首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The paper discusses the potential of very high resolution (VHR) satellite imagery for post-earthquake damage assessment in comparison with the role of aerial photographs. Post-disaster optical and radar satellite data are assessed for their ability to resolve collapsed buildings, destroyed transportation infrastructure, and specific land cover changes. Optical VHR imagery has shown to be effective in quantifying building stock and for assessing damage at the building level. High-resolution synthetic aperture radar (SAR) imagery requires further research to identify optimum information extraction procedures for rapid assessment of affected buildings. Based on current technical and operational capabilities increasing efforts should be devoted to the generation of spatial datasets for disaster preparedness.  相似文献   

2.
雷达遥感六十年:四个阶段的发展   总被引:3,自引:2,他引:1  
郭华东  张露 《遥感学报》2019,23(6):1023-1035
雷达遥感问世60年来已经历了4个阶段的发展,其在对地观测中的作用正日益凸显,已经广泛应用于不同领域。4个阶段分别是单波段单极化阶段,多波段多极化阶段,极化和干涉阶段,以及以双/多站或星座、高时序高分宽幅、3维成像为代表的新阶段。本文结合作者长期在雷达遥感领域的研究经历,总结和回顾了雷达遥感的阶段发展和具有里程碑式的代表性技术;从观测技术、数据处理和应用角度阐述了新阶段雷达遥感的发展趋势,以及雷达遥感与人工智能和大数据结合的思考;最后着眼未来,介绍了月基雷达对地观测平台的前瞻性研究。  相似文献   

3.
合成孔径雷达(SAR)卫星具有全天候、全天时的观测能力,并对地表有一定的穿透能力,它在灾害监测、环境监测、资源勘察和军事应用等方面具有重要的作用,受到各国的普遍重视,目前已成为空间对地观测发展的热点。角反射器作为定标系统中的标准参考目标,其雷达截面积的精度和稳定度在很大程度上决定了定标测试的精度,因此,建立高精度的定标系统就需要研制高精度、高稳定度的角反射器。本文通过南票煤矿开采沉陷区基于InSAR的沉降测量工作,研究了角反射器的制作与安装方法。  相似文献   

4.
ABSTRACT

The new land observation satellite Sentinel-1A was launched on 25 April 2014 with a C-band synthetic aperture radar (SAR) sensor, which has the significant enhancements in terms of revisit period and high resolution. The Mw 6.1 Napa, California earthquake occurring on 24 August 2014, almost 4 months after the launch, is the first moderate earthquake imaged by the Sentinel-1A. This provides an opportunity to map the coseismic deformation of the event and evaluate the potential of Sentinel-1A SAR for earthquake study. Two techniques including the interferometric SAR (InSAR) and pixel offset-tracking (PO) are, respectively, employed to map the surface deformation along the radar line of sight (LOS), azimuth and slant-range directions. The cross comparison between Sentinel-1A InSAR LOS deformation and GPS observations indicates good agreement with an accuracy of ~2.6?mm. We further estimate the earthquake source model with the external COSMO-SkyMed InSAR and GPS data as constraints, and forward calculate the surface deformation as cross validation with the Sentinel-1A observations. The comparison between the observed and modeled deformation shows that the Sentinel-1A measurement accuracy can achieve 1.6?cm for InSAR technique along LOS direction, and 6.3 and 6.7?cm for PO along azimuth and range directions, respectively.  相似文献   

5.
Optical remote sensing data have been extensively used to derive biophysical properties that relate forest type and composition. However, stand density, stand height and stand volume cannot be estimated directly from optical remote sensing data owing to poor sensitivity between these parameters and spectral reflectance. The ability of microwave energy to penetrate within forest vegetation makes it possible to extract information on both the crown and trunk components from radar data. The type of polarization employed determines the radar response to the various shapes and orientations of the scattering mechanisms within the canopy or trunk. This study mainly presents experimental results obtained with airborne E-SAR using polarimetric C and L bands over the tropical dry deciduous forest of Chandrapur Forest Division, Maharashtra. A detailed documentation of the relationship between SAR C & L bands backscattering and forest stand variables has been provided in the present study through linear correlation. Linear correlation of the single channel SAR derived estimates with the field measured means show a good correlation between L HV backscattering coefficient with stand volume (r2 = 0.71) and L HH backscattering coefficient with stand density (r2 = 0.75). The results imply that SAR data has significant potential for stand menstruation in operational forestry.  相似文献   

6.
合成孔径雷达(SAR)系统在对地观测中具有全天时全天候的独特优势。近十几年来,多模式、多角度、多维度、大幅宽、高分辨率、多基协同等SAR技术的问世,代表着新型SAR观测时代的到来。为对这一SAR发展阶段的特点和能力进行分析,本文首先介绍了新型SAR系统观测能力的发展,包括如何获取大范围、多时相、多层次SAR综合对地观测数据及实现月基SAR等观测技术;然后,总结了杂交介质建模、时频分解、深度学习、压缩感知等新型信息提取方法在SAR领域发挥的作用;最后,介绍了新型SAR在城市管理、植被调查、极地与海洋测绘以及灾害监测等领域的研究进展,旨在推动SAR观测技术在测绘领域更广泛而深入的应用。  相似文献   

7.
Abstract

Although high‐resolution microwave synthetic aperture radar (SAR) sensors possess all‐weather capability for mapping soil moisture from spaceborne platforms, continuous temporal and spatial monitoring of this important hydrological parameter has been relatively limited. However, the recent launch of operational SAR sensors aboard various satellites have made possible synoptic soil moisture monitoring a reality. Such systems operate over a wide range of frequencies, look angles, and polarization combinations, and thus show synergistic advantages when combined for estimating soil moisture patterns. Two soil moisture inversion algorithms have been developed using as inputs radar backscattering data at L, S, and C bands in the microwave frequency range. These models have been tested using radar image simulation with speckle added. It is observed that the neural network algorithm yields superior results in mapping actual soil moisture patterns over the linear statistical inversion technique, although both models show comparable errors in soil moisture estimation. We infer that using statistical estimation errors alone for comparison purposes may lead to erroneous conclusions regarding the advantages of one soil moisture inversion algorithm over another.  相似文献   

8.
Abstract

Information of snow cover (SC) over Himalayan regions is very important for regional climatological and hydrological studies. Precise monitoring of SC in the Himalayan region is essential for water supply to hydropower stations, irrigation requirements, and flood forecasting. Microwave remote sensing has all weather, day and night earth observation capability unlike optical remote sensing. In this study, spaceborne synthetic aperture radar interferometric (InSAR) coherence analysis is used to monitor SC over Himalayan rugged terrain. The feasibility of monitoring SC using synthetic aperture radar (SAR) interferometry depends on the ability to maintain coherence over InSAR pair acquisition time interval. ERS-1/2 InSAR coherence and ENVISAT ASAR InSAR coherence images are analyzed for SC mapping. Data sets of winter and of snow free months of the Himalayan region are taken for interferogram generation. Coherence images of the available data sets show maximum decorrelation in most of the area which indicates massive snowfall in the region in the winter season and melting in the summer. Area showing coherence loss due to decorrelation is mapped as a snow-covered area. The result is validated with field observations of snow depth and it is found that standing snow is inversely related to coherence in the Himalayan region.  相似文献   

9.
本文论述了迄今为止唯一获得地球表面航天雷达图像的Seasat SAR、SIR-A及SIR-B三颗成象雷达系统在地球科学研究中的作用,对未来十年以ALMAZ ZAR、ERS-1 SAR、JERS-1 SAR、SIR-C、Radarsat SAR和EOS SAR为主的国际性主动微波遥感系统进行分析,指出研究过程中新的概念和趋势,展望了90年代航天雷达遥感技术发展及应用的前景.  相似文献   

10.
将卫星雷达遥感应用于滑坡灾害的探测与监测,不仅可以从空间尺度上大范围捕捉到滑坡信号,而且可以从时间尺度上以较长周期追踪滑坡的运动状态。但是,卫星雷达遥感本身的局限性和滑坡所处的复杂地形环境使这一应用面临一些挑战。对卫星雷达遥感技术的4个主要挑战进行了总结与分析,同时给出了相应的解决方案:①通过提高卫星雷达影像的空间、时间分辨率,使用较长波段雷达信号或采用增强型时间序列分析技术,可降低密集植被覆盖对相干性的影响。另外,采用像素点偏移量追踪或距离向分频干涉测量方法,可克服传统干涉测量中大梯度形变引起的相位失相干。②大气延迟对卫星遥感的影响较大,尤其是地处山区的滑坡探测和监测,利用通用型卫星雷达大气改正系统可显著减弱干涉影像的大气信号并进一步简化时间序列分析,提高缓慢运动滑坡的探测和监测质量。③对于中等分辨率的雷达影像而言,利用数字高程模型可提前量化分析雷达几何畸变(如叠掩、阴影等)引发的滑坡探测监测的适用性;而对于高分辨率的雷达影像而言,利用机器学习方法无需外部高分辨率数字高程模型即可精确识别雷达影像的阴影和叠掩区并进行掩膜,从而大幅度提高数据处理效率。④针对高坡度地区残余的地形相位引起的解缠误差,可通过基线线性组合的方法予以减弱。此外,提出了一个基于多源对地观测的滑坡探测/监测系统框架,综合卫星雷达遥感与其他对地观测数据(如地基雷达、激光雷达、全球导航定位系统),搭建了一个自动化滑坡探测与监测系统。该研究旨在阐明卫星雷达遥感的优缺点,进一步深化其在滑坡灾害监测方面的应用和推广,引出未来侧重发展方向的思考与探讨。  相似文献   

11.
局部统计活动轮廓模型的SAR图像海岸线检测   总被引:1,自引:1,他引:0  
黄魁华  张军 《遥感学报》2011,15(4):737-749
首次将局部统计活动轮廓模型引入SAR图像海岸线检测问题中,提出了一种基于局部统计活动轮廓模型的SAR 图像海岸线检测方法。首先利用C-V模型进行粗分割,消除局部统计活动轮廓模型对初始轮廓线设置要求严格的限制,然后提出了一种基于G0分布的局部统计活动轮廓模型,进行精细分割。该模型采用G0分布对轮廓线上每一点的邻域进行统计建模,增强了模型数据拟合能力,提高了海岸线检测精度,加入水平集函数惩罚项,消除了重新初始化过程。实测SAR图像实验表明,本文方法可用于精确海岸线检测。  相似文献   

12.
Fast and accurate estimation of rice yield plays a role in forecasting rice productivity for ensuring regional or national food security. Microwave synthetic aperture radar (SAR) data has been proved to have a great potential for rice monitoring and parameters retrieval. In this study, a rice canopy scattering model (RCSM) was revised and then was applied to simulate the backscatter of rice canopy. The combination of RCSM and genetic algorithm (GA) was proposed for retrieving two important rice parameters relating to grain yield, ear length and ear number density, from a C-band, dual-polarization (HH and HV) Radarsat-2 SAR data. The stability of retrieved results of GA inversion was also evaluated by changing various parameter configurations.Results show that RCSM can effectively simulate backscattering coefficients of rice canopy at HH and HV mode with an error of <1 dB. Reasonable selection of GA’s parameters is essential for stability and efficiency of rice parameter retrieval. Two rice parameters are retrieved by the proposed RCSM-GA technology with better accuracy. The rice ear length are estimated with error of <1.5 cm, and ear number density with error of <23 #/m2. Rice grain yields are effectively estimated and mapped by the retrieved ear length and number density via a simple yield regression equation. This study further illustrates the capability of C-band Radarsat-2 SAR data on retrieval of rice ear parameters and the practicability of radar remote sensing technology for operational yield estimation.  相似文献   

13.
在我国,由于特殊的地理位置和气候条件使得局部地区获取数据较为困难,导致在地理国情监测中利用传统光学成像监测手段获取数据难以满足监测需求。随着无人机机载微型化合成孔径雷达高分辨率对地观测成像技术的不断发展,使得全天时、全天候航空遥感监测成为可能。本文通过对无人机机载合成孔径雷达监测系统集成构建,利用该套系统高分辨率微波成像,验证了其在地理国情监测应用中的适用性。为无人机机载SAR技术在地理国情监测中的应用提供了新的解决手段。  相似文献   

14.
《测量评论》2013,45(71):19-29
Abstract

The use of radar has already begun to revolutionise the science of surveying. It requires the computation of lines on the earth between a hundred and a thousand miles long for the fixation of topographic control.  相似文献   

15.
Abstract

Recent developments in space technology and exponential increase in demand of earth observation data from space have generated a requirement of a data processing environment, where users can discover the data and process, based on their requirements. Grid Services for Earth Observation Image Data Processing (GEOID) is proposed with a motivation to cater to future earth observation applications requirements of digital earth. This paper discusses the overview of the GEOID architecture, its deployment scenario, use-cases and simulation results. Core technologies used for implementation include Grid computing and Service Oriented Architecture. GEOID provides capability to address requirements of applications such as real-time monitoring, time series data processing and processing with user required quality to meet the requirements of end user applications. GEOID allows users to access the archive products or the raw satellite data stream and process their area of interest. Simulations show that applications such as time series analysis show considerable improvement in processing time by using GEOID.  相似文献   

16.
The permafrost in Qinghai-Tibet Plateau (QTP) has long been the focus of many researchers. In this study, we first use the method that integrates synthetic aperture radar (SAR) intensity and phase information to monitor permafrost environment in the Beiluhe Region, using time series advanced SAR images. The backscattering coefficients (σ0) and deformation were extracted for the main features, and the influences of meteorological conditions to them were also quantified. The results show that both the change in σ0 and surface deformation are closely related to the active layer, and the deformation is also affected by the permafrost table. First, over meadow and sparse vegetation regions, σ0 rose about 6.9 and 4 dB from the freezing to thawing period, respectively, which can be mainly attributed to the thaw of the active layer and increased precipitation. Second, seasonal deformation, derived from the freeze-thaw cycle of the active layer, was characteristic of frost heave and thaw settlement and exhibited a negative correlation with air temperature. Its magnitude was larger than 1 cm in a seasonal cycle. Last, significant secular settlement was observed, with rates ranging from –16 to 2 mm/a, and it was primarily due to the thaw of the permafrost table caused by climate warming.  相似文献   

17.
ABSTRACT

As an important advanced technique in the field of Earth observations, Synthetic Aperture Radar (SAR) plays a key role in the study of global environmental change, resources exploration, disaster mitigation, urban environments, and even lunar exploration. However, studies on imaging, image processing, and Earth factor inversions have often been conducted independently for a long time, which significantly limits the application effectiveness of SAR remote sensing due to the lack of an overall integrated design scheme and integrated information processing. Focusing on this SAR application issue, this paper proposes and describes a new SAR data processing methodology – SAR data integrated processing (DIP) oriented on Earth environment factor inversions. The simple definition, typical integrated modes and overall implementation ideas are introduced. Finally, focusing on building information extraction (man-made targets) and sea ice classification (natural targets) applications, three SAR DIP methods and experiments are conducted. Improved results are obtained under the guidance of the SAR DIP framework. Therefore, the SAR DIP theoretical framework and methodology represent a new SAR science application mode that has the capability to improve the SAR remote sensing quantitative application level and promote the development of new theories and methodologies.  相似文献   

18.
Abstract

Multi-frequency C and L bands in the TOPSAR data have been utilized to reconstruct three-dimensional (3-D) bathymetry pattern. The main objective of this study is to utilize fuzzy arithmetic to reduce the errors arising from speckle in synthetic aperture radar (SAR) data when constructing ocean bathymetry from polarized SAR data. In doing so, two 3-D surface models, the Volterra algorithm and a fuzzy B-spline (FBS) algorithm, which construct a global topological structure between the data points, were used to support an approximation to the real surface. Volterra algorithm was used to express the non-linearity of TOPSAR data intensity gradient based on the action balance equation (ABC). In this context, a first-order kernel of Volterra algorithm was used to express ABC equation. The inverse of Volterra algorithm then performed to simulate 2-D current velocities from CVV and LHH band. Furthermore, the 2-D continuity equation then used to estimate the water depth. In order to reconstruct 3-D bathymetry pattern, the FBS has been performed to water depth information which was estimated from 2-D continuity equation. The best reconstruction of coastal bathymetry of the test site in Kuala Terengganu, Malaysia, was obtained with polarized L and C bands SAR acquired with HH and VV polarizations, respectively. With 10 m spatial resolution of TOPSAR data, bias of –0.004 m, the standard error mean of 0.023 m, r 2 value of 0.95, and 90% confidence intervals in depth determination was obtained with LHH band.  相似文献   

19.
SAR与TM数字复合处理技术,能为地质解译及地质制图提供一份空间与波谱信息都比较丰富 的图像。复合图像的优点是:地物细节详尽,立体感强,图像上阴影又少,便于进行各种图像增 强处理和与其他地学资料对比分析、拟合。试验表明,除岩性解译能力较差外,其它地质体的解译能完全或基本满足中等(大)比例尺区域地质调查的要求。  相似文献   

20.
基于à trous小波分解的SAR图像噪声滤除方法   总被引:1,自引:1,他引:0  
合成孔径雷达(SAR)以其特有的全天时、全天候成像能力,在对地观测领域中发挥着重要的作用。由于雷达回波的相干性,SAR图像上存在着斑点噪声,为消除这种噪声,提出了一种基于à trous小波算法的组合滤波方法,该方法首先将SAR图像分解至静态小波域,然后对噪声的小波系数进行基于中值的平滑处理,最后对低频信号进行均值滤波。将此算法应用于新疆库车县的一幅RADARSAT图像进行斑点噪声滤波,并与另外3种典型的SAR图像滤波算法进行比较,结果表明,该方法不仅可以有效地去除斑点噪声,并且可以保持SAR图像的精细纹理结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号