首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
 In the Upper Cretaceous Gross Brukkaros Volcanic Field, southern Namibia, a radial dyke system surrounds a dome structure and its 74 closely related carbonatite diatremes. This paper focuses on volcanological features which seem to be typical for a low-viscosity melt in various settings such as dykes, sills and diatremes. The total or near absence of vesicles in carbonatite ash grains and lapilli inside the diatremes is evidence against explosive exsolution of volatile phases and in favour of a phreatomagmatic fragmentation mechanism and thus for a phreatomagmatic eruption mechanism of the carbonatite diatremes. Received: 15 August 1996 / Accepted: 13 January 1997  相似文献   

2.
Current kimberlite pipe development models strongly advocate a downward growth process with the pipe cutting down onto its feeder dyke by means of volcanic explosions. Evidence is presented from the K08 kimberlite pipe in Venetia Mine, South Africa, which suggests that some pipes or sub-components of pipes develop upwards. The K08 pipe in pit exposure comprises >90 vol.% chaotic mega-breccia of country rock clasts (gneiss and schist) and <10 vol.% coherent kimberlite. Sub-horizontal breccia layers, tens of metres thick, are defined by lithic clast size variations and contain zones of shearing and secondary fragmentation. Textural studies of the breccias and fractal statistics on clast size distributions are used to characterize sheared and non-sheared breccia zones and to deduce a fragmentation mechanism. Breccia statistics are compared directly with the statistics of fragmented rock produced from mining processes in order to support interpretations. Results are consistent with an initial stage of brecciation formed by upward-moving collapse of an explosively pre-conditioned hanging wall into a sub-terranean volcanic excavation. Our analysis suggests that the pre-conditioning is most likely to have been caused by explosions, either phreatic or phreatomagmatic in nature, with a total energy output of 2.7 × 109 kJ (656 t of TNT). A second stage of fragmentation is interpreted as shearing of the breccia caused by multiple late kimberlite intrusions and possible bulk movement of material in the pipe conduit related to adjacent volcanism in the K02 pipe.  相似文献   

3.
At Gross Brukkaros a central depression has developed within domed Nama Group sediments and has functioned as a local depocenter, with a primary fill deposited during the Cretaceous and a small secondary fill by alluvial fans during the Tertiary and Quaternary. The diameter of the entire structure is about 10 km and that of the central depression is about 3 km. Within this depocenter the sedimentary sequence consists mainly of debris-flow and mudflow deposits, with minor intercalations of fluviatile (braided channel) sediments and fossiliferous lacustrine deposits. The sedimentary system represents a set of coalesced subaerial fans which formed a fringing sedimentary apron along the margin of the depocenter. This sedimentary apron passed distally and centrally into a permanent lake, which was characterized by a fluctuating water level. Facies transitions observed are typical of those described from modern and ancient fan delta systems. Contact relationships show the Gross Brukkaros sediments to be about the same age (Upper Cretaceous) as the surrounding carbonatitic volcanism. An Upper Cretaceous age is also consistent with the plant fossil association recently recognized within the lacustrine beds of Gross Brukkaros. We attribute the genesis of the dome structure to the shallow intrusion of a laccolith-shaped, strongly alkaline to carbonatitic magma body. Subsequent depletion of the reservoir due to volcanic activity around and in(?) Gross Brukkaros led to subsidence resulting in the development of the Gross Brukkaros depocenter. Differences between Gross Brukkaros and the general caldera model consist of a radially oriented dike pattern and the formation of the caldera by downsagging rather than cauldron subsidence, as derived from the absence of ring faults and ring dikes. The first (radial dikes) may be attributed to comparatively strong initial doming; the latter (lack of ring faults) to the small size of the caldera, its incremental subsidence, and finally the sedimentary wall rocks instead of a rigid crystalline crust.  相似文献   

4.
Most if not all kimberlite pipes show a multitude of facies types, which imply that the pipes were emplaced under an episodic re-occurrence of eruptive phases, often with intermittent phases of volcanic quiescence. The majority of these facies can be related to either the fragmentation behaviour of the magma during emplacement or changing conditions during sedimentation of volcaniclastic deposits, as well as their alteration and compaction after deposition. An additional factor controlling pipe-facies architecture is the degree of mobility of the loci of explosions in the explosion chambers of the root zone or root zones at the base of the maar-diatreme volcano. In a growing pipe, the root zone moves downward and, with that movement, the overlying diatreme enlarges both in size and diameter. However, during the life span of the volcano, the explosion chamber can also move upward, back into the lower diatreme, where renewed explosions result in the destruction of older deposits and their structures. Next to vertical shifts of explosion chambers, the loci of explosions can also move laterally along the feeder dyke or dyke swarm. This mobility of explosion chambers results in a highly complex facies architecture in which a pipe can be composed of several separate root zones that are overlain by an amalgamated, crosscutting diatreme and maar crater with several lobes. Pipe complexity is amplified by periodic changes of the fragmentation behaviour and explosivity of kimberlite magma. Recent mapping and logging results of Canadian and African kimberlite pipes suggest that kimberlite magma fragmentation ranges from highly explosive with abundant entrained country rock fragments to weakly explosive spatter-like production with scarce xenoliths. On occasions, spatter may even reconstitute and form a texturally coherent deposit on the crater floor. In addition, ascending kimberlite magma can pass the loci of earlier fragmentation events in the root zone and intrudes as coherent hypabyssal kimberlite dykes in high pipe levels or forms extrusive lava lakes or flows on the crater floor or the syneruptive land surface, respectively. This highly variable emplacement behaviour is typical for basaltic maar-diatreme volcanoes and since similar deposits can also be found in kimberlites, it can be concluded that also the volcanological processes leading to these deposits are similar to the ones observed in basaltic pipes.  相似文献   

5.
The Gross Brukkaros inselberg is a dome structure with a crater-shaped central depression within Precambrian/Cambrian country rocks which was active as a depocenter during the Late Cretaceous. The formation of the structure was due to the intrusion and subsequent intermittent depletion of a shallow magma reservoir. Juvenile material has not been recognized hitherto. This is the first account of juvenile lapilli from within the epiclastic fill of the caldera structure. The lapilli are calciocarbonatites and magnesiocarbonatites in composition, but are characteristically low in elements such as P, Nb, Ba and Sr, otherwise typical of carbonatites. This signature, however, is also characteristic of carbonatites from surrounding volcanic centers and necks. The Brukkaros sediments suffered strong metasomatic-hydrothermal alteration, which introduced in a first stage fluids rich in Fe, Ti, Na, Nb, V, K (Ca?, CO2?), and in a second stage the Brukkaros sediments were silicified on a large scale and locally enriched in P, Th and Cr. Si is derived from desilication of the wall rocks (basement?, Nama sediments) of the magma reservoir. Cr was probably mobilized during alteration of the abundant doleritic detritus within the Brukkaros depocenter.  相似文献   

6.
The understanding of processes within the root zone of maar–diatreme volcanoes is important for the interpretation of the geology, volcanology and even hazard assessment of these volcanoes. In the phreatomagmatic model of pipe formation, the irregularly shaped root zone is the site of the phreatomagmatic explosions, and thus functions as the “engine” for pipe formation. In this model the root zone grows over a period of time in a series of many single thermohydraulic, i.e. phreatomagmatic, explosions. The explosions initially occur close to the surface and with ongoing explosive activity penetrate towards deeper levels. The ejection of country rock clasts from the root zone results in a mass deficiency in the root zone that causes the overlying tephra and the adjacent country rocks to subside passively in a sinkhole-like fashion into the root zone. Many phreatomagmatic eruptions consequently result in the formation of a cone-shaped diatreme. Thus with ongoing eruptions the cone-shaped diatreme has to grow systematically both in depth and diameter. During its growth, processes in the lower diatreme levels successively destroy the upper levels of the evolving root zone. At the surface, the maar crater in turn reacts to the underlying subsidence processes and also grows both in depth and diameter.Thermohydraulic explosions, which fragment both magma and the surrounding country rocks, mostly occur within the bottom part of the root zone. Violent explosions in small pipes may clear the overlying diatreme for a short period of time before tephra fall and collapse of the walls of the new crater refill the small initial diatreme. In larger pipes, via expansion of the mixture of highly pressurized water vapor, juvenile gas phases and explosively produced tephra, the confined and expanding eruption cloud has to pierce through the diatreme fill in a feeder conduit in order to erupt. Diatreme-clearing events in large pipes are difficult or impossible to maintain, since the explosive force in the root zone is only in exceptional instances strong enough to lift or entrain the entire diatreme tephra. Knowledge of the genetic relationships between root zones and diatremes is critical to understand pipe growth processes. The combination of such processes can lead to substantial variation in volcanic behavior and thus produce fundamentally different volcano and rock types.It is the purpose of this paper to outline important features of root zones and suggest their significance for the genesis and evolution of maar–diatreme and related volcanoes.  相似文献   

7.
Evolution and magma fragmentation processes of two contrasting, well-exposed diatreme complexes interbedded with Late Miocene calcareous marine sediments in distinct sedimentary environments of a carbonate platform (Iblean Plateau, Sicily) are compared with each other. The nephelinitic Cozzo Molino diatreme (CMD) to the east developed in shallow water (0–80 m water depth); the alkali basaltic Valle Guffari seamount (VGS) to the west grew on a deeper water carbonate ramp (150–200 m water depth). We focus on the dominant boundary conditions inferred to have governed depth of magma fragmentation and subaqueous emplacement mechanisms: water depth, physical nature of host rocks, magma composition, and inferred differences in initial volatile concentrations. There are gross similarities in the composition of the two moderately evolved magmas. The low-viscosity magmas in both diatremes were laden with xenoliths originating from mantle to lower crustal sites. Although similar, the eastern shallow water CMD was likely more volatile-rich, with magma fragmented prior to reaching the surface and the surrounding tephra cone was partly emergent. The eruptions of the entirely submarine VGS diatreme complex in the deeper water environment were dominated by interaction of soft sediment and alkali basaltic magma or a pre-fragmented volatile-particle mixture. Eruption columns were, thus, strongly damped and the submarine complex never pierced the water surface.  相似文献   

8.
K2 is a steep-sided kimberlite pipe with a complex internal geology. Geological mapping, logging of drillcore and petrographic studies indicate that it comprises layered breccias and pyroclastic rocks of various grain sizes, lithic contents and internal structures. The pipe comprises two geologically distinct parts: K2 West is a layered sequence of juvenile- and lithic-rich breccias, which dip 20–45° inwards, and K2 East consists of a steep-sided pipe-like body filled with massive volcaniclastic kimberlite nested within the K2 pipe. The layered sequence in K2 West is present to > 900 m below present surface and is interpreted as a sequence of pyroclastic rocks generated by explosive eruptions and mass-wasting breccias generated by rock fall and sector collapse of the pipe walls: both processes occurred in tandem during the infill of the pipe. Several breccia lobes extend across the pipe and are truncated by the steep contact with K2 East. Dense pyroclastic rocks within the layered sequence are interpreted as welded deposits. K2 East represents a conduit that was blasted through the layered breccia sequence at a late stage in the eruption. This phase may have involved fluidisation of trapped pyroclasts, with loss of fine particles and comminution of coarse clasts. We conclude that the K2 kimberlite pipe was emplaced in several distinct stages that consisted of an initial explosive enlargement, followed by alternating phases of accumulation and ejection.  相似文献   

9.
The late Pleistocene San Venanzo maar and nearby Pian di Celle tuff ring in the San Venanzo area of Umbria, central Italy, appear to represent different aspects of an eruptive cycle accompanied by diatreme formation. Approximately 6x106 m3 of mostly lapillisized, juvenile ejecta with lesser amounts of lithics and 1x106 m3 of lava were erupted. The stratigraphy indicates intense explosive activity followed by lava flows and subvolcanic intrusions. The pyroclastic material includes lithic breccia derived from vent and diatreme wall erosion, roughly stratified lapilli tuff deposited by concentrated pyroclastic surge, chaotic scoriaceous pyroclastic flow and inverse graded grain-flow deposits. The key feature of the pyroclastics is the presence of concentric-shelled lapilli generated by accretion around the lithics during magma ascent in the diatreme conduits. The rock types range from kalsilite leucite olivine melilitite lavas and subvolcanic intrusions to carbonatite, phonolite and calcitic melilitite pyroclasts. Juvenile ejecta contain essential calcite whose composition and texture indicate a magmatic origin. Pyroclastic carbonatite activity is also indicated by the presence of carbonatite ash beds. The San Venanzo maar-forming event is believed to have been trigered by fluid-rich carbonatite-phonolite magma. The eruptive centre the moved to the Pian di Celle tuff ring, where the eruption of degassed olivine melilititic magma and late intrusions ended magmatic activity in the area. In both volcanoes the absence of phreatomagmatic features together with the presence of large amounts of primary calcite suggests carbonatite segregation and violent exsolution of CO2 which, flowing through the diatremes, produced the peculiar intrusive pyroclastic facies and triggered explosions.  相似文献   

10.
 A subaqueous volcaniclastic mass-flow deposit in the Miocene Josoji Formation, Shimane Peninsula, is 15–16 m thick, and comprises mainly blocks and lapilli of rhyolite and andesite pumices and non- to poorly vesiculated rhyolite. It can be divided into four layers in ascending order. Layer 1 is an inversely to normally graded and poorly sorted lithic breccia 0.3–6 m thick. Layer 2 is an inversely to normally graded tuff breccia to lapilli tuff 6–11 m thick. This layer bifurcates laterally into minor depositional units individually composed of a massive, lithic-rich lower part and a diffusely stratified, pumice-rich upper part with inverse to normal grading of both lithic and pumice clasts. Layer 3 is 2.5–3 m thick, and consists of interbedded fines-depleted pumice-rich and pumice-poor layers a few centimeters thick. Layer 4 is a well-stratified and well-sorted coarse ash bed 1.5–2 m thick. The volcaniclastic deposit shows internal features of high-density turbidites and contains no evidence for emplacement at a high temperature. The mass-flow deposit is extremely coarse-grained, dominated by traction structures, and is interpreted as the product of a deep submarine, explosive eruption of vesicular magma or explosive collapse of lava. Received: 10 January 1996 / Accepted: 23 February 1996  相似文献   

11.
Maar–diatreme volcanoes represent the second most common volcano type on continents and islands. This study presents a first review of syn- and posteruptive volcanic and related hazards and intends to stimulate future research in this field. Maar–diatreme volcanoes are phreatomagmatic monogenetic volcanoes. They may erupt explosively for days to 15 years. Above the preeruptive surface a relatively flat tephra ring forms. Below the preeruptive surface the maar crater is incised because of formation and downward penetration of a cone-shaped diatreme and its root zone. During activity both the maar-crater and the diatreme grow in depth and diameter. Inside the diatreme, which may penetrate downwards for up to 2.5 km, fragmented country rocks and juvenile pyroclasts accumulate in primary pyroclastic deposits but to a large extent also as reworked deposits. Ejection of large volumes of country rocks results in a mass deficiency in the root zone of the diatreme and causes the diatreme fill to subside, thus the diatreme represents a kind of growing sinkhole. Due to the subsidence of the diatreme underneath, the maar-crater is a subsidence crater and also grows in depth and diameter with ongoing activity. As long as phreatomagmatic eruptions continue the tephra ring grows in thickness and outer slope angle.Syneruptive hazards of maar–diatreme volcanoes are earthquakes, eruption clouds, tephra fall, base surges, ballistic blocks and bombs, lahars, volcanic gases, cutting of the growing maar crater into the preeruptive ground, formation of a tephra ring, fragmentation of country rocks, thus destruction of area and ground, changes in groundwater table, and potential renewal of eruptions. The main hazards mostly affect an area 3 to possibly 5 km in radius. Distal effects are comparable to those of small eruption clouds from polygenetic volcanoes. Syneruptive effects on infrastructure, people, animals, vegetation, agricultural land, and drainage are pointed out. Posteruptive hazards concern erosion and formation of lahars. Inside the crater a lake usually forms and diverse types of sediments accumulate in the crater. Volcanic gases may be released in the crater. Compaction and other diagenetic processes within the diatreme fill result in its subsidence. This posteruptive subsidence of the diatreme fill and thus crater floor is relatively large initially but will decrease with time. It may last millions of years. Various studies and monitoring are suggested for syn- and posteruptive activities of maar–diatreme volcanoes erupting in the future. The recently formed maar–diatreme volcanoes should be investigated repeatedly to understand more about their syneruptive behaviour and hazards and also their posteruptive topographic, limnic, and biologic evolution, and potential posteruptive hazards. For future maar–diatreme eruptions a hazard map with four principal hazard zones is suggested with the two innermost ones having a joint radius of up to 5 km. Areas that are potentially endangered by maar–diatreme eruptions in the future are pointed out.  相似文献   

12.
Tetsuji  Onoue  Hiroyoshi  Sano 《Island Arc》2007,16(1):173-190
Abstract   The Sambosan accretionary complex of southwest Japan was formed during the uppermost Jurassic to lowermost Cretaceous and consists of basaltic rocks, carbonates and siliceous rocks. The Sambosan oceanic rocks were grouped into four stratigraphic successions: (i) Middle Upper Triassic basaltic rock; (ii) Upper Triassic shallow-water limestone; (iii) limestone breccia; and (iv) Middle Middle Triassic to lower Upper Jurassic siliceous rock successions. The basaltic rocks have a geochemical affinity with oceanic island basalt of a normal hotspot origin. The shallow-water limestone, limestone breccia, and siliceous rock successions are interpreted to be sediments on the seamount-top, upper seamount-flank and surrounding ocean floor, respectively. Deposition of the radiolarian chert of the siliceous rock succession took place on the ocean floor in Late Anisian and continued until Middle Jurassic. Oceanic island basalt was erupted to form a seamount by an intraplate volcanism in Late Carnian. Late Triassic shallow-water carbonate sedimentation occurred at the top of this seamount. Accumulation of the radiolarian chert was temporally replaced by Late Carnian to Early Norian deep-water pelagic carbonate sedimentation. Biotic association and lithologic properties of the pelagic carbonates suggest that an enormous production and accumulation of calcareous planktonic biotas occurred in an open-ocean realm of the Panthalassa Ocean in Late Carnian through Early Norian. Upper Norian ribbon chert of the siliceous rock succession contains thin beds of limestone breccia displaced from the shallow-water buildup resting upon the seamount. The shallow-water limestone and siliceous rock successions are nearly coeval with one another and are laterally linked by displaced carbonates in the siliceous rock succession.  相似文献   

13.
In order to reconstruct the architectural evolution of a fault zone with heterogeneous structures, we studied the Atera Fault in Central Japan, and described the detailed mesoscopic and microscopic features of the zone. The fault zone studied consists of a 1.2‐m wide fault core of fault breccia mixed with fragments derived from welded tuff, granite, and mafic volcanic rocks. The 1.2‐m wide fault core is bordered by a western damage zone characterized by a welded tuff fault breccia and an eastern damage zone characterized by a granite cataclasite. A secondary fault core, a 30‐cm wide granite‐derived fault gouge, cross‐cuts the granite cataclasite. Although welded tuff fault breccia and granite cataclasite are also pervasively fractured and fragmented, the fault cores are significantly affected by fragment size reduction due to intense abrasive wear and comminution. The 1.2‐m wide fault core includes fragments and a sharp dark layer composed of mafic volcanic rocks, which can be correlated with neighboring 1.6 Ma volcanic rocks. This observation places a younger constraint on the age of the fault core formation. Carbonate coating on basalt fragments in the 1.2‐m wide fault core has also been fractured indicating the repetition of intense fragmentation. Bifurcated, black and gray veins near the 1.2‐m wide fault core are likely injection veins, formed by the rapid injection of fine material within fault zones during seismic events. The granite‐derived fault gouge, characterized by hard granite fragments without intense brecciation and microfracturing, in a kaolinite‐rich clay matrix, is interpreted as the most recent slip zone within the exposed fault zone. A preview of published geological and hydrological studies of several fault zones shows that clay‐rich fault cores can exhibit much lower permeability than the adjacent damage zones represented in this present case by the welded tuff fault breccia and granite cataclasite.  相似文献   

14.
Small and large maars exist associated with small and large diatremes, respectively, their subsurface feeder structures. The problem of size and growth of maar-diatreme volcanoes is discussed from a phreatomagmatic point of view from field data, some geophysical data, and short-lived historic maar eruptions. A hydrostatic pressure barrier of usually about 20–30 bars is assumed to control the maximum depth level of explosive magma/groundwater interactions. Similar to the situation in submarine and subglacial volcanism, initial maar-forming water vapour explosions are therefore assumed to occur at shallow depth and to produce a small maar with a shallow diatreme. Because of limited availability of groundwater and ejection of groundwater in the form of steam, the confining pressure barrier is displaced downward. Consequently, water vapour explosions can take place at consecutively deeper levels with the result that the diatreme penetrates downward and grows in size. Since maars are collapse craters resulting from ejection of wallrocks fragmented by water vapour explosions at the level of the diatreme root zone, downward penetration of a diatreme not only results in increase in size of a diatreme but also in increase in size of the overlying maar. As availability of groundwater in limited amounts controls formation of diatremes and their downward penetration, lack of groundwater enables magma to rise within a diatreme and to form a scoria cone or lava lake within the maar, as is frequently found in volcanic fields such as the Eifel area in Germany. In contrast, availability of large amounts of water in near surface environments such as shallow marine, lake, water-rich coastal plains, or water-rich fluviatile gravel beds prevents formation of maars and deep diatremes but causes formation of tuff rings.  相似文献   

15.
 The Pebble Creek Formation (previously known as the Bridge River Assemblage) comprises the eruptive products of a 2350 calendar year B.P. eruption of the Mount Meager volcanic complex and two rock avalanche deposits. Volcanic rocks of the Pebble Creek Formation are the youngest known volcanic rocks of this complex. They are dacitic in composition and contain phenocrysts of plagioclase, orthopyroxene, amphibole, biotite and minor oxides in a glassy groundmass. The eruption was episodic, and the formation comprises fallout pumice (Bridge River tephra), pyroclastic flows, lahars and a lava flow. It also includes a unique form of welded block and ash breccia derived from collapsing fronts of the lava flow. This Merapi-type breccia dammed the Lillooet River. Collapse of the dam triggered a flood that flowed down the Lillooet Valley. The flood had an estimated total volume of 109 m3 and inundated the Lillooet Valley to a depth of at least 30 m above the paleo-valley floor 5.5 km downstream of the blockage. Rock avalanches comprising mainly blocks of Plinth Assemblage volcanic rocks (an older formation making up part of the Mount Meager volcanic complex) underlie and overlie the primary volcanic units of the Formation. Both rock avalanches are unrelated to the 2350 B.P. eruption, although the post-eruption avalanche may have its origins in the over-steepened slopes created by the explosive phase of the eruption. Much of the stratigraphic complexity evident in the Pebble Creek Formation results from deposition in a narrow, steep-sided mountain valley containing a major river. Received: 20 January 1998 / Accepted: 29 September 1998  相似文献   

16.
The 1991 Pinatubo eruption left 5–6 km3 of debris on the volcano slopes, much of which has been mobilized into large lahars in the following rainy seasons. Also during the eruption, collapse, localized in part along preexisting faults, left a caldera 2.5 km in diameter that almost immediately began to accumulate a 1.6 × 108 m3 lake. By 2001, the water had risen to the fault-controlled Maraunot Notch, the lowest, northwestern portion of the caldera rim comprising the physiographic sill of the Caldera Lake. That year, a narrow artificial canal dug into an old volcanic breccia underlying the outlet channel failed to induce a deliberate lake breakout, but discharge from heavy rains in July 2002 rapidly deepened the notch by 23 m, releasing an estimated 6.5 × 107 m3 of lake water that bulked up into lahars with a volume well in excess of 1.6 × 108 m3. Lakes in other volcanoes have experienced multiple breakouts, providing practical motivation for this study. Fieldwork and high-resolution digital elevation models reveal andesites and ancient lacustrine deposits, strongly fractured and deformed along a segment of the Maraunot Fault, a prominent, steeply dipping, left-lateral fault zone that trends N35°–40°W within and parallel to the notch. Seismicity in 1991 demonstrated that the Maraunot Fault is still active. The fault zone appears to have previously been the erosional locus for a large channel, filled with avalanche or landslide deposits of an earlier eruption that were exhumed by the 2002 breakout floods. The deformed lacustrine sediments, with an uncalibrated 14C age of 14,760 ± 40 year BP from a single charcoal sample, attest to the existence of an earlier lake, possibly within the Tayawan Caldera, rim remnants of which survive as arcuate escarpments. That lake may well have experienced one or more ancient breakouts as well. The 2002 event greatly reduced the possibility of another such event by scouring away the erodible breccia, leaving less erodible fractured andesites and lacustrine rocks, and by enlarging the outlet channel and its discharge capacity. Several lines of evidence indicate, however, that future lahar-generating lake breakouts at the notch may keep populations of Botolan municipality downstream at risk: (1) a volume of 9.5 × 107 m3 of lake water remains perched 0.8 km above sea level; (2) seismicity in 1991 demonstrated that the Maraunot Fault is still active and movements of sufficient magnitude could enlarge the outlet and the discharge through it; (3) more likely, however, with or without earthquake activity, landslides from the steep to overhanging channel walls could block the channel again, and a major rainstorm could then cause a rise in lake level and sudden breakouts; (4) intrusion of a new dome into the bottom of the lake, possibly accompanied by phreatic explosions, could expel large volumes of lahar-generating water.  相似文献   

17.
After studying the characteristics and special texture of the fluidogenous tectonics, mineral assemblage in the cemented vein between breccia and their special distribution, and stress analyzing the joint structures in and around the breccia pipe, it is found that the observed phenomena are caused by a new tectonic dynamic mechanics of fluid—double-fracturing caused by temperature and pressure of fluids and pulsating expansion. Under the actions of thermal stress and the pressure of fluids, thermal cracks and joints that developed along parts of the thermal cracks formed systematically in the rocks. Under these conditions, up-arching fracture zones that pulsatively expanded upward and cylindrical pressing breccia body were formed. Rocks at the peak of the pyramidal fractures zone break down instantly. Where the difference between pressure of fluids and the overburden pressure exceeded greatly the competence of the rocks, fluid junctions occurred and the velocity of the fluid flow increased as a result. Explosive body expanded upward in the shape of an inverse cone, cone-like explosive breccia body and cover-like shattering breccia body located on the upper part of the breccia pipe were ultimately formed. Gold-rich fluids were enriched and mineralized near the boiling surface in the lower part of the inverse cone-like explosive breccia body where temperature and pressure decreased rapidly, while copper-rich fluids were enriched and mineralized in the junction area where temperature and pressure were relatively high.  相似文献   

18.
Upper Cretaceous volcanic rocks were collected at 24 sites along the Pontides, N-NE Turkey, for rock magnetic and geochemical studies. Rock magnetic and petrographic methods showed that the lavas are characterized predominantly by titanomagnetites with a mixture of pseudo-single and multi-domain grains, whereas in tephrite single domain titanohematite was dominant. Measurements of magnetic susceptibility and the geochemical properties on different volcanic rock types provide important knowledge about the magnetic stability of the rocks. The magnetic properties are interpreted in terms of the composition, concentration, magma generation. Tephrite and phonotephrites with the highest intensities (5200 mA/m) and high magnetic susceptibility values (2585 × 10−5), largest grain sizes and Fe/Ti values, showing minor or no alteration are the most magnetic stable samples in contrast to dacites with the lowest intensity-magnetic susceptibility (520 mA/m − 573 × 10−5) and high alteration degree. The basanite samples show very low NRM (48–165 mA/m) but very high magnetic susceptibility (2906–3100 × 10−5) values suggesting the alteration of Fe-Ti minerals. It is shown that the magnetic properties of the basic to acidic rocks show a systematic variation with magma differentiation and could be related to fractional crystallization. Major and trace elements revealed that the lavas are compatible with complex magma evolution, with mineral phases of olivine+magnetite+clinopyroxene in basic series, amphibole+ +clinopyroxene in intermediate rocks and plagioclase+clinopyroxene+biotite in acidic series.  相似文献   

19.
Yasu'uchi  Kubota  Toru  Takeshita 《Island Arc》2008,17(1):129-151
Abstract   The Median Tectonic Line (MTL) in southwest Japan, a major east–west-trending arc-parallel fault, has been defined as the boundary fault between the Cretaceous Sambagawa metamorphic rocks and Ryoke granitic and metamorphic rocks, which are unconformably covered by the Upper Cretaceous Izumi Group. The juxtaposition by faulting occurred after the deposition of the Izumi Group. Based on detailed fieldwork and previous studies, the authors reconstruct the kinematic history along the MTL during the Paleogene period, which has not been fully understood before. It is noted that although the strata of the Izumi Group along the MTL dip gently, east–west-trending north-vergent folds with the wavelength of ∼300 m commonly develop up to 2 km north from the MTL. Along the MTL, a disturbed zone of the Izumi Group up to 400 m thick, defined by the development of boudinage structures with the transverse boudin axis dipping nearly parallel to the MTL, occurs. Furthermore, east–west-trending north-vergent folds with the wavelength of 1–5 m develop within the distance up to 60 m from the MTL. The disturbed zone with the map-scale north-vergent folds along the MTL, strongly suggests that they formed due to normal faulting with a top-to-the-north sense along the MTL. Considering that the normal faulting is associated with the final exhumation of the Sambagawa metamorphic rocks, and its juxtaposition against the Izumi Group at depth, this perhaps occurred before the denudation of the Sambagawa metamorphic rocks indicated by the deposition of the Lower Eocene Hiwada-toge Formation. Dynamic equilibrium between crustal thickening at depth (underplating) and extension at shallow level is a plausible explanation for the normal faulting because the arc-normal extension suggests gravity as the driving force.  相似文献   

20.
Detailed gravity and aeromagnetic data over maars in the Auckland volcanic field reveal contrasting anomalies, even where surface geology is similar. Pukaki and Pukekiwiriki, almost identical maars marked by sediment-filled craters and tuff rings, have gravity and magnetic anomalies of − 6 g.u. and 20 nT, and 8 g.u. and 160 nT, respectively. The Domain and Waitomokia maars, with similar tuff rings but each with a small central scoria cone, have gravity and magnetic anomalies of 32 g.u. and 300 nT, and 21 g.u. and 310 nT, respectively. These differences in geophysical expression are attributed to varying volumes of dense, magnetic basalt in the form of shallow bowl-shaped bodies up to several hundreds of metres in diameter and up to 140 m thick beneath the maar centres. These bodies are interpreted as solidified magma that ponded into early-formed phreatomagmatic explosion craters. Where magma supply was limited relative to groundwater availability, no residual subsurface basalt occurs (as at Pukaki); continued magma supply, but limited groundwater, resulted in ponding (e.g. at Pukekiwiriki) and eventually the building of a scoria cone (as at Domain and Waitomokia). There is no evidence in these geophysical data for diatreme structures below the maars or for shallow and/or extensive feeder dykes associated with these maars. If diatreme structures do occur, their lack of geophysical signature must be a consequence of either their small geophysical contrast with host Miocene sediments and/or masking by the stronger anomalies associated with the subsurface basalt. In addition, any magma conduits appear to be confined centrally beneath the maars, at least to shallow depths (upper 100 m).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号