix” S exists and is chosen as the R matrix that defines the relative impact of the regularizing term on the final result. The delay in publishing this paper is due to a number of unfortunate complications. It was first submitted as a multi-author paper in two parts. Due to some miscommunication among the original authors, it was reassigned to one of the J Geod special issues, but later reassigned at this author’s request to a standard issue of J Geod. This compounded with a difficulty to find willing reviewers to slow the process. We apologize to the author.  相似文献   

13.
ABSTRACT

A 3D forest monitoring system, called FORSAT (a satellite very high resolution image processing platform for forest assessment), was developed for the extraction of 3D geometric forest information from very high resolution (VHR) satellite imagery and the automatic 3D change detection. FORSAT is composed of two complementary tasks: (1) the geometric and radiometric processing of satellite optical imagery and digital surface model (DSM) reconstruction by using a precise and robust image matching approach specially designed for VHR satellite imagery, (2) 3D surface comparison for change detection. It allows the users to import DSMs, align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes (together with precision values) between epochs. FORSAT is a single source and flexible forest information solution, allowing expert and non-expert remote sensing users to monitor forests in three and four (time) dimensions. The geometric resolution and thematic content of VHR optical imagery are sufficient for many forest information needs such as deforestation, clear-cut and fire severity mapping. The capacity and benefits of FORSAT, as a forest information system contributing to the sustainable forest management, have been tested and validated in case studies located in Austria, Switzerland and Spain.  相似文献   

14.
《测量评论》2013,45(64):52-70
Abstract

In the last instalment we were able to obtain most of the surveyor's projections in common use by applying simple scale conditions to the meridians and parallels. This method of approach naturally suggests that results of some value might be obtained by applying similar conditions to the plane co-ordinate lines. If we do so, we are immediately led to consider curves on the surface known as geodesics, which are the nearest approach to straight lines it is possible to draw on a curved surface. Accordingly, we give some account of these curves for the benefit of surveyors who have not hitherto made their acquaintance.  相似文献   

15.
16.
In satellite data analysis, one big advantage of analytical orbit integration, which cannot be overestimated, is missed in the numerical integration approach: spectral analysis or the lumped coefficient concept may be used not only to design efficient algorithms but overall for much better insight into the force-field determination problem. The lumped coefficient concept, considered from a practical point of view, consists of the separation of the observation equation matrix A=BT into the product of two matrices. The matrix T is a very sparse matrix separating into small block-diagonal matrices connecting the harmonic coefficients with the lumped coefficients. The lumped coefficients are nothing other than the amplitudes of trigonometric functions depending on three angular orbital variables; therefore, the matrix N=B T B will become for a sufficient length of a data set a diagonal dominant matrix, in the case of an unlimited data string length a strictly diagonal one. Using an analytical solution of high order, the non-linear observation equations for low–low SST range data can be transformed into a form to allow the application of the lumped concept. They are presented here for a second-order solution together with an outline of how to proceed with data analysis in the spectral domain in such a case. The dynamic model presented here provides not only a practical algorithm for the parameter determination but also a simple method for an investigation of some fundamental questions, such as the determination of the range of the subset of geopotential coefficients which can be properly determined by means of SST techniques or the definition of an optimal orbital configuration for particular SST missions. Numerical results have already been obtained and will be published elsewhere. Received: 15 January 1999 / Accepted: 30 November 1999  相似文献   

17.
ABSTRACT

Mangroves are critical in the ecological, economic and social development of coastal rural and urban communities. However, they are under threat by climate change and anthropogenic activities. The Sunda Banda Seascape (SBS), Indonesia, is among the world’s richest regions of mangrove biomass and biodiversity. To inform current and future management strategies, it is critical to provide estimates of how mangroves will respond to climate change in this region. Therefore, this paper utilized spatial analysis with model-based climatic indicators (temperature and precipitation) and mangrove distribution maps to estimate a benchmark for the mangrove biomass of the SBS in six scenarios, namely the Last Inter-glacial Period, the current scenario (1950–2000) and all four projected Representative Concentration Pathways in 2070 due to climate change. Despite mangroves gaining more biomass with climate change (the increase in CO2 concentration), this paper highlighted the great proportion of below-ground biomass in mangrove forests. It also showed that the changes in spatial distribution of mangrove biomass became more variable in the context of climate change. As mangroves have been proposed as an essential component of climate change strategies, this study can serve as a baseline for future studies and resource management strategies.  相似文献   

18.
Abstract

This paper investigates a multi-resolution digital Earth model called PYXIS, which was developed by PYXIS Innovation Inc. The PYXIS hexagonal grids employ an efficient hierarchical labeling scheme for addressing pixels. We provide a recursive definition of the PYXIS grids, a systematic approach to the labeling, an algorithm to add PYXIS labels, and a discussion of the discrete Fourier transform on PYXIS grids.  相似文献   

19.
Abstract

Close-range hyperspectral images are a promising source of information in plant biology, in particular, for in vivo study of physiological changes. In this study, we investigate how data fusion can improve the detection of leaf elements by combining pixel reflectance and morphological information. The detection of image regions associated to the leaf structures is the first step toward quantitative analysis on the physical effects that genetic manipulation, disease infections, and environmental conditions have in plants. We tested our fusion approach on Musa acuminata (banana) leaf images and compared its discriminant capability to similar techniques used in remote sensing. Experimental results demonstrate the efficiency of our fusion approach, with significant improvements over some conventional methods.  相似文献   

20.
Abstract

Exploring large volumes of geospatial data is difficult. This paper presents an approach that combines visual and computational analysis to make this process easier. This approach is based on the effective application of computational algorithms, such as the Self-Organizing Map (SOM). These are used to uncover the structure, patterns, relationships and trends in the data, and for the creation of abstractions where conventional methods may be limited. In addition, graphical representations are applied to portray extracted patterns in a visual form that allows for better understanding of the derived structures and possible geographical processes, and should facilitate knowledge construction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号