首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geologic mapping and U–Pb detrital zircon geochronologic studies of (meta)sedimentary rocks in the Damxung area (90 km north of Lhasa) of the southern Lhasa terrane in Tibet provide new insights into the history of deformation and clastic sedimentation prior to late Cenozoic extension. Cretaceous nonmarine clastic rocks 10 km southeast of Damxung are exposed as structural windows in the footwall of a thrust fault (the Damxung thrust) that carries Paleozoic strata in the hanging wall. To the north of Damxung in the southern part of the northern Nyainqentanglha Range (NNQTL), metaclastic rocks of previously inferred Paleozoic age are shown to range in depositional age from Late Cretaceous to Eocene. The metaclastic rocks regionally dip southward and are interpreted to have been structurally buried in the footwall of the Damxung thrust prior to being tectonized during late Cenozoic transtension. Along the northern flank of the NNQTL, Lower Eocene syncontractional redbeds were deposited in a triangle zone structural setting. All detrital zircon samples of Cretaceous–Eocene strata in the Damxung area include Early Cretaceous grains that were likely sourced from the Gangdese arc to the south. We suggest that the that newly recognized Late Cretaceous to Early Eocene (meta)clastic deposits and thrust faults represent the frontal and youngest part of a northward directed and propagating Gangdese retroarc thrust belt and foreland basin system that led to significant crustal thickening and elevation gain in southern Tibet prior to India-Asian collision.  相似文献   

2.
At a marsh on the hanging wall of the Seattle fault, fossil brackish water diatom and plant seed assemblages show that the marsh lay near sea level between 7500 and 1000 cal yr B.P. This marsh is uniquely situated for recording environmental changes associated with past earthquakes on the Seattle fault. Since 7500 cal yr B.P., changes in fossil diatoms and seeds record several rapid environmental changes. In the earliest of these, brackish conditions changed to freshwater 6900 cal yr B.P., possibly because of coseismic uplift or beach berm accretion. If coseismic uplift produced the freshening 6900 cal yr B.P., that uplift probably did not exceed 2 m. During another event about 1700 cal yr B.P., brackish plant and diatom assemblages changed rapidly to a tidal flat assemblage because of either tectonic subsidence or berm erosion. The site then remained a tideflat until the most recent event, when an abrupt shift from tideflat diatoms to freshwater taxa resulted from 7 m of uplift during an earthquake on the Seattle fault 1000 cal yr B.P. Regardless of the earlier events, no Seattle fault earthquake similar to the one 1000 cal yr B.P. occurred at any other time in the past 7500 years.  相似文献   

3.
Fission-track (FT) thermochronologic analysis was performed on zircon separates from rocks in and around the Nojima fault, which was activated during the 1995 Kobe earthquake. Samples were collected from the University Group 500 m (UG-500) borehole and nearby outcrops. FT lengths in zircons from localities > 25 m away from the fault plane as well as one 0.1 m away from the fault in the footwall are characterized by concordant mean values of  10–11 μm and unimodal distributions with negative skewness, which showed no signs of appreciable reduction in FT length. In contrast, those adjacent (< 3 m) to the fault at depths on the hanging wall side showed significantly reduced mean track lengths of  6–8 μm and distributions having a peak around 6–7 μm with rather positive skewness. The former pattern is interpreted to reflect cooling through the zircon partial annealing zone (ZPAZ), without later, partial thermal overprints. The latter indicates substantial track shortening due probably to secondary heating by a thermal event(s) that locally perturbed the geothermal structure. Modeled zircon FT length and age data of partially annealed samples from the UG-500 borehole revealed a cooling episode in the ZPAZ that started at  4 Ma within  3 m from the fault plane, whereas those from the Geological Survey of Japan 750 m borehole record cooling started at  31–38 Ma within  25 m from the fault. On the basis of one-dimensional heat conduction modeling as well as the consistency between the degree of FT annealing and the degree of deformation/alteration of borehole rocks, these cooling ages in both boreholes are interpreted as consequences of ancient thermal overprints by heat transfer or dispersion via fluids in the fault zone. Together with the zircon FT data of a pseudotachylyte layer recently analyzed, it is suggested that the present Nojima fault system was reactivated in the Middle Quaternary from an ancient fault initiated at  56 Ma at mid-crustal depths. Also shown is a temporal/spatial variation in terms of the thermal anomalies recorded in the fault rocks, implying heterogeneity of hot fluid flows in the fault zone.  相似文献   

4.
Integration of on-land and offshore geomorphological and structural investigations coupled to extensive radiometric dating of co-seismically uplifted Holocene beaches allows characterization of the geometry, kinematics and seismotectonics of the Scilla Fault, which borders the eastern side of the Messina Strait in Calabria, Southern Italy. This region has been struck by destructive historical earthquakes, but knowledge of geologically-based source parameters for active faults is relatively poor, particularly for those running mostly offshore, as the Scilla Fault does. The  30 km-long normal fault may be divided into three segments of  10 km individual length, with the central and southern segments split in at least two strands. The central and northern segments are submerged, and in this area marine geophysical data indicate a youthful morphology and locally evidence for active faulting. The on-land strand of the western segment displaces marine terraces of the last interglacial (124 to 83 ka), but seismic reflection profiles suggest a full Quaternary activity. Structural data collected on bedrock faults exposed along the on-land segment provide evidence for normal slip and  NW-SE extension, which is consistent with focal mechanisms of large earthquakes and GPS velocity fields in the region. Detailed mapping of raised Holocene marine deposits exposed at the coastline straddling of the northern and central segments supplies evidence for two co-seismic displacements at  1.9 and  3.5 ka, and a possible previous event at  5 ka. Co-seismic displacements show a consistent site value and pattern of along-strike variation, suggestive of characteristic-type behaviour for the fault. The  1.5–2.0 m average co-seismic slips during these events document Me  6.9–7.0 earthquakes with  1.6–1.7 ka recurrence time. Because hanging-wall subsidence cannot be included into slip magnitude computation, these slips reflect footwall uplift, and represent minimum average estimates. The palaeoseismological record based on the palaeo-shorelines suggests that the last rupture on the Scilla Fault during the February 6, 1783 Mw = 5.9–6.3 earthquake was at the expected time but it may have not entirely released the loaded stress since the last great event at  1.9 ka. Comparison of the estimated co-seismic extension rate based on the Holocene shoreline record with available GPS velocities indicates that the Scilla Fault accounts for at least  15–20% of the contemporary geodetic extension across the Messina Strait.  相似文献   

5.
Knowledge of the Cretaceous–Tertiary history of upper crustal shortening and magmatism in Tibet is fundamental to placing constraints on when and how the Tibetan plateau formed. In the Lhasa terrane of southern Tibet, the widely exposed angular unconformity beneath uppermost Cretaceous–lower Tertiary volcanic-bearing strata of the Linzizong Formation provides an excellent geologic and time marker to distinguish between deformation that occurred before vs. during the Indo-Asian collision. In the Linzhou area, located  30 km north of the city of Lhasa, a > 3-km-thick section of the Linzizong Formation lies unconformably on Cretaceous and older rocks that were shortened by both northward- and southward-verging structures during the Late Cretaceous. The Linzizong Formation dips northward in the footwall of a north-dipping thrust system that involves Triassic–Jurassic strata and a granite intrusion in the hanging wall. U–Pb zircon geochronologic studies show that the Linzizong Formation ranges in age from 69 Ma to at least 47 Ma and that the hanging wall granite intrusion crystallized at  52 Ma, coeval with dike emplacement into footwall Cretaceous strata. 40Ar/39Ar thermochronologic studies suggest slow cooling of the granite between 49 and 42 Ma, followed by an episode of accelerated cooling to upper crustal levels beginning at  42 Ma. The onset of rapid cooling was coeval with the cessation of voluminous arc magmatism in southern Tibet and is interpreted be a consequence of either (1) Tertiary thrusting in this region or (2) regional rock uplift and erosion following removal of overthickened Gangdese arc lower crust and upper mantle or break-off of the Neo-Tethyan oceanic slab.  相似文献   

6.
We revisit the April 1979 Montenegro earthquake sequence to invert for finite-fault slip models for the mainshock of 15 April 1979 (Mw 7.1) and of the strongest aftershock of 24 May 1979 (Mw 6.2) using P, SH and SV waveforms, retrieved from IRIS data center. We also used body waveform modelling inversion to confirm the focal mechanism of the mainshock as a pure thrust mechanism and rule out the existence of considerable strike slip component in the motion. The mainshock occurred along a shallow (depth 7 km), low angle (14°) thrust fault, parallel to the coastline and dipping to the NE. Our preferred slip distribution model for the mainshock indicates that rupture initiated from SE and propagated towards NW, with a speed of 2.0 km/s. Moment was released in a main slip patch, confined in an area of L  50 km × W  23 km. The maximum slip ( 2.7 m) occurred  30 km to the NW of the hypocenter (location of rupture initiation). The average slip is 49 cm and the total moment release over the fault is 4.38e19 Nm. The slip model adequately fits the distribution of the Mw ≥ 4.3 aftershocks, as most of them are located in the regions of the fault plane that did not slip during the mainshock. The 24 May 1979 (Mw 6.2) strongest aftershock occurred  40 km NW of the mainshock. Our preferred slip model for this event showed a characteristic two-lobe pattern, where each lobe is  7.5 × 7.5 km2. Rupture initiated in the NW lobe, where the slip obtained its maximum value of 45 cm, very close to the hypocenter, and propagated towards the south-eastern lobe where it reached another maximum value — for this lobe — of 30 cm, approximately 10 km away from the hypocenter. To indirectly validate our slip models we produced synthetic PGV maps (Shake maps) and we compared our predictions with observations of ground shaking from strong motion records. All comparisons were made for rock soil conditions and in general our slip models adequately fit the observations especially at the closest stations where the shaking was considerably stronger. Through the search of the parameter space for our inversions we obtained an optimum location for the mainshock at 42.04°N and 19.21° E and we also observed that better fit to the observations was obtained when the fault was modeled as a blind thrust fault.  相似文献   

7.
The multidisciplinary ACCRETE project addresses the question of continental assemblage in southeast Alaska and western British Columbia by terrane accretion and magmatic addition. The previous studies of this project yielded important information for understanding the structures across the Coast Shear Zone (CSZ) and the formation of the CSZ and the Coast Mountains Batholith (CMB). The present study extends these interpretations into pseudo-3-D by using two additional wide-angle ACCRETE seismic lines. By analyzing the broadside wide-angle data using a series of laterally homogeneous 2-D models, we derive a lower-resolution 3-D velocity model of the outboard terranes and constrain variations in crustal thickness across and along the CSZ. Models of the broadside data confirms major structural and compositional trends extend along strike to the northwest. The key features are: a) a steep Moho ramp only  15-km wide is coincident with the CSZ and divides thin (25 ± 1 km) crust to the west below the west-vergent thrust belt (WTB) from thicker ( 31 ± 1 km) crust to the east below the CMB, (b) low-velocity mantle (7.7--7.9 km/s) extends beneath the entire study region indicating high crustal and upper-mantle temperatures below the WTB and CMB, and (c) the Alexander terrane is characterized by strong mid-crustal reflectivity and high lower crustal velocities that are consistent with gabbroic composition. This study extends the earlier interpretation and implies that the ramp is indeed likely associated with transpressional tectonics and magmatic crustal addition east of the CSZ.  相似文献   

8.
In Pennsylvania, the Taconic Orogeny lasted from 461 to 443 Ma as Cambro-Ordovician slope deposits were deformed into mountains edging the Laurentian craton at the same time that materials from an adjacent deep-water basin were being transported 50 –70 km across a carbonate platform into foreland basins. This paper focuses on shelf-edge hinterland features, mostly the Martic Zone as a folded, stack of imbricate thrust sheets of slope materials that corresponds to Vermont's Taconic Mountains and Southern Quebec's zone of Taconic allochthons. Work of the last century is summarized, corrected, and combined with a new 450 Ma radiometric date and fluid inclusion data from the Pequea Mine within the Martic Zone. These and abundant new graptolite and conodont dates in the foreland paint a revised Pennsylvania picture differing from the northern Taconic areas. Differences are: (1) transport of very large allochthonous masses of deep-water material, the Dauphin Formation, far across the carbonate platform, and (2) deformation migrating progressively across that platform during a 15 –20 m.y. period, incorporating it and its foreland cover into alpine-scale, recumbent folds and thrusts. The scenario has many analogies to Italy's modern Apennine Mountains minus the Latian volcanics.  相似文献   

9.
The Tan–Lu Fault Zone (TLFZ) extends in a NNE–SSW direction for more than 2000 km in Eastern China. It has been considered either as a major sinistral strike-slip fault, as a suture zone or as a normal fault. We have conducted a structural analysis of the southern segment of this fault zone (STLFZ) in the Anhui Province. The ages (Triassic to Palaeocene) of the formations affected by the faults have been re-appraised taking into account recent stratigraphical studies to better constraint the ages of the successive stages of the kinematics of the STLFZ. Subsequently, the kinematics of the faults is presented in terms of strain/stress fields by inversion of the striated fault set data. Finally, the data are discussed in the light of the results obtained by previous workers.We propose the following history of the STLFZ kinematics during the Mesozoic. At the time of collision, a  NNE orientated Tan–Lu margin probably connected two margins located north of the Dabie and Sulu collision belts. During the Middle–Late Triassic, the SCB has been obliquely subducted below the NCB along this margin which has acted as a compressional transfer zone between the Dabie and Sulu continental subduction zones. The STLFZ has been initiated during the Early Jurassic and has acted as a sinistral transform fault during the Jurassic, following which the NCB/SCB collision stopped. A  NW-trending extension related to metamorphic domes was active during the basal Early Cretaceous ( 135–130 Ma); it has been followed by a NW–SE compression and a NE–SW tension during the middle–late Early Cretaceous ( 127 to  105 Ma, possibly  95 Ma); at that time the TLFZ was a sinistral transcurrent fault within the eastern part of the Asian continent. During the Late Cretaceous–Palaeocene, the STLFZ was a normal fault zone under a WNW–ESE tension.  相似文献   

10.
After the 2005 Kashmir earthquake, we mapped surface ground fractures in Tangdhar, Uri, Rajouri and Punch sectors and liquefaction features in Jammu area lying close to the eastern side of the Line of Control (LOC) in Kashmir, India. The NW trending ground fractures occurred largely in the hanging wall zone of the southeastern extension of the causative fault in Tangdhar and Uri sectors. The principal compressive stress deduced from the earthquake induced ground fractures is oriented at N10°, whereas the causative Balakot–Bagh fault strikes 330°. The fault-plane solution indicates primarily SW thrusting of the causative fault with a component of strike–slip motion. The ground fractures reflect pronounced strike–slip together with some tensile component. The Tangdhar area showing left-lateral strike–slip motion lies on the hanging wall, and the Uri region showing right-lateral strike–slip movement is located towards the southeastern extension of the causative fault zone. The shear fractures are related to static stress that was responsible for the failure of causative fault. The tensile fractures with offsets are attributed to combination of both static and dynamic stresses, and the fractures and openings without offsets owe their origin due to dynamic stress. In Punch–Rajouri and Jammu area, which lies on the footwall, the fractures and liquefactions were generated by dynamic stress. The occurrence of liquefaction features in the out board part of the Himalayan range front near Jammu is suggestive of stress transfer  230 km southeast of the epicenter. The Balakot–Bagh Fault (BBF), the Muzaffarabad anticline, the rupture zone of causative fault and the zone of aftershocks — all are aligned in a  25 km wide belt along the NW–SE trending regional Himalayan strike of Kashmir region and lying between the MBT and the Riasi Thrust (Murree Thrust), suggesting a seismogenic zone that may propagate towards the southeast to trigger an earthquake in the eastern part of the Kashmir region.  相似文献   

11.
The Eastern Cordillera (Central Andes,  24°S) consists of a basement-involved thrust system, resulting from Miocene–Quaternary eastward migrating compression, separating the Puna plateau from the Santa Barbara System foreland. The inferred Tertiary strains arising from shortening in the Eastern Cordillera and Santa Barbara System are similar, higher than in the Puna. Slip data collected on the major  N–S trending faults of Eastern Cordillera show a westward progression from dip-slip (contraction) to dextral and sinistral motions. This, consistently with established tectonic models, may result from partitioning due to the oblique Mio-Quaternary underthrusting of the Brazilian Shield north of 24°S. This strain partitioning has three main implications. (1) As the dextral and sinistral shear in the Eastern Cordillera are  62% and 29% of the compressive strain respectively, the Eastern Cordillera results more strained than Santa Barbara System foreland, contrary to previous estimates. (2) The partitioning in the Eastern Cordillera may find its counterpart in that to the west of the Central Andes, giving a possible structural symmetry to the Central Andes. (3) The easternmost N–S strike-slip structures in the Eastern Cordillera coincide with the easternmost Mio-Pliocene magmatic centres in the Central Andes, at  24°S. Provided that, further to the east, the crust is partially molten, the absence of magmatic centres may be explained by the presence of pure compressive structures in this portion of the Eastern Cordillera.  相似文献   

12.
The crystalline terrane of the Tongbai–Dabie region, central China, comprising the Earth's largest ultrahigh-pressure (UHP) exposure was formed during Triassic collision between the Sino–Korean and Yangtze cratons. New apatite fission-track (AFT) data presented here from the UHP terrane, extends over a significantly greater area than reported in previous studies, and includes the (eastern) Dabie, the Hong'an (northwestern Dabie) and Tongbai regions. The new data yield ages ranging from 44 ± 3 to 142 ± 36 Ma and mean track lengths between 10 and 14.4 μm. Thermal history models based on the AFT data taken together with published 40Ar/39Ar, K–Ar, apatite and zircon (U–Th)/He and U–Pb data, exhibit a three-stage cooling pattern that is similar across the study region, commencing with an Early Cretaceous rapid cooling event, followed by a period of relative thermal stability during which rocks remained at temperatures within the AFT partial annealing zone (60–110 °C) and ending with a possible renewed phase of accelerated cooling during Pliocene to Recent time. The first cooling phase followed large-scale transtensional deformation between 140 and 110 Ma and is related to Early Cretaceous eastward tectonic escape and Pacific back arc extension. Between this phase and the subsequent slow cooling phase, a transition period from 120 to 80 Ma (to 70 to 45 Ma along the Tan–Lu fault) was characterised by a relatively low cooling rate (3–5 °C/Ma). This transition is likely related to a tectonic response associated with the mid-Cretaceous subduction of the Izanagi–Pacific plate as well as lithospheric extension and thinning in eastern Asia. The present regional AFT age pattern is therefore basically controlled by the Early Cretaceous rapid cooling event, but finally shaped through active Cenozoic faulting. Following the transition phase the subsequent slow cooling phase pattern implies a net reduction in horizontal compressional stress corresponding to increased extension rates along the continental margin due to the decrease in plate convergence. Modelling of the AFT data suggests a possible Pliocene–Recent cooling episode, which may be supported by increased rates of sedimentation observed in adjacent basins. This cooling phase may be interpreted as a response to the far-field effects of the frontal India–Eurasia collision to the west. Approximate estimates suggest that the total amount of post 120 Ma denudation across the UHP orogen ranged from 2.4 to 13.2 km for different tectonic blocks and ranged from 0.8 to 9.7 km during the Cretaceous to between 1.7 and 3.8 km during the Cenozoic.  相似文献   

13.
The lack of paleoecological records from the montane Atlantic Rainforest of coastal Brazil, a hotspot of biological diversity, has been a major obstacle to our understanding of the vegetational changes since the last glacial cycle. We present carbon isotope and pollen records to assess the impact of the glaciation on the native vegetation of the Serra do Mar rainforest in São Paulo, Brazil. From ca. 28,000 to  22,000 14C yr BP, a subtropical forest with conifer trees is indicative of cool and humid conditions. In agreement carbon isotopic data on soil organic matter suggest the presence of C3 plants and perhaps C4 plants from  28,000 to  19,000 14C yr BP. The significant increase in the sedimentation rate and algal spores from  19,450 to  19,000 14C yr BP indicates increasing humidity, associated to an erosion process between  19,000 and  15,600 14C yr BP. From  15,600 14C yr BP to present there is a substantial increase in arboreal elements and herbs, indicating more humid and warmer climate. From  19,000 to  1000 14C yr BP, δ13C values indicated the predominance of C3 plants. These results are in agreement with studies in speleothems of caves, which suggest humid conditions during the last glacial maximum.  相似文献   

14.
A low-angle thrust fault places high-PT granulites (hangingwall) of the Internal Zone of the Neoproterozoic Brasília Belt (Tocantins Province, central Brazil) in contact with a lower-grade footwall (External Zone) comprised of nappes of distal passive margin- and back-arc basin-related supracrustals. The footwall units were emplaced at  750 Ma onto proximal sedimentary rocks (Paranoá Group) of the São Francisco paleo-continent passive margin. The high-PT belt is comprised of 645–630 Ma granulite-facies paragneiss and orthogneiss, and mafic–ultramafic complexes that include three major layered intrusions and metavolcanic rocks granulitized at  750 Ma. These complexes occur within lower-grade metasedimentary rocks in the hangingwall of the Maranhão River Thrust, which forms the Internal Zone–External Zone boundary fault to the north of the Pirineus Zone of High Strain. Detailed lithostructural studies carried out in Maranhão River Thrust hangingwall and footwall metasedimentary rocks between the Niquelândia and Barro Alto complexes, and also to the east of these, indicate the same lithotypes and Sm–Nd isotopic signatures, and the same D1D2 progressive deformation and greenschist-facies metamorphism. Additionally, footwall metasedimentary rocks exclusively display a post-D2 deformation indicating that the Maranhão River Thrust propagated through upper crustal rocks of the Paranoá Group relatively late during the tectonic evolution of the belt. Fault propagation was a consequence of intraplate underthrusting during granulite exhumation. The results allow for a better tectonic understanding of the Brasília Belt and the Tocantins Province, as well as explaining the presence of the Pirineus Zone of High Strain.  相似文献   

15.
The late Quaternary paleoclimate of eastern Beringia has primarily been studied by drawing qualitative inferences from vegetation shifts. To quantitatively reconstruct summer temperatures, we analyzed lake sediments for fossil chironomids, and additionally we analyzed the sediments for fossil pollen and organic carbon content. A comparison with the δ18O record from Greenland indicates that the general climatic development of the region throughout the last glaciation–Holocene transition differed from that of the North Atlantic region. Between  17 and 15 ka, mean July air temperature was on average 5°C colder than modern, albeit a period of near-modern temperature at  16.5 ka. Total pollen accumulation rates ranged between  180 and 1200 grains cm− 2 yr− 1. At  15 ka, approximately coeval with the Bølling interstadial, temperatures again reached modern values. At  14 ka, nearly 1000 yr after warming began, Betula pollen percentages increased substantially and mark the transition to shrub-dominated pollen contributors. Chironomid-based inferences suggest no evidence of the Younger Dryas stade and only subtle evidence of an early Holocene thermal maximum, as temperatures from  15 ka to the late Holocene were relatively stable. The most recognizable climatic oscillation of the Holocene occurred from  4.5 to 2 ka.  相似文献   

16.
This paper explores the environmental conditions that faced the people of ancient Jawa during the Holocene, as well as previous prehistoric periods of the mid-late Pleistocene. Calcite speleothems in a lava tube are dated using the U-Th method, to marine oxygen isotope stage 7 from  250 to 240 ka and from  230 to  220 ka; and the stage 5/4 transition between  80 and 70 ka. The available evidence indicates general aridity of the Black Desert during most of the mid-late Quaternary, punctuated by short wetter periods, when the Mediterranean cyclonic systems intensified and penetrated the north Arabian Desert. These Mediterranean systems had a longer and more intense effect on the desert fringe closer to the Mediterranean and only rarely penetrated the Black Desert of Jawa. The results do not exclude some increase of rainfall which did not change water availability dramatically during the warm Holocene. The ancient Jawa city appears to have depended on technological ability to build elaborate runoff-collection systems, which became the prime condition for success.  相似文献   

17.
Foraminiferal and thecamoebian faunas from the Seymour-Belize Inlet Complex (SBIC), a fjord network situated on the mainland coast of British Columbia, were studied to assess climatic cycles and trends impacting the area through the AD 850–AD 2002 interval. Ocean circulation patterns prevalent in the SBIC are strongly linked to precipitation, which is closely linked to the relative strength and position (center of action; COA) of the seasonally developed Aleutian Low (AL) and North Pacific High (NPH) atmospheric circulation gyres.Through interpretation of cluster analysis and ordination methods, a period of weak estuarine circulation was recognized to have impacted the SBIC area between AD 850 and AD 1500. During this time waters in the SBIC were dysoxic to anoxic and the sediment–water interface was comprised of a depauperate foraminiferal fauna consisting of low diversity agglutinated forms. These reduced oxygen conditions came about as a result of diminished precipitation in the SBIC catchment as the COA of the AL progressively migrated westward over time, resulting in greatly reduced estuarine circulation and only infrequent and feeble incursions of well oxygenated open ocean water into the SBIC basin. By AD 1575, following a gradual transition period of 75 years when circulation patterns in the inlet were unstable, very strong estuarine circulation developed in the SBIC, concomitant with the onset of the Little Ice Age (LIA) in western Canada. In the SBIC this interval was characterized by higher levels of precipitation, which greatly enhanced estuarine circulation resulting in frequent incursions of cold, well oxygenated ocean currents into the bottom waters of the SBIC and the development of a diverse calcareous foraminiferal fauna. This circulation pattern began to break down in the late 19th century AD and by AD 1940 conditions similar to those that existed in the inlet prior to AD 1500 had redeveloped, a process that continues at present.  相似文献   

18.
The Marathon portion of the Ouachita thrust belt consists of a highly deformed allochthonous wedge of Cambrian-Pennsylvanian slope strata (Marathon facies) that was transported to the northwest and emplaced over Pennsylvanian foredeep sediments. The foredeep strata in turn overlie early-middle Paleozoic shelfal sediments which are deformed by late Paleozoic basement-involved reverse faults. The Dugout Creek thrust is the basal thrust of the allochthon. Shortening in this sheet and overlying sheets is 80%. Steep imbricate faults link the Dugout Creek thrust to upper level detachments forming complex duplex zones. Progressive thrusting and shortening within the allochthon folded the upper level detachments and associated thrust sheets. The Caballos Novaculite is the most competent unit within the Marathon facies and controlled development of prominent detachment folds.Deeper imbricate sheets composed of the Late Pennsylvanian foredeep strata, and possibly early-middle Paleozoic shelfal sediments developed concurrently with emplacement of the Marathon allochthon and folded the overlying allochthon. Following termination of thrusting in the earliest Permian, subsidence and deposition shifted northward to the Delaware, Midland and Val Verde foreland basins.  相似文献   

19.
The Xainza-Dinggye rift is one of several north-south trending rifts in central and southern Tibet created by Cenozoic east-west extension during Indo-Asian convergence. The southern part of the rift cuts through the Tethyan and High Himalayas. In the Tethyan Himalaya, this rift consists of an early domal structure and a late normal fault developed during the progressive deformation. The dome is cored by leucogranitic plutons that intruded during extension. Muscovite 40Ar/39Ar ages of the mylonitic leucogranite indicate that extension in the Tethyan Himalaya began at 8 Ma or before. In the High Himalaya, the rift is controlled by a normal fault dipping to the southeast. This fault has a structural constitution similar to a detachment fault. Its lower block is made up of mylonitic High Himalayan gneiss, intruded by early mylonitic leucogranite sills and late less-deformed biotite-bearing leucogranite dikes. Mica 40Ar/39Ar ages of these leucogranites and the retrograded metamorphosed gneiss of the lower block range from 13 to 10 Ma. In the study area, the south Tibetan detachment system (STDS) is a ductile shear zone composed of mylonitic leucogranite that is intruded by less-deformed leucogranite and overlain by low grade metamorphic rocks. Mica 40Ar/39Ar ages of leucogranites in the shear zone and schist from the detachment hanging wall indicate a protracted deformation history of the STDS from 19 to 13 Ma. The Xainza-Dinggye rift is younger than the STDS because it offsets the STDS; this north-south trending rift belongs to a different tectonic system from the east-west striking STDS, and may be caused by geological process related to India–Asia convergence. This temporal and spatial relationship of the STDS to the rift may indicate an important change in tectonic regime at 13 Ma in the building of the plateau.  相似文献   

20.
The Kachchh region of Western India is a pericratonic basin experiencing periodic high magnitude earthquakes events. In 2001 a catastrophic seismic event occurred at Bhuj measuring Mw = 7.7. The epicenters of both the 1956 and 2001 earthquakes were along the Kachchh Mainland Fault (KMF), proximal to the eastern end of the Northern Hill Range (NHR). The latter is a topographic expression of an active fault related fold on the hanging wall, and is controlled by a south dipping blind thrust.The present study deals with the eastern sector of NHR and uses optical dating to reconstruct the chronology of tectonically caused incisions. Along the backlimb of the NHR, incision ages on, channel fills and valley fill terraces progressively decrease from  12 ka to 4.3 ka. This age progression along with geomorphic evidences (decrease in topographic relief, drainage capture and drainage migration across the fold nose) suggests an active vertical and lateral fold growth along the KMF. Optical ages suggest that during the Late Holocene, the average uplift rate along the eastern NHR was 10 ± 1 mm/a. Recent GPS based estimates on crustal shortening are  12 mm/a.The KMF and the South Wagad Fault (SWF) represent the bounding faults of a transtensional basin that formed during the initial rifting. This basin is termed as the Samakhiali basin. The compressive stresses on account of structural inversion from normal to reverse phase resulted in lobate-shaped anticlines along KMF and SWF zone. These anticlines subsequently coalesced and formed linked and overlap segments. The present study suggests that eastward lateral deformation across the eastern portion of KMF has continued and has now resulted in its interaction with a left step over transfer fault called the South Wagad Master Fault (SWMF). This implies an increasing transpersional deformation of the Samakhiali basin. We therefore, suggest that the eastward NHR ridge propagation along KMF resulted in the thrust faulting on the south dipping SWMF resulting in the Bhuj 2001 event. The increasing strain on this basin may cause enhanced seismicity in the future along the eastern KMF and Wagad region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号