首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Borings from the barrier island/lagoon system of the Eastern Shore of Virginia penetrated an unconformity which separates Pleistocene barrier island and offshore marine sediments from the overlying Holocene tidal delta and barrier island sediments. Offshore marine sediments and deposits within the flood-tidal delta (marsh, tidal flat-bay, inlet-mouth bar complex) are recognized on the basis of sediment color, composition, grain-size changes in the vertical sequence, presence of organic matter, and faunal suite. Subsurface data, historical records, and morphology of lateral accretion on barrier islands suggest that major inlets in the vicinity of Wachapreague have been relatively stable throughout Holocene time; they appear to be located where Pleistocene stream valleys previously existed. Holocene barrier islands apparently developed on drainage divide areas following post-Wisconsin transgression of the sea.

The initial phase of tidal delta development was characterized by vertically accreting, fan-shaped, inlet-mouth bars; tidal channels stabilized after bar crests had shoaled sufficiently for marsh to form. With landward progradation across the lagoon, sand-rich deposits graded laterally away from the inlets and vertically into clayey sand and silty clay of the tidal flat-bay and marsh environments.

Ebb inlet-mouth bars developed asymmetrically southward in response to littoral drift. Flood tidal deltas also built preferentially toward the south as indicated by: (1) sand distribution of the inlet-mouth bar complex; and (2) greater development of marsh south of the inlets.  相似文献   


2.
Analysis of 75 vibracores from the backbarrier region of Kiawah Island, South Carolina reveals a complex association of three distinct stratigraphic sequences. Beach ridge progradation and orientation-controlled backbarrier development during the evolution of Kiawah Island, and resulted in deposition of: (1) a mud-rich central backbarrier sequence consisting of low marsh overlying fine-grained, tidal flat/lagoonal mud; (2) a sandy beach-ridge swale sequence consisting of high and low marsh overlying tidal creek channel and point bar sand, and foreshore/shoreface; and (3) a regressive sequence of sandy, mixed, and muddy tidal flats capped by salt marsh that occurs on the updrift end of the island. Central backbarrier deposits formed as a result of the development of the initial beach ridge on Kiawah Island. Formation of this beach ridge created a backbarrier lagoon in which fine-grained estuarine and tidal flat mud accumulated. Washovers, oyster mounds, and tidal creek deposits form isolated sand and/or shell-rich lenses in the lagoon. Spartina alterniflora low marsh prograded into the lagoon as the tidal flats aggraded. Barrier progradation and sediment bar-bypassing at Stono Inlet created digitate beach ridges on the northeast end of Kiawah Island. Within the beach-ridge swales, tidal flats were disconformably deposited on shoreface and foreshore sand of the older beach ridges. Tidal creek drainage systems evolved to drain the swales. These rapidly migrating creeks reworked the tidal flat, foreshore, and shoreface sediments while redepositing a fining-upward sequence of channel lag and point bar deposits, which served as a substrate for salt marsh colonization. This resultant regressive sedimentary package marks the culmination of barrier island development and estuary infilling. Given enough time and sedimentation, the backbarrier sequence will ultimately prograde over the barrier island, reworking dune, beach, and foreshore sediments to form the upper sand-rich bounding surface of the barrier lithosome. Preservation of the regressive sequence is dependent upon sediment supply and the relative rate of sea-level rise, but the reworking of barrier islands by tidal inlets and migrating tidal creeks greatly alter and complicate the stratigraphic sequence.  相似文献   

3.
Size and shape sorting in a Dutch tidal inlet   总被引:1,自引:0,他引:1  
A tidal inlet system with an outer tidal, delta, situated between two barrier islands along the north coast of Holland was studied for size and shape sorting. With size data different sand types can be distinguished and in individual samples distinct grain populations can be recognized in some cases. Graphs of shape values, plotted against the size intervals of samples also reveal the presence of different grain populations, together with their genetical significance. The following conclusions could be drawn. There is no sand transport directly from island to island. Sand up to 400 μm enters the tidal inlet, is sorted out in the tidal flat area and partly re-enters the sea via the outer tidal delta. On the delta, the sediment is split up again in different populations. A lag deposit is left behind on the frontal part of the delta. The rest of the sand either re-enters the tidal inlet cycle or contributes to the beach building of the next island. In the offshore environment, sand movement by wave-induced currents is restricted to the shallow zone. In deeper water, part of the sediment is relatively immobile and has preserved inherited characteristics from the early Holocene transgressive phase. In front of Ameland, fossil barrier-face deposits-are present, off Schiermonnikoog the sea floor contains old tidal channel deposits.  相似文献   

4.
Lower to Middle Turonian deposits within the Bohemian Cretaceous Basin (Central Europe) consist of coarse‐grained deltaic sandstones passing distally into fine‐grained offshore sediments. Dune‐scale cross‐beds superimposed on delta‐front clinoforms indicate a vigorous basinal palaeocirculation capable of transporting coarse‐grained sand across the entire depth range of the clinoforms (ca 35 m). Bi‐directional, alongshore‐oriented, trough cross‐set axes, silt drapes and reactivation surfaces indicate tidal activity. However, the Bohemian Cretaceous Basin at this time was over a thousand kilometres from the shelf break and separated from the open ocean by a series of small islands. The presence of tidally‐influenced deposits in a setting where co‐oscillating tides are likely to have been damped down by seabed friction and blocked by emergent land masses is problematic. The Imperial College Ocean Model, a fully hydrodynamic, unstructured mesh finite element model, is used to test the hypothesis that tidal circulation in this isolated region was capable of generating the observed grain‐size distributions, bedform types and palaeocurrent orientations. The model is first validated for the prediction of bed shear stress magnitudes and sediment transport pathways against the present‐day North European shelf seas that surround the British Isles. The model predicts a microtidal to mesotidal regime for the Bohemian Cretaceous Basin across a range of sensitivity tests with elevated tidal ranges in local embayments. Funnelling associated with straits increases tidal current velocities, generating bed shear stresses that were capable of forming the sedimentary structures observed in the field. The model also predicts instantaneous bi‐directional currents with orientations comparable with those measured in the field. Overall, the Imperial College Ocean Model predicts a vigorous tide‐driven palaeocirculation within the Bohemian Cretaceous Basin that would indisputably have influenced sediment dispersal and facies distributions. Palaeocurrent vectors and sediment transport pathways however vary markedly in the different sensitivity tests. Accurate modelling of these parameters, in this instance, requires greater palaeogeographic certainty than can be extracted from the available rock record.  相似文献   

5.
The Ouémé River estuary is located on the seasonally humid tropical coast of Benin, west Africa. A striking feature of this microtidal estuary is the presence of a large sand barrier bounding a 120 km2 circular central basin, Lake Nokoué, that is being infilled by heterogeneous fluvial deposits supplied by a relatively large catchment (50 000 km2). Borehole cores from the lower estuary show basal Pleistocene lowstand alluvial sediments overlain by Holocene transgressive–highstand lagoonal mud and by transgressive to probably early highstand tidal inlet and flood‐tidal delta sand deposited in association with non‐preserved transgressive sand barriers. The change in estuary‐mouth sedimentation from a transgressive barrier‐inlet system to a regressive highstand barrier reflects regional modifications in marine sand supply and in the cross‐barrier tidal flux associated with barrier‐inlet systems. As barrier formation west of the Ouémé River led to an increasingly rectilinear shoreline, the longshore drift cell matured, ensuring voluminous eastward transport of sand from the Volta Delta in Ghana, the major purveyor of sand, to the Ouémé embayment, 200 km east. Concomitantly, the number of tidal inlets, and the tidal flux associated with a hitherto interlinked lagoonal system on this coast, diminished. Complete sealing of Lake Nokoué has produced a large, permanently closed estuary, where tidal intrusion is assured through the interconnected coastal lagoon via an inlet located 60 km east. Since 1885, tides have entered the estuary directly through an artificial outlet cut across the sand barrier. Although precluding the seaward loss of fluvial sediments, permanent estuary‐mouth closure has especially deprived the highstand estuary of marine sand, a potentially important component in estuarine infill on wave‐dominated coasts. In spite of a significant fluvial sediment supply, estuarine infill has been moderate, because of the size of the central basin. Estuarine closure has resulted in two co‐existing highstand sediment suites, with limited admixture, the marine‐derived, estuary‐mouth barrier and upland‐derived back‐barrier sediments. This situation differs from that of mature barrier estuaries characterized by active fluvial‐marine sediment mixing and facies interfingering.  相似文献   

6.
《Sedimentology》2018,65(6):2202-2222
Sorted bedforms are widely present in sediment‐starved littoral and inner shelf settings; they are indicators for hydrodynamic conditions and a primary contributor for the subsurface structure. This study investigated the morphology and migration of sorted bedforms on the inner shelf of Long Beach Barrier Island, New York, USA , by repeat geophysical and geological surveys in 2001, 2005 and 2013 (following superstorm Sandy) involving swath bathymetry, backscatter, chirp seismic reflection data and grab sampling. Swath data revealed that the western sector, comprising the western 75% of the survey region, is dominated by NNE –SSW ‐oriented, 0·5 to 1·0 km wide sorted bedforms with highly asymmetrical cross‐sections, with steeper slopes and coarser sands on the eastern (stoss) flanks. Many secondary bedforms were also observed (north–south to north‐east/south‐west oriented lineation structures) at the western edges of coarse sand zones. The eastern sector displays an unusual sorted bedform pattern that is dominated by coarse‐grained substrate, with isolated patches of fine‐grained sands oriented north‐east/south‐west which are 0·15 to 1·0 km in length and ca 30 to 200 m in width, similar in scale and orientation to the secondary bedforms in the western sector. Comparison analysis of the swath data sets indicates that the primary transverse sorted bedform morphology within the western sector was largely stable over this time frame, although the swales were deepened following the storms. The coarse/fine sand boundaries did migrate, however, moving ca 1 to 5 m eastward between 2001 and 2005, and ca 5 to 20 m westward between 2005 and 2013; the higher migration rates (up to 2·5 m year−1) in the latter time period may be attributable to large storm forcing (for example, hurricanes Irene and Sandy). Significant north‐westward migration of the secondary bedforms and coarse sand patches in the western sector, as well as fine sand patches in the eastern sector were also observed; these features are far more mobile than the primary sorted bedforms, possibly because they are fine sand drifts that do not erode into the coarse substrate. Seismic reflection data revealed a transgressive ravinement beneath sorted bedforms, merging with the sea floor at the bottom of swales. The authors hypothesize that long‐term topographic migration of transverse sorted bedforms contributes to the formation and evolution of the ravinement.  相似文献   

7.
Barrier islands are important landforms in many coastal systems around the globe. Studies of modern barrier island systems are mostly limited to those of siliciclastic realms, where the islands are recognized as mobile features that form on transgressive coastlines and migrate landward as sea-level rises. Barrier islands of the ‘Great Pearl Bank’ along the United Arab Emirates coast are the best-known carbonate examples. These Holocene islands, however, are interpreted to be anchored by older deposits and immobile. The mid-Holocene to late-Holocene depositional system at Al Ruwais, northern Qatar, provides an example of a mobile carbonate barrier island system, perhaps more similar to siliciclastic equivalents. Sedimentological and petrographic analyses, as well as 14C-dating of shells and biogenic remains from vibracored sediments and surface deposits, show that after 7000 years ago a barrier system with a narrow back-barrier lagoon formed along what is now an exposed coastal zone, while, contemporaneously, a laterally-extensive coral reef was forming immediately offshore. After 1400 years ago the barrier system was forced to step ca 3 km seaward in response to a sea-level fall of less than 2 m, where it re-established itself directly on the mid-Holocene reef. Since that time, the barrier has retreated landward as much as 1000 m to its current position, exposing previously-deposited back-barrier lagoonal sediment at the open-coast shoreline. In modern neritic warm-water carbonate settings mobile barrier island systems are rare. Their construction and migration may be inhibited by reef formation, early cementation, and the relative inefficiency of sourcing beach sediments from open carbonate shelves. Carbonate barrier island systems likely formed more commonly during geological periods when ramps and unrimmed shelves predominated and in calcite seas, when meteoric cementation was minimized as a result of initial calcitic allochem mineralogy. As with their siliciclastic analogues, however, recognition of the influence of these transient landforms in the rock record is challenging.  相似文献   

8.
Climbing dune‐scale cross‐statification is described from Late Ordovician paraglacial successions of the Murzuq Basin (SW Libya). This depositional facies is comprised of medium‐grained to coarse‐grained sandstones that typically involve 0·3 to 1 m high, 3 to 5 m in wavelength, asymmetrical laminations. Most often stoss‐depositional structures have been generated, with preservation of the topographies of formative bedforms. Climbing‐dune cross‐stratification related to the migration of lower‐flow regime dune trains is thus identified. Related architecture and facies sequences are described from two case studies: (i) erosion‐based sandstone sheets; and (ii) a deeply incised channel. The former characterized the distal outwash plain and the fluvial/subaqueous transition of related deltaic wedges, while the latter formed in an ice‐proximal segment of the outwash plain. In erosion‐based sand sheets, climbing‐dune cross‐stratification results from unconfined mouth‐bar deposition related to expanding, sediment‐laden flows entering a water body. Within incised channels, climbing‐dune cross‐stratification formed over eddy‐related side bars reflecting deposition under recirculating flow conditions generated at channel bends. Associated facies sequences record glacier outburst floods that occurred during early stages of deglaciation and were temporally and spatially linked with subglacial drainage events involving tunnel valleys. The primary control on the formation of climbing‐dune cross‐stratification is a combination between high‐magnitude flows and sediment supply limitations, which lead to the generation of sediment‐charged stream flows characterized by a significant, relatively coarse‐grained, sand‐sized suspension‐load concentration, with a virtual absence of very coarse to gravelly bedload. The high rate of coarse‐grained sand fallout in sediment‐laden flows following flow expansion throughout mouth bars or in eddy‐related side bars resulted in high rates of transfer of sands from suspension to the bed, net deposition on bedform stoss‐sides and generation of widespread climbing‐dune cross‐stratification. The later structure has no equivalent in the glacial record, either in the ancient or in the Quaternary literature, but analogues are recognized in some flood‐dominated depositional systems of foreland basins.  相似文献   

9.
海南岛南渡江河口动力沉积模式   总被引:1,自引:0,他引:1  
河口是一个迅速变化的、动态的海岸巨系统。作为陆地河流和和海洋过程的重要链接,河口的动力沉积过程一直是陆海相互作用研究的核心和焦点内容。本文基于2011年8月在南渡江河口采集的大范围表层沉积物样品,利用经验正交函数分析技术(EOF)对河口的动力沉积特征进行研究。结果表明:南渡江河口海床表层沉积物主要以砂为主,沉积物总体偏粗;河口的动力沉积特征自陆向海可分为三种动力沉积模式:①波控模式,该模式主要分布在河口地区10 m以浅的近岸区域,呈与岸线平行的带状分布,其表层沉积物以粉砂质砂为主,分选较差;②径、潮流耦合作用下的沉积模式,在径流和潮流的共同控制作用下,沉积物主要表现为粒径较粗,该模式呈扇形分布,其中20 m以浅河口海床受控于径流和潮流的共同作用,20 m以深海床表现为潮流控制的沉积模式;③台风或风暴潮控制的沉积模式,即整个河口海床都表现出受控于台风或者风暴潮作用的沉积特征,沉积物主要是以粗砂为主。常态作用下,河口以径、潮流控制的沉积模式为主,波浪、径流和潮流以及潮流控制的沉积模式自陆向海的规律性分布体现出南渡江河口近岸以波浪作用为主,而离岸则受河口尤其是洪水作用形成的喷射流以及沿岸潮流的影响。此外,尽管南渡江河口在过去的成果中将其归纳为波控河口,但目前的研究发现:该河口区域沉积类型变化明显受控于不同的动力作用,河口形态以及琼州海峡的障蔽和“狭管效应”为河口沉积环境变化的主要控制因素。  相似文献   

10.
The Lower Silurian siliciclastic Coralliferous Group is shown to have been deposited in an intra‐shelf position 10–15 km south of the palaeogeographic shelf‐break of the Welsh Basin. After a phase of thermal subsidence related to the development of the predominantly Llandovery Skomer Volcanic Group, the shelf basin was transgressed. This transgression was punctuated by an episode of tectonic uplift in southern Pembrokeshire, resulting in subaerial exposure of the shelf and a significant basinward shift in sedimentary environments. Erosion and sediment bypass ensued, with coarse‐grained low‐sinuosity fluvial channels transporting sediment to the northerly Welsh Basin, where significant submarine fans developed. During the early Telychian, renewed transgression took place, with lowstand gravels being ravined and reworked into parasequences of the transgressive systems tract. These thin, coarse‐grained parasequences record deposition within high‐energy wave‐dominated shoreface/inner shelf environments. Further coastal onlap resulted in the closing down of significant coarse‐grained sediment supply, with the remaining Coralliferous Group being dominated by wave‐influenced silts, mud‐shales and thin sandstones comprising the highstand systems tract. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Topsail Sound is a marsh-filled barrier lagoon in southeastern North Carolina. This study quantified changes within a 477-ha tidal marsh located landward of Lea and Coke islands in southern Topsail Sound. Aerial photographs from 1949, 1966, and 1984 were enlarged, and sample areas of salt marsh were digitized and compared. Since 1949, Old Topsail Inlet has migrated southwest 1.2 km. As the inlet migrated, new Spartina alterniflora marsh colonized 33.2 ha of intertidal sand flats within the inlet flood tidal delta, adjacent islands, and primary tidal creeks. Landward of the flood tidal delta, site specific gains and losses of marsh were recorded. It is estimated that since 1949, approximately 34.1 ha of the marsh area occupying the zone landward of the flood tidal delta has drowned. This loss of marsh, combined with the colonization of marsh mentioned above, resulted in a net decrease of 1 ha in the total area of marsh. This study provides evidence that, although lagoonal marshes may be drowning as a result of soil waterlogging, reduced sediment supply, and sea-level rise, potential marsh environments are created by oceanic inputs of sand when inlets migrate.  相似文献   

12.
Heterozoan temperate‐water carbonates mixed with varying amounts of terrigenous grains and muddy matrix (Azagador limestone) accumulated on and at the toe of an inherited escarpment during the late Tortonian–early Messinian (late Miocene) at the western margin of the Almería–Níjar Basin in south‐east Spain. The escarpment was the eastern end of an uplifting antiform created by compressive folding of Triassic rocks of the Betic basement. Channelized coralline‐algal/bryozoan rudstone to coarse‐grained packstone, together with matrix‐supported conglomerate, are the dominant lithofacies in the higher outcrops, comprising the deposits on the slope. These sediments mainly fill small canyon‐shaped, half‐graben depressions formed by normal faults active before, during and after carbonate sedimentation. Roughly bedded and roughly laminated coralline‐algal/bryozoan rudstone to coarse‐grained packstone are the main lithofacies forming an apron of four small (kilometre‐scale) lobes at the toe of the south‐eastern side of the escarpment (Almería area). Channelized and roughly bedded coralline‐algal/bryozoan rudstone to coarse‐grained packstone, conglomerates, packstone and sandy silt accumulated in a small channel‐lobe system at the toe of the north‐eastern side of the escarpment (Las Balsas area). Carbonate particles and terrigenous grains were sourced from shallow‐water settings and displaced downslope by sediment density flows that preferentially followed the canyon‐shaped depressions. Roughly laminated rudstone to packstone formed by grain flows on the initially very steep slope, whereas the rest of the carbonate lithofacies were deposited by high‐density turbidite currents. The steep escarpment and related break‐in‐slope at the toe favoured hydraulic jumps and the subsequent deposition of coarse‐grained, low‐transport efficiency skeletal‐dominated sediment in the apron lobes. Accelerated uplift of the basement caused a relative sea‐level fall resulting in the formation of outer‐ramp carbonates on the apron lobes, which were in turn overlain by lower Messinian coral reefs. The Almería example is the first known ‘base of slope’ apron within temperate‐water carbonate systems.  相似文献   

13.
The Barataria barrier coast formed between two major distributaries of the Mississippi River delta: the Plaquemines deltaic headland to the east and the Lafourche deltaic headland to the west. Rapid relative sea‐level rise (1·03 cm year?1) and other erosional processes within Barataria Bay have led to substantial increases in the area of open water (> 775 km2 since 1956) and the attendant bay tidal prism. Historically, the increase in tidal discharge at inlets has produced larger channel cross‐sections and prograding ebb‐tidal deltas. For example, the ebb delta at Barataria Pass has built seaward > 2·2 km since the 1880s. Shoreline erosion and an increasing bay tidal prism also facilitated the formation of new inlets. Four major lithofacies characterize the Barataria coast ebb‐tidal deltas and associated sedimentary environments. These include a proximal delta facies composed of massive to laminated, fine grey‐brown to pale yellow sand and a distal delta facies consisting of thinly laminated, grey to pale yellow sand and silty sand with mud layers. The higher energy proximal delta deposits contain a greater percentage of sand (75–100%) compared with the distal delta sediments (60–80%). Associated sedimentary units include a nearshore facies consisting of horizontally laminated, fine to very fine grey sand with mud layers and an offshore facies that is composed of grey to dark grey, laminated sandy silt to silty clay. All facies coarsen upwards except the offshore facies, which fines upwards. An evolutionary model is presented for the stratigraphic development of the ebb‐tidal deltas in a regime of increasing tidal energy resulting from coastal land loss and tidal prism growth. Ebb‐tidal delta facies prograde over nearshore sediments, which interfinger with offshore facies. The seaward decrease in tidal current velocity of the ebb discharge produces a gradational contact between proximal and distal tidal delta facies. As the tidal discharge increases and the inlet grows in dimensions, the proximal and distal tidal delta facies prograde seawards. Owing to the relatively low gradient of the inner continental shelf, the ebb‐tidal delta lithosome is presently no more than 5 m thick and is generally only 2–3 m in thickness. The ebb delta sediment is sourced from deepening of the inlet and the associated channels and from the longshore sediment transport system. The final stage in the model envisages erosion and segmentation of the barrier chain, leading to a decrease in tidal discharge through the former major inlets. This process ultimately results in fine‐grained sedimentation seaward of the inlets and the encasement of the ebb‐tidal delta lithosome in mud. The ebb‐tidal deltas along the Barataria coast are distinguished from most other ebb deltas along sand‐rich coasts by their muddy content and lack of large‐scale stratification produced by channel cut‐and‐fills and bar migration.  相似文献   

14.
The literature on incised river valley sedimentology is dominated by studies of sediment‐rich systems in which the valley has been filled during and/or shortly after drowning. In contrast, the Holocene evolution of the Kosi Lagoon, South Africa (an incised coastal plain river valley) took place under very low sedimentation rates which have produced a distinctive stratigraphy and contemporary sedimentary environments. The findings are based on a synthesis of the results of studies of seismic stratigraphy, sediment distribution, morphodynamics and geomorphology. Barrier migration was prevented by a high pre‐Holocene dune barrier against which Holocene coastal deposits accumulated in an aggradational sequence. Holocene evolution of the back barrier involved: (i) drowning of the incised valley; (ii) wave‐induced modification of the back‐barrier shoreline leading to segmentation during the highstand; and (iii) marine sedimentation adjacent to the tidal inlet. Segmentation has divided the estuary into a series of geochemically and sedimentologically distinctive basins connected by channels in the estuarine barriers. The seismic stratigraphy of the back barrier essentially lacks a transgressive systems tract, shoreline modification and deposition having been accomplished during the highstand. The lack of historical geomorphological change suggests that the system has achieved morphological equilibrium with ambient energy conditions and low sediment supply. This study presents a classification for estuarine incised valley fills based on the balance between sea‐level rise and sedimentation in which Kosi represents a ‘give‐up’ estuary where much of the relict incised channel form is drowned and preserved. It exhibits a fundamentally different set of evolutionary processes and stratigraphic sequences to those of the better known incised valley systems in which sedimentation either keeps pace with sea‐level (‘keep‐up’ estuaries) or occurs after initial drowning (‘catch‐up’ estuaries).  相似文献   

15.
渤海湾西部表层沉积物粒度特征与沉积混合   总被引:2,自引:0,他引:2  
田立柱  耿岩  裴艳东 《地质通报》2010,29(5):668-674
根据渤海湾西部135个表层沉积物样品的粒度分析结果,分析了表层沉积物的粒度特征与规律。整体上由研究区东北部沿海岸向南沉积物粒度变细,由砂和粉砂质砂变为砂质粉砂,再变为粘土质粉砂。沉积物粒度频率曲线显示,由研究区东北部至北部,沉积物粗组分含量减少,由单峰逐渐过渡为主峰或弱峰,到中部粗组分减少为粗尾形态,到南部粗组分几乎缺失;而沉积物细组分的变化趋势则与之相反。沉积物粗组分在粒度频率曲线上的表现由单峰逐渐过渡至主峰或次峰,粗峰含量减少,到中部粗组分减少为粗尾形态,到南部粗组分几乎消失;而沉积物细组分的变化趋势则与之相反。沉积物粒度参数的平面分布规律和粒度参数之间的相关性变化形态显示出粗细2种母质组分以不同比例的沉积混合的特征,即来自东北部的粗组分与来自南部的细组分发生混合,这可能主要与区内双向的沿岸环流输运有关。  相似文献   

16.
This study presents a detailed reconstruction of the sedimentary effects of Holocene sea‐level rise on a modern coastal barrier system. Increasing concern over the evolution of coastal barrier systems due to future accelerated rates of sea‐level rise calls for a better understanding of coastal barrier response to sea‐level changes. The complex evolution and sequence stratigraphic framework of the investigated coastal barrier system is reconstructed using facies analysis, high‐resolution optically stimulated luminescence and radiocarbon dating. During the formation of the coastal barrier system starting 8 to 7 ka rapid relative sea‐level rise outpaced sediment accumulation. Not before rates of relative sea‐level rise had decreased to ca 2 mm yr?1 did sediment accumulation outpace sea‐level rise. From ca 5·5 ka, rates of regionally averaged sediment accumulation increased to 4·3 mm yr?1 and the back‐barrier basin was filled in. This increase in sediment accumulation resulted from retreat of the barrier island and probably also due to formation of a tidal inlet close to the study area. Continued transgression and shoreface retreat created a distinct hiatus and wave ravinement surface in the seaward part of the coastal barrier system before the barrier shoreline stabilized between 5·0 ka and 4·5 ka. Back‐barrier shoreline erosion due to sediment starvation in the back‐barrier basin was pronounced from 4·5 to 2·5 ka but, in the last 2·5 kyr, barrier sedimentation has kept up with and outpaced sea‐level. In the last 0·4 kyr the coastal barrier system has been prograding episodically. Sediment accumulation shows considerable variation, with periods of rapid sediment deposition and periods of non‐deposition or erosion resulting in a highly punctuated sediment record. The study demonstrates how core‐based facies interpretations supported by a high‐resolution chronology and a well‐documented sea‐level history allow identification of depositional environments, erosion surfaces and hiatuses within a very homogeneous stratigraphy, and allow a detailed temporal reconstruction of a coastal barrier system in relation to sea‐level rise and sediment supply.  相似文献   

17.
M. Felix 《Sedimentology》2002,49(3):397-419
A two‐dimensional numerical model is used to describe the flow structure of turbidity currents in a vertical plane. To test the accuracy of the model, it is applied to historical flows in Bute Inlet and the Grand Banks flow. The two‐dimensional spatial and temporal distributions of velocity and sediment concentration and non‐dimensionalized vertical profiles of velocity, turbulent kinetic energy and sediment concentration are discussed for several simple computational currents. The flows show a clear interaction between velocity, turbulence and sediment distribution. The results of the numerical tests show that flows with fine‐grained sediment have low vertical and high horizontal gradients of velocity and sediment concentration, show little increase in flow thickness and decelerate slowly. Steadiness and uniformity in these flows are comparable for velocity and concentration. In contrast, flows with coarse‐grained sediment have high vertical and low horizontal velocity gradients and high horizontal concentration gradients. These flows grow considerably in thickness and decelerate rapidly. Steadiness and uniformity in flows with coarse‐grained sediment are different for velocity and concentration. The results show the influence of spatial and temporal flow structure on flow duration and sediment transport.  相似文献   

18.
基于海南西部四更沙及其邻近海域185个底质的粒度数据,并结合研究区动力状况和水深地形特征,研究表层沉积物的组分和类型分布、粒度参数及其沉积环境分区。结果表明:①研究区沉积物类型多样,包括12种沉积类型,以砂质粉砂、粉砂、粉砂质砂和含砾砂为主,沉积物平均粒径变化范围较大(-0.70~7.13 φ),且大体呈现由北向南逐渐变细的分布趋势;②运用Fleming的三角图式,结合物源状况及地形地貌条件,对沉积环境进行划分,将研究区划分为四更沙岸外海滨沉积区、北黎湾中部沉积区和八所港近岸沉积区等3个沉积区;③研究区沉积物分布特征受沉积物来源和水动力及地形条件共同影响。横向分布上,西部主要受强潮流输沙影响,东部近岸则主要受波浪掀沙和搬运作用影响,表现为两侧粗,中间相对较细的特征。纵向上,四更沙岸外海滨沉积区,沉积物主要受昌化江影响,粒径粗,表现为河口沉积特征;北黎湾中部沉积区,沉积物粒径分布范围广,表现为较强的过渡区特性;八所港近岸沉积区,沉积物粒径最细,泥沙来源主要为外海带来的泥沙。  相似文献   

19.
Flume experiments were performed to study the flow properties and depositional characteristics of high‐density turbidity currents that were depletive and quasi‐steady to waning for periods of several tens of seconds. Such currents may serve as an analogue for rapidly expanding flows at the mouth of submarine channels. The turbidity currents carried up to 35 vol.% of fine‐grained natural sand, very fine sand‐sized glass beads or coarse silt‐sized glass beads. Data analysis focused on: (1) depositional processes related to flow expansion; (2) geometry of sediment bodies generated by the depletive flows; (3) vertical and horizontal sequences of sedimentary structures within the sediment bodies; and (4) spatial trends in grain‐size distribution within the deposits. The experimental turbidity currents formed distinct fan‐shaped sediment bodies within a wide basin. Most fans consisted of a proximal channel‐levee system connected in the downstream direction to a lobe. This basic geometry was independent of flow density, flow velocity, flow volume and sediment type, in spite of the fact that the turbidity currents of relatively high density were different from those of relatively low density in that they exhibited two‐layer flow, with a low‐density turbulent layer moving on top of a dense layer with visibly suppressed large‐scale turbulence. Yet, the geometry of individual morphological elements appeared to relate closely to initial flow conditions and grain size of suspended sediment. Notably, the fans changed from circular to elongate, and lobe and levee thickness increased with increasing grain size and flow velocity. Erosion was confined to the proximal part of the leveed channel. Erosive capacity increased with increasing flow velocity, but appeared to be constant for turbidity currents of different grain size and similar density. Structureless sediment filled the channel during the waning stages of the turbidity currents laden with fine sand. The adjacent levee sands were laminated. The massive character of the channel fills is attributed to rapid settling of suspension load and associated suppression of tractional transport. Sediment bypassing prevailed in fan channels composed of very fine sand and coarse silt, because channel floors remained fully exposed until the end of the experiments. Lobe deposits, formed by the fine sand‐laden, high‐density turbidity currents, contained massive sand in the central part grading to plane parallel‐laminated sand towards the fringes. The depletive flows produced a radial decrease in mean grain size in the lobe deposits of all fans. Vertical trends in grain size comprised inverse‐to‐normal grading in the levees and in the thickest part of the lobes, and normal grading in the channel and fringes of the fine sandy fans. The inverse grading is attributed to a process involving headward‐directed transport of relatively fine‐grained and low‐concentrated fluid at the level of the velocity maximum of the turbidity current. The normal grading is inferred to denote the waning stage of turbidity‐current transport.  相似文献   

20.
Mangrove forests and saltmarshes are important habitats for carbon (C) sequestration in the coastal zone but variation in rates of C sequestration and the factors controlling sequestration are poorly understood. We assessed C sequestration in Moreton Bay, South East Queensland in mangrove forests and tidal marshes that span a range of environmental settings and plant communities, including mangrove forests and tidal marshes on the oligotrophic sand islands of the eastern side of Moreton Bay and on the nutrient enriched, western side of the bay adjacent to the city of Brisbane. We found that rates of C sequestration in sediments were similar among mangrove forests over the bay, despite large differences in the C density of sediments, because of different rates of vertical accretion of sediments. The C sequestration on the oligotrophic sand island tidal marshes, dominated by Juncus kraussii, had the highest rate of C sequestration in the bay while the western saltmarshes, which were dominated by Sarcocornia quinqueflora, had the lowest rate of C sequestration. Our data indicate C sequestration varies among different tidal wetland plant community types, due to variation in sediment characteristics and rates of sediment accretion over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号