首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peak flux spectra of solar radio bursts in a wide frequency band have been statistically determined for different morphological types of bursts, for various ranges of magnetic field of the burst-associated sunspots and also for the bursts occurring in the central and limb region of the solar disk. Important results obtained are: (i) The generalised spectra have two peaks, one near to meter-wave and the other in the centimeter-wave region, the former peak being more pronounced than the latter; (ii) identical spectral shape is observed for the great and impulsive types and also for GRF and PBI types of bursts; (iii) the radio emission intensity is relatively higher in the central part than that in the limb part of the solar disk for frequencies 1–10 GHz, while the reverse is true for frequencies 0.245–1 GHz and 10–35 GHz; (iv) the optical depth of the absorbing layer above the source of a burst is found to be the same for meter to centimeter-wavelength bursts, implying that the radio sources in this wide band have uniform characteristics with respect to optical thickness; (v) in case of simultaneous emission in the dekameter to X-ray band, most of the decimetric bursts are seen to be very prompt and coincident with the associated flare's starting time. The interpretations of the obtained spectra give an insight into the possible generation mechanisms, pointing to the location of the source region in the solar atmosphere.  相似文献   

2.
A study has been made of the relation of 19 GHz( = 1.58 cm) solar radio bursts to solar proton emission, with particular reference to the usefulness of relatively long duration bursts with intensities exceeding 50% of the quiet Sun flux (or exceeding 350 × 10–22 W m–2 Hz–1) as indicators of the occurrence of proton events during the four years from 1966–69. 76 to 88% of such bursts are directly associated with solar protons and 60 to 85% of the moderate to large proton events in the four year period could have been predicted from these bursts. The complete microwave spectra of the proton events have also been studied, and have been used to extend the results obtained at 19 GHz to other frequencies, particularly in the 5–20 GHz band. The widely used frequency of 2.8 GHz is not the optimum frequency for this purpose since proton events have a minimum of emission in this region. Most of the radio energy of proton events is at frequencies above 10 GHz. The radio spectra of proton events tend to peak at higher frequencies than most non-proton events, the overall range being 5 to 70 GHz, with a median of 10–12 GHz and a mean of 17 GHz.On leave from the Radio and Space Research Station, Slough, England, as 1969–1970 National Research Council-National Academy of Sciences Senior Post-Doctoral Research Associate at AFCRL.  相似文献   

3.
D. L. Croom 《Solar physics》1970,15(2):414-423
The results of 2 1/2 years (July 1967 – December 1969) monitoring of solar radio bursts at 71 GHz ( = 4.2 mm) at the Radio and Space Research Station, Slough are presented. During this period only seven events were positively identified as 71 GHz bursts. One of these events (6 July, 1968) is among the largest solar bursts ever recorded anywhere in the microwave-millimetre wave band (47000 × 10–22Wm–2Hz–1), and the associated magnetic field may possibly have exceeded 7200 G. Another event (27 March, 1969) has demonstrated that bursts at 71 GHz can be both intense (4700 × 10–22Wm–2Hz–1) and complex. On other occasions, the absence of any detectable event at 71 GHz helps to define the high frequency spectrum of the burst, this being an important factor in determining the initial energy distribution of the electrons ejected by the associated flare. On one such occasion (21 March, 1969) the derived energy distribution index is 8, in contrast with the more usual values of 2–4.1969–1970 NCR-OAR Senior Post-Doctoral Research Associate at Air Force Cambridge Research Laboratories, L. G. Hanscom Field, Bedford, Mass., U.S.A.  相似文献   

4.
The occurrence rate of type III solar bursts in the frequency range 4.9 MHz to 30 kHz is analyzed as a function of burst intensity and burst arrival direction. We find that (a) the occurrence rate of bursts falls off with increasing flux, S, according to the power law S –1.5, and (b) the distribution of burst arrival directions at each frequency shows a significantly larger number of bursts observed west of the Earth-Sun line than east of it. This western excess in occurrence rate appears to be correlated with the direction of the average interplanetary magnetic field, and is interpreted as beaming of the observed burst radiation along the magnetic field direction.Presently at the University of Maryland, College Park, Maryland.  相似文献   

5.
A new spectrometer has been put into operation that registers solar flare radio emission in the 0.1 to 3 GHz band. It is a frequency-agile system which can be fully programmed to measure both senses of circular polarization at any frequency within that range at selectable bandwidth. The time resolution has to be compromized with the number of frequency channels and can be in the range of 0.5 ms to 250 ms for 1 to 500 channels. First results mainly from the 1–3 GHz band are presented, a spectral region that has never been observed with high-resolution spectrometers. Most noteworthy are the frequent appearances of myriads of narrowband, fast-drifting bursts (microwave type III), diffuse patches of continuum emission, and broad clusters of millisecond spikes sometimes extending from 0.3 to 3 GHz.  相似文献   

6.
A New Solar Broadband Radio Spectrometer (SBRS) in China   总被引:1,自引:0,他引:1  
A new radio spectrometer, Solar Broadband Radio Spectrometer (SBRS) with characteristics of high time resolution, high-frequency resolution, high sensitivity, and wide frequency coverage in the microwave region is described. Its function is to monitor solar radio bursts in the frequency range of 0.7–7.6 GHz with time resolution of 1–10 ms. SBRS consists of five `component spectrometers' which work in five different wave bands (0.7–1.5 GHz, 1.0–2.0 GHz, 2.6–3.8 GHz, 4.5–7.5 GHz, and 5.2–7.6 GHz, respectively). A combination of multi-channel and scanning techniques is adopted. The component spectrometers are attached to different antennas which are separately located at Beijing, Kunming, and Nanjing. Close attention was paid to solve the problems of sensitivity, dynamic range, interference-resistance, data acquisition, and handling a large amount of data. The SBRS was put into operation in the 23th solar maximum activity period, and has proved itself to be a valuable instrument for the study of solar bursts in microwaves.  相似文献   

7.
We have investigated common burst spectral features for the 20th cycle of solar activity. The maximum daily radio fluxes in 8 frequency ranges are analysed. For every year the classification of these daily spectra is obtained by cluster analysis methods. There are two spectral minima for average spectra of clusters (in frequency ranges 4–3 and 0.5–0.25 GHz). As a rule their positions do not change during the solar cycle.Every annual spectrum of weak bursts has three minima (in frequency ranges 4–3, 2–1, and 0.5–0.25 GHz). The positions of these minima remain invariable during the solar cycle. But anuual spectra of strong bursts depend essentially on the phase of solar activity.The basic features of most burst spectra can be explained by gyrosynchrotron radiation of thermal and nonthermal electrons and plasma radiation at the plasma frequency and its second harmonic.  相似文献   

8.
A broadband spectrometer for decimeter and microwave radio bursts   总被引:5,自引:0,他引:5  
Observations of solar microwave bursts with high temporal and spectral resolution have shown interesting fine structures (FSs) of short duration and small bandwidth which are usually superimposed on the smooth continuum. These FSs are very intense (up to 1015 K) and show sometimes a high degree of circular polarization (up to 100%). They are believed to be generated by electron cyclotron maser emission (ECME) in magnetic loops. Another type are the microwave type III bursts, which are drifting microwave FSs, and are probably the signatures of travelling electron beams in the solar atmosphere. The exact emission mechanisms for these phenomena, in particular the source configuration, the plasma parameters and the distribution of radiating electrons are not clear. For a detailed study of these problems new observations of intensity and polarization with high resolution in time and in frequency in decimeter and microwave wavebands are essential. In order to investigate these features in greater detail, spectrometers with high temporal and spectral resolution are being developed by the solar radio astronomy community of China (Beijing Astronomical Observatory (BAO), Purple Mountain Observatory (PMO), Yunnan Astronomical Observatory (YAO), and Nanjing University (NJU)). The frequency range from 0.7 to about 12 GHz is covered by about five spectrometers in frequency ranges of 0.7–1.4 GHz, 1–2 GHz, 2.4–3.6 GHz, 4.9–7.3 GHz, and 8–12 GHz, respectively. The radiospectrometers will form a combined type of swept-frequency and multi-channel receivers. The main characteristics of the solar radio spectrometers are: frequency resolution: 1–10 MHz; temporal resolution: 1–10 ms; sensitivity: better than 2% of the quiet-Sun level. We pay special attention to the sensitivity and the accuracy of polarization. Now, the 1–2 GHz radiospectrometer is being set up. The full system will be set up in 3–4 years.Presented at the CESRA-Workshop on Coronal Magnetic Release at Caputh near Potsdam in May 1994.  相似文献   

9.
The results of 21/2 yr (July 1967–December 1969) monitoring of solar radio bursts at 19 GHz ( = 1.58 cm) at the Radio and Space Research Station, Slough, are presented. Observations at this frequency are important in helping to define the form of the microwave spectrum of solar bursts since many of the more intense bursts have their spectral peak in the frequency region above 10 GHz. Fifteen bursts with peak flux increases exceeding 1000 × 10–22 Wm–2 Hz–1 were observed during this period.  相似文献   

10.
The burst component of the solar X-ray flux in the soft wavelength range 2 < < 12 Å observed from Explorer 33 and Explorer 35 from July 1966 to September 1968 was analyzed. In this period 4028 burst peaks were identified.The differential distributions of the temporal and intensity parameters of the bursts revealed no separation into more than one class of bursts. The most frequently observed value for rise time was 4 min and for decay time was 12 min. The distribution of the ratio of rise to decay time can be represented by an exponential with exponent -2.31 from a ratio of 0.3 to 2.7; the maximum in this distribution occurred at a ratio of 0.3. The values of the total observed flux, divided by the background flux at burst maximum, can be represented by a power law with exponent -2.62 for ratios between 1.5 and 32. The distribution of peak burst fluxes can be represented by a power law with exponent - 1.75 over the range 1–100 milli-erg (cm2 sec)–1. The flux time integral values are given by a power law with exponent -1.44 over the range 1–50 erg cm–2.The distribution of peak burst flux as a function of H importance revealed a general tendency for larger peak X-ray fluxes to occur with both larger H flare areas and with brighter H flares. There is no significant dependence of X-ray burst occurrence on heliographic longitude; the emission thus lacks directivity.The theory of free-free emission by a thermal electron distribution was applied to a composite quantitative discussion of hard X-ray fluxes (data from Arnoldy et al., 1968; Kane and Winckler, 1969; and Hudson et al., 1969) and soft X-ray fluxes during solar X-ray bursts. Using bursts yielding measured X-ray intensities in three different energy intervals, covering a total range of 1–50 keV, temperatures and emission measures were derived. The emission measure was found to vary from event to event. The peak time of hard X-ray events was found to occur an average of 3 min before the peak time of the corresponding soft X-ray bursts. Thus a changing emission measure during the event is also required. A free-free emission process with temperatures of 12–39 × 106K and with an emission measure in the range 3.6 × 1047 to 2.1 × 1050 cm–3 which varies both from event to event and within an individual event is required by the data examined.Now at Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey.  相似文献   

11.
The three-satellite SIGNE network has observed 26 confirmed gamma-ray bursts in the period September 1978–June 1979. Burst time histories may be used to define several classes of events, with a strong resemblance between events in a given class, but different arrival directions. The spectra of two gamma-ray bursts have been found to evolve from shapes which turn over at low energy during the start of the event, to near power law spectra at the end of the event.Paper presented at the Symposium on Cosmic Gamma-Ray Bursts held at Toulouse, France, 26–29 November, 1979.  相似文献   

12.
Microwave Type III bursts with positive frequency drifting rate were found by Stahli and Benz (1987) for first time. Type III events are especially interesting because they are well-known to be signatures of electron beams in coronal plasma, and they are effective means for diagnosting of source plasma. A microwave burst consisting of some microwave type III burst groups was registered at Beijing Astronomical Observatory with the 2545–2645–2840 MHz synchronous observing system. The distributions of frequency drifting rate, half power duration, and intensity for each impulse in the groups have been statistically analysed. From this analysis, some important parameters for the dynamic process in the flare are deduced and discussed.  相似文献   

13.
During March 20, 1993, from 12:00 to 16:00 UT, repeated radio burst activity was observed in the 0.8–1.2 GHz frequency range. Periods in intervals 0.1–0.5, 0.7–1.0, 2.8–3.9, 75–170 s, and 15–25 min were recognized. This long-lasting narrowband activity consisted mainly of pulsations and continua. In some intervals it was accompanied not only by spikes, broadband pulsations, and fibers in the 1–2 GHz frequency range, but also by type III and U burst activity at lower frequencies as well as by hard X-ray bursts. From several radio bursts, two characterized by different fine structures were selected and compared. The observed differences are explained by different distribution functions of superthermal electrons. The position of the 0.8–1.2 GHz radio source above the photosphere and the magnetic field in the fiber burst source were estimated to be 66 000–75 000 km and 120–135 G, respectively.Presented at te CESRA-Workshop on Coronal Magnetic Energy Release at Caputh near Potsdam in May 1994.  相似文献   

14.
Power-law distribution for solar energetic proton events   总被引:1,自引:0,他引:1  
Analyses of the time-integrated fluxes of solar energetic particle events during the period 1965–1990 show that the differential distribution of events with flux F is given by a power law, with indices between 1.2 and 1.4 depending on energy. The power law represents a good fit over three to four orders of magnitude in fluence. Similar power-law distributions have been found for peak proton and electron fluxes, X-ray flares and radio and type III bursts. At fluences greater than 109 cm–2, the slope of the distribution steepens and beyond 1010 cm–2 the power-law index is estimated to be 3.5. At energies greater than 10 MeV, the slope of the distribution was found to be essentially independent of solar cycle, when the active years of solar cycles 20, 21, and 22 were analysed. The results presented are the first for a complete period of 27 years, covering nearly 3 complete solar cycles. Other new aspects of the results include the invariance of the exponent with solar cycle and also with integral energy.  相似文献   

15.
An attempt has been made in the present work to reveal the directivity of solar non-thermal X-ray emission using the data obtained from the Prognoz and Explorer satellites. The frequency of occurrence of X-ray bursts and the mean intensities of the emission are studied as a function of distance from the central meridian. The most complete statistics have been obtained for the 4–24 keV X-ray bursts for the period 1970–1973. The X-ray burst frequency of occurrence normalized to the corresponding H flare frequency increases towards the solar limb. During the studied period this trend is more pronounced to the east than to the west. Distributions of the mean intensities of X-ray bursts are very similar to those of the frequency of occurrence of X-ray bursts; the effect is more noticeable for the low intensity bursts. The effect of the east-west asymmetry for H flares has been found to vary in magnitude and direction during the 20th solar activity cycle.  相似文献   

16.
In this paper, the observed solar radio pulsations during the bursts at 9.375 GHz are considered to be excited by some plasma instability. Under the condition of the conservation of energy in the wave-particle interaction, the saturation time of plasma instabilities is inversely proportional to the initial radiation intensity, which may explain why the repetition rate of the pulsations is directly proportional to the radio burst flux at 9.375 GHz as well as 15 GHz and 22 GHz. It is also predicted that the energy released in an individual pulse increases with increasing the flux of radio bursts, the modularity of the pulsations decreases with increasing the flux of radio bursts, these predictions are consistent with the statistical results at 9.375 GHz in different events. The energy density of the non-thermal particles in these events is estimated from the properties of pulsation. For the typical values of the ambient plasma density (109 cm–3) and the ratio between the nonthermal and ambient electrons (10–4), the order of magnitude of the energy density and the average energy of the nonthermal electrons is 10–4 erg/cm3 and 10 kev, respectively. It is interesting that there are two branches in a statistical relation between the repetition rate and the radio burst flux in a special event on March 11–17, 1989, which just corresponds to two different orders of magnitude for the quasi-quantized energy released in these five bursts. This result may be explained by the different ratios between the thermal and the nonthermal radiations.  相似文献   

17.
Extreme Value Analysis of Solar Energetic Proton Peak Fluxes   总被引:1,自引:0,他引:1  
An extreme value analysis of >10 MeV solar proton event peak fluxes during the period 1967–1994 is carried out. The largest annual peak fluxes that exceed a few hundred cm–2 s–1 sr–1 are described by the type II extreme value distribution. One implication of this finding is that the extreme value distribution can be related to the initial distribution of large peak fluxes. Assuming that the number of events is a Poisson variable, the initial distribution is shown to be a power law with parameters that are directly related to the extreme value distribution parameters. The power law thus determined for the initial cumulative distribution has an index of –0.68, and agrees well with the data for peak fluxes above a few hundred cm–2 s–1 sr–1. Implications for using extreme value methods in conjunction with initial distributions that are represented by power laws are discussed.  相似文献   

18.
The effect of fluctuations of the interplanetary plasma and the ionosphere upon the scintillation spectra of radio sources at decametre waves is considered with due regard for the finite antenna aperture, fluctuation anisotropy, and the direction of their drift in space. It has been shown that scintillation due to interplanetary plasma (IPP), can be reliably separated from the ionospheric scintillation background at decametre wavelengths.For elongations between 90° to 150°, the IPP scintillation power spectrum observed in the 12.6–25 MHz waveband is of a power law form with the index 3.1±0.6, which is in close agreement with the values known for smaller elongations. The solar wind velocity projection orthogonal to the line of sight is estimated for elongations about 110° and has been found to be 300±80 km s–1. As in the case of smaller elongations, the velocity dispersion is significant.At night, wideband spectra of ionospheric scintillations are observed in the decametre band, with the breaking point at approximately 0.01 Hz in the 12 m band, and narrow-band spectra whose cut-off frequency is below 0.01 Hz. The power spectrum of ionospheric scintillations is of a power-law form with the index 3.4±0.5. In some cases steeper spectra are observed.  相似文献   

19.
We have produced a prototype broadband, low-sidelobe conical corrugated feed horn suitable for measurements of the Cosmic Microwave Blackground (CMB) radiation in the frequency band 120–150 GHz. The antenna is a first prototype for the Low Frequency Instrument array in ESA's PLANCK mission, a space project dedicated to CMB anisotropy mesurements in the 30–900 GHz range. We describe the fabrication method, based on silver electro-formation, and present the two-dimensional antenna beam pattern measured at 140 GHz with a milimeter-wave automated scalar test range. The beam has good symmetry in the E and H planes with a far sidelobe level approaching –60 dB at angles 80°. An upper limit to the return loss was measured to be –21 dB.  相似文献   

20.
Various solar bursts have been analysed with high sensitivity (0.03 sfu, rms) and high-time resolution (1 ms) at two frequencies in the millimeter wave range (22 GHz and 44 GHz), and with moderate time resolution (100 ms) by a patrol telescope at a frequency in the microwave range (7 GHz). It was found that, in most cases, burst maximum emission is not coincident in time at those frequencies. Preceding maximum emission can be either at the higher or at the lower frequency. Time delays ranged from about 3 s to near coincidence, defined within 10 ms. Some complex bursts presented all kinds of delays among different time structures, and sometimes nearly uncorrelated time structures.Large time delays favour the association of the dynamic effects to shock wave speeds. Directional particle acceleration in complex magnetic configuration could be considered to explain the variety of the dynamic effects. Fastest burst rise times observed, less than 50 ms at 44 GHz and at 22 GHz, might be associated to limiting formation times of emission sources combined with various absorption mechanisms at the source and surrounding plasma.In memoriam, 1942–1981.INPE operates Itapetinga Radio Observatory and CRAAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号