首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The variability of the X-ray flux from the pulsar GX 301-2 is analyzed by using data from the ART-P telescope of the GRANAT Observatory. The intensity variations with time scales of several thousand seconds are studied at various orbital phases. The high-state flux from the source exceeds its low-state flux by as much as a factor of 10. The hardness and spectrum of the source are shown to change greatly with its intensity. These intensity variations are most likely caused by substantial inhomogeneities in the stellar wind from the companion star.  相似文献   

2.
Observations of the X-ray pulsar Vela X-1 with the ART-P telescope onboard the Granat Observatory are presented. Variability on a time scale of several thousand seconds was detected; intensity variations are shown to be accompanied by changes in the source’s spectrum. The hardness was also found to be highly variable on a scale of one pulsation period. The source’s spectrum exhibits an absorption feature at energy ~7 keV, which is apparently attributable to cyclotron scattering/absorption in the neutron-star magnetic field. Weak persistent emission was detected during an X-ray eclipse, which probably resulted from the scattering of pulsar emission in the stellar wind from an optical star.  相似文献   

3.
A quasi-periodic component was found at the maximum of the X-ray light curve for the June 10, 1990 solar flare detected by the Granat observatory. The pulsation period was 143.2±0.8 s. The intensity of the pulsing component is not constant; the maximum amplitude of the pulsations is ~5% of the total flare intensity. An analysis of the data showed the characteristic size of the magnetic loop responsible for these pulsations to be ~(1–3)×1010 cm.  相似文献   

4.
We have performed simultaneous X-ray and radio observations of 13 Galactic Centre low-mass X-ray binaries in 1998 April using the Wide Field Cameras on board BeppoSAX and the Australia Telescope Compact Array, the latter simultaneously at 4.8 and 8.64 GHz. We detect two Z sources, GX 17+2 and GX 5−1, and the unusual 'hybrid' source GX 13+1. Upper limits, which are significantly deeper than previous non-detections, are placed on the radio emission from two more Z sources and seven atoll sources. Hardness–intensity diagrams constructed from the Wide Field Camera data reveal GX 17+2 and GX 5−1 to have been on the lower part of the horizontal branch and/or the upper part of the normal branch at the time of the observations, and the two non-detected Z sources, GX 340+0 and GX 349+2, to have been on the lower part of the normal branch. This is consistent with the previous empirically determined relation between radio and X-ray emission from Z sources, in which radio emission is strongest on the horizontal branch and weakest on the flaring branch. For the first time we have information on the X-ray state of atoll sources, which are clearly radio-quiet relative to the Z sources, during periods of observed radio upper limits. We place limits on the linear polarization from the three detected sources, and use accurate radio astrometry of GX 17+2 to confirm that it is probably not associated with the optical star NP Ser. Additionally we place strong upper limits on the radio emission from the X-ray binary 2S 0921−630, disagreeing with suggestions that it is a Z-source viewed edge-on.  相似文献   

5.
Sharp dips observed in the pulse profiles of three X-ray pulsars (GX 1+4, RX J0812.4−3114 and A 0535+26) have previously been suggested to arise from partial eclipses of the emission region by the accretion column occurring once each rotation period. We present pulse-phase spectroscopy from Rossi X-ray Timing Explorer satellite observations of GX 1+4 and RX J0812.4−3114, which for the first time confirms this interpretation. The dip phase corresponds to the closest approach of the column axis to the line of sight, and the additional optical depth of photons escaping from the column in this direction gives rise to both the decrease in flux and increase in the fitted optical depth measured at this phase. Analysis of the arrival time of individual dips in GX 1+4 provides the first measurement of azimuthal wandering of a neutron star accretion column. The column longitude varies stochastically with a standard deviation ranging between 2° and 6° depending on the source luminosity. Measurements of the phase width of the dip both from mean pulse profiles and from the individual eclipses demonstrate that the dip width is proportional to the flux. The variation is consistent with that expected if the azimuthal extent of the accretion column depends only upon the Keplerian velocity at the inner disc radius, which varies as a consequence of the accretion rate M˙ .  相似文献   

6.
We present 132 h of new time-series photometric observations of the δ Scuti star CD−24 7599 acquired during 86 nights from 1993 to 1996 to study its frequency and amplitude variations. By using all published observations we demonstrate that the three dominating pulsation modes of the star can change their photometric amplitudes within one month at certain times, while the amplitudes can remain constant within the measurement errors at other times. CD−24 7599 also exhibits frequency variations, which do not show any correspondence between the different modes.   The typical time-scale for the amplitude variations is found to be several hundred days, which is of the same order of magnitude as the inverse linear growth rates of a selected model. We find no evidence for periodic amplitude modulation of two of the investigated modes ( f 2 and f 3), but f 1 may exhibit periodic modulation. The latter result could be spurious and requires confirmation. The observed frequency variations may either be continuous or reflect sudden frequency jumps. No evidence for cyclical period changes is obtained.   We exclude precession of the pulsation axis and oblique pulsation for the amplitude variations. Beating of closely spaced frequencies cannot explain the amplitude modulations of two of the modes, while it is possible for the third. Evolutionary effects, binarity, magnetic field changes or avoided crossings cannot be made responsible for the observed period changes. Only resonance between different modes may be able to explain the observations. However, at this stage a quantitative comparison is not possible. More observations, especially data leading to a definite mode identification and further measurements of the temporal behaviour of the amplitudes and frequencies of CD−24 7599, are required.  相似文献   

7.
We analyze the data obtained when the Konus-Wind gamma-ray spectrometer detected a giant flare in SGR 1806-20 on December 27, 2004. The flare is similar in appearance to the two known flares in SGR 0526-66 and SGR 1900+14 while exceeding them significantly in intensity. The enormous X-ray and gamma-ray flux in the narrow initial pulse of the flare leads to almost instantaneous deep saturation of the gamma-ray detectors, ruling out the possibility of directly measuring the intensity, time profile, and energy spectrum of the initial pulse. In this situation, the detection of an attenuated signal of inverse Compton scattering of the initial pulse emission by the Moon with the Helicon gamma-ray spectrometer onboard the Coronas-F satellite was an extremely favorable circumstance. Analysis of this signal has yielded the most reliable temporal, energy, and spectral characteristics of the pulse. The temporal and spectral characteristics of the pulsating flare tail have been determined from Konus-Wind data. Its soft spectra have been found to contain also a hard power-law component extending to 10 MeV. A weak afterglow of SGR 1806-20 decaying over several hours is traceable up to 1 MeV. We also consider the overall picture of activity of SGR 1806-20 in the emission of recurrent bursts before and after the giant flare.  相似文献   

8.
利用直接解调方法分析COMPTELVPI数据,得到了脉冲星Geminga10-30MeV脉冲辐射存在的证据:全位相及分位相成像均得到了Geminga.分位相成像结果显示,光变曲线的峰值位于pulse1附近,而其它位相区域只能给出上限.由于成像分析不存在选择效应,该成像结果表明,Geminga在MeV能区仍存在脉冲辐射.虽然Geminga的弱MeV辐射使得很难就VP1数据作时间分析,但仍得到了一些周期信号的迹象,并且与成像结果不相矛盾.进一步考察EGRET观测Geminga在30MeV以上的强度比Pulse2/Pulse1,发现在VP1观测的较低能区,Pulse1有渐强于Pulse2的趋势,这和我们在MeV能区的成像及时间分析结果相一致.成像得到的流强表明,Geminga的能谱至少在10MeV以上不应出现偏折.  相似文献   

9.
We analyze the intensity modulation in the final, very broad peak of the main outburst of the neutron star low-mass X-ray binary KS 1731-260. We use ASM/RXTE observations for a time-series analysis of the long-term variations. We also investigate the X-ray color (hardness ratio) changes in the 1.5–12 keV band. The modulation with the mean cycle-length of 37 days is transient and is detected only in several time segments. It underwent significant variations of both the cycle-length and the amplitude. This cycle cannot be caused by transitions of the outer disk region between the hot and cool state that gave rise to the subsequent series of the echo outbursts. Because of its high X-ray luminosity (LX  0.1 of the Eddington luminosity), KS 1731-260 is a promising candidate for having its accretion disk tilted and warped. The properties of the modulation can therefore be explained as due to variable (multimodal), but still detectable superorbital periods caused by a disk precession with mode switching and unstable warps. We find that a variable LX is not the sole parameter that governs the presence of the cycle. Variable absorption of X-rays cannot be dominant in producing the modulation of the ASM flux during the cycle. Variations of the stream impact on the tilted and warped disk, hence affecting the mass flow in the inner disk region, consequently the emission components, are a promising mechanism for the observed cycle. In this scenario, the true cycle-length can be twice as long because of the double-wave profile.  相似文献   

10.
The X-ray binary system GX 301−2 consists of a neutron star in an eccentric orbit accreting from the massive early-type star Wray 977. It has previously been shown that the X-ray orbital light curve is consistent with the existence of a gas stream flowing out from Wray 977 in addition to its strong stellar wind. Here, X-ray monitoring observations by the Rossi X-ray Timing Explorer ( RXTE )/All-Sky Monitor and pointed observations by the RXTE /Proportional Counter Array over the past decade are analysed. We analyse both the flux and column density dependence on orbital phase. The wind and stream dynamics are calculated for various system inclinations, companion rotation rates and wind velocities, as well as parametrized by the stream width and density. These calculations are used as inputs to determine both the expected accretion luminosity and the column density along the line-of-sight to the neutron star. The model luminosity and column density are compared to observed flux and column density versus orbital phase, to constrain the properties of the stellar wind and the gas stream. We find that the change between bright and medium intensity levels is primarily due to decreased mass loss in the stellar wind, but the change between medium and dim intensity levels is primarily due to decreased stream density. The mass-loss rate in the stream exceeds that in the stellar wind by a factor of ∼2.5. The quality of the model fits is better for lower inclinations, favouring a higher mass for Wray 977 in its allowed range of  40–60 M  .  相似文献   

11.
We suggest that the variable pulse profile of GX 1+4 in the low-energy X-ray region results from the superposition of polar and disk components. The anomalous appearance during the spin-down episode can then be explained, if we consider a transition from thin to thick accretion disk configuration which can develop at midly super-Eddington luminosity levels of the source. a close examination of the data suggests that the intrinsic period of the pulsar is 4 min. A switching disk geometry can provide a natural explanation to pulse profile variations in more luminous accreting binary pulsars and also account for the transition between high and low spectral states seen in the case of the Cyg X-1 and low-mass X-ray binary systems.  相似文献   

12.
A variety of transient X-ray phenomena have been studied by the M.I.T. X-ray Astronomy Group. Data from the OSO-7 satellite reveal both long and short time-scale transients. Extensive observations have been made of the Lupus X-ray Nova (3U1543-47) and of GX339-4 (MX1658-48) which may represent a very different type of transient source A unique, intense X-ray flare lasting ten minutes was also recorded, and the X-ray emission from the active galaxy Cen A was found to vary significantly over a period of several days. In a recent ballon flight the Crab, pulsar, NP0532, was observed to exhibit a transient pulsed component distinct from the usual main pulse and interpulse. A sounding-rocket experiment detected an ultrasoft transient X-ray source tentatively associated with SS Cygni, and preliminary results from SAS-3 show a very hard spectrum for the new source A0535+26. On the other hand, extensive OSO-7 null observations of both Type I and II supernovae and of the flaring radio star Algol make it unlikely that these types of objects are potent transient X-ray emitters.Supported in part by the National Aeronautics and Space Administration under contracts NGL 22-009-015, NSR 22-009-654 and grant NGL 22-099-730 and by the National Science Foundation under grant GP-31378.Paper presented, at the COSPAR Symposium on Fast Transients in X- and Gamma-Rays, held at Varna, Bulgaria, 29–31 May, 1975.  相似文献   

13.
A new pulsating X-ray source, AX J183220-0840, with a 1549.1 s period was discovered at R.A.=18h32m20s and decl.=-8&j0;40'30" (J2000, with an uncertainty of 0&farcm;6) during an ASCA observation on the Galactic plane. The source was observed two times, in 1997 and in 1999. A phase-averaged X-ray flux of 1.1x10-11 ergs cm-2 s-1 and a pulsation period of 1549.1+/-0.4 s were consistently obtained from these two observations. The X-ray spectrum was represented by a flat, absorbed power law with a photon index of Gamma approximately 0.8 and an absorption column density of NH approximately 1.3x1022 cm-2. Also, a signature of iron K-shell line emission with a centroid of 6.7 keV and an equivalent width of approximately 450 eV was detected. From the pulsation period and the iron-line feature, AX J183220-0840 is likely to be a magnetic white dwarf binary with a complexly absorbed thermal spectrum with a temperature of about 10 keV.  相似文献   

14.
We report on observations of the X-ray pulsar IGR J16320−4751 (also known as AX J1631.9−4752) performed simultaneously with International Gamma-Ray Astrophysics Laboratory ( INTEGRAL ) and XMM–Newton . We refine the source position and identify the most likely infrared counterpart. Our simultaneous coverage allows us to confirm the presence of X-ray pulsations at ∼1300 s, that we detect above 20 keV with INTEGRAL for the first time. The pulse fraction is consistent with being constant with energy, which is compatible with a model of polar accretion by a pulsar. We study the spectral properties of IGR J16320−4751 during two major periods occurring during the simultaneous coverage with both satellites, namely a flare and a non-flare period. We detect the presence of a narrow 6.4 keV iron line in both periods. The presence of such a feature is typical of supergiant wind accretors such as Vela X-1 or GX 301−2. We inspect the spectral variations with respect to the pulse phase during the non-flare period, and show that the pulse is solely due to variations of the X-ray flux emitted by the source and not due to variations of the spectral parameters. Our results are therefore compatible with the source being a pulsar in a High Mass X-ray Binary. We detect a soft excess appearing in the spectra as a blackbody with a temperature of ∼0.07 keV. We discuss the origin of the X-ray emission in IGR J16320−4751: while the hard X-rays are likely the result of Compton emission produced in the close vicinity of the pulsar, based on energy argument we suggest that the soft excess is likely the emission by a collisionally energized cloud in which the compact object is embedded.  相似文献   

15.
We have obtained high-resolution spectra of the 153 micrometers J = 17-16 CO line in the BN-KL region of Orion using a laser heterodyne spectrometer. The line shows broad wings (30 km s-1 FWHM at BN) characteristic of the plateau emission as well as a narrower component probably associated with the quiescent gas in the molecular ridge. From an analysis of the plateau emission together with that observed in lower J CO transitions, we derive an excitation temperature of 180 +/- 50 K and minimum column density of 1 x 10(18) cm-2 for CO in this component, which constitutes 80% of the total integrated intensity of the J = 17-16 line near BN. The peak intensity of the narrower component observed at 0.8 km s-1 resolution increases relative to that of the plateau component toward theta 1C and away from BN, while the width decreases from 10 to 4 km s-1 (FWHM).  相似文献   

16.
Previous work by Motch et al. [1985, Space Sci. Rev. 40, 219] suggested that in the low/hard state of GX, the soft X-ray power-law extrapolated backward in energy agrees with the IR flux level. Corbel and Fender [2002, ApJ 573, L35–L39] later showed that the typical hard state radio power-law extrapolated forward in energy meets the backward extrapolated X-ray power-law at an IR spectral break, which was explicitly observed twice in GX. This has been cited as further evidence that jet synchrotron radiation might make a significant contribution to the observed X-rays in the hard state. We explore this hypothesis with a series of simultaneous radio/X-ray hard state observations of GX. We fit these spectra with a simple, but remarkably successful, doubly broken power-law model that indeed requires a spectral break in the IR. For most of these observations, the break position as a function of X-ray flux agrees with the jet model predictions. We then examine the radio flux/X-ray flux correlation in CYG through the use of 15 GHz radio data, obtained with the Ryle radio telescope, and Rossi X-ray Timing Explorer data, from the All Sky Monitor and pointed observations. We find evidence of ‘parallel tracks’ in the radio/X-ray correlation which are associated with ‘failed transitions’ to, or the beginning of a transition to, the soft state. We also find that for CYG the radio flux is more fundamentally correlated with the hard, rather than the soft, X-ray flux.  相似文献   

17.
One of the tools used to identify the pulsation modes of stars is a comparison of the amplitudes and phases as observed photometrically at different wavelengths. Proper application of the method requires that the errors on the measured quantities, and the correlations between them, be known (or at least estimated). It is assumed that contemporaneous measurements of the light intensity of a pulsating star are obtained in several wavebands. It is also assumed that the measurements are regularly spaced in time, although there may be missing observations. The amplitude and phase of the pulsation are estimated separately for each of the wavebands, and amplitude ratios and phase differences are calculated. A general scheme for estimating the covariance matrix of the amplitude ratios and phase differences is described. The first step is to fit a time series to the residuals after pre-whitening the observations by the best-fitting sinusoid. The residuals are then cross-correlated to study the interdependence between the errors in the different wavebands. Once the multivariate time-series structure can be modelled, the covariance matrix can be found by bootstrapping. An illustrative application is described in detail.  相似文献   

18.
The semi‐regular variable star RU Vulpeculae (RU Vul) is being observed visually since 1935. Its pulsation period and amplitude are declining since ∼1954. A leading hypothesis to explain the period decrease in asymptotic giant branch (AGB) stars such as RU Vul is an ongoing flash of the He‐burning shell, also called a thermal pulse (TP), inside the star. In this paper, we present a CCD photometric light curve of RU Vul, derive its fundamental parameters, and test if the TP hypothesis can describe the observed period decline. We use CCD photometry to determine the present‐day pulsation period and amplitude in three photometric bands, and high‐resolution optical spectroscopy to derive the fundamental parameters. The period evolution of RU Vul is compared to predictions by evolutionary models of the AGB phase. We find that RU Vul is a metal‐poor star with a metallicity [M/H] = –1.59 ± 0.05 and an effective surface temperature of Teff = 3634 ± 20 K. The low metallicity of RU Vul and its kinematics indicate that it is an old, low‐mass member of the thick disc or the halo population. The present day pulsation period determined from our photometry is ∼108 d, the semiamplitude in the V ‐band is 0.39 ± 0.03 mag. The observed period decline is found to be well matched by an evolutionary AGB model with stellar parameters comparable to those of RU Vul. We conclude that the TP hypothesis is in good agreement with the observed period evolution of RU Vul. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Recent Chandra and XMM-Newton observations of a number of X-ray “dim” pulsating neutron stars revealed quite unexpected features in the emission from these sources. Their soft thermal spectrum, believed to originate directly from the star surface, shows evidence for a phase-varying absorption line at some hundred eVs. The pulse modulation is relatively large (pulsed fractions in the range ~8–35% in amplitude), the pulse shape is often non-sinusoidal, and the hard X-ray color appears to be anti-correlated in phase with the total emission. Moreover, the prototype of this class, RX J0720.4-3125, has been found to undergo rather sensible changes both in its spectral and timing properties over a timescale of a few years. By modeling the light curves of two sources, RBS 1223 and RX J0720.4-3125, it has been found evidence for two hot regions located at a slightly non antipodal direction. All these new findings are difficult to reconcile with the standard picture of a cooling neutron star endowed with a purely dipolar magnetic field. Here we present more realistic models of surface emission, where the effects of different neutron star thermal and magnetic surface distributions are accounted for. We show how a star-centered field made of a dipolar and a quadrupolar component can influence the properties of the observed light curves and we present results that account self-consistently for toroidal and poloidal crustal field configurations.  相似文献   

20.
By finding a 2147-s X-ray pulsation in the recently identified ROSAT   source RX  1238–38 we confirm that it is a member of the intermediate polar class of cataclysmic variable. We analyse the spectral changes over the white dwarf spin cycle, but are unable to distinguish between competing mechanisms for the cause of the pulsation. RX  1238–38 has an anomalous ratio of spin period to orbital period, similar to that of EX Hya.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号