首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Climbing‐ripple cross‐lamination is most commonly deposited by turbidity currents when suspended load fallout and bedload transport occur contemporaneously. The angle of ripple climb reflects the ratio of suspended load fallout and bedload sedimentation rates, allowing for the calculation of the flow properties and durations of turbidity currents. Three areas exhibiting thick (>50 m) sections of deep‐water climbing‐ripple cross‐lamination deposits are the focus of this study: (i) the Miocene upper Mount Messenger Formation in the Taranaki Basin, New Zealand; (ii) the Permian Skoorsteenberg Formation in the Tanqua depocentre of the Karoo Basin, South Africa; and (iii) the lower Pleistocene Magnolia Field in the Titan Basin, Gulf of Mexico. Facies distributions and local contextual information indicate that climbing‐ripple cross‐lamination in each area was deposited in an ‘off‐axis’ setting where flows were expanding due to loss of confinement or a decrease in slope gradient. The resultant reduction in flow thickness, Reynolds number, shear stress and capacity promoted suspension fallout and thus climbing‐ripple cross‐lamination formation. Climbing‐ripple cross‐lamination in the New Zealand study area was deposited both outside of and within channels at an inferred break in slope, where flows were decelerating and expanding. In the South Africa study area, climbing‐ripple cross‐lamination was deposited due to a loss of flow confinement. In the Magnolia study area, an abrupt decrease in gradient near a basin sill caused flow deceleration and climbing‐ripple cross‐lamination deposition in off‐axis settings. Sedimentation rate and accumulation time were calculated for 44 climbing‐ripple cross‐lamination sedimentation units from the three areas using TDURE, a mathematical model developed by Baas et al. (2000) . For Tc divisions and Tbc beds averaging 26 cm and 37 cm thick, respectively, average climbing‐ripple cross‐lamination and whole bed sedimentation rates were 0·15 mm sec?1 and 0·26 mm sec?1 and average accumulation times were 27 min and 35 min, respectively. In some instances, distinct stratigraphic trends of sedimentation rate give insight into the evolution of the depositional environment. Climbing‐ripple cross‐lamination in the three study areas is developed in very fine‐grained to fine‐grained sand, suggesting a grain size dependence on turbidite climbing‐ripple cross‐lamination formation. Indeed, the calculated sedimentation rates correlate well with the rate of sedimentation due to hindered settling of very fine‐grained and fine‐grained sand–water suspensions at concentrations of up to 20% and 2·5%, respectively. For coarser grains, hindered settling rates at all concentrations are much too high to form climbing‐ripple cross‐lamination, resulting in the formation of massive/structureless S3 or Ta divisions.  相似文献   

2.
The canyon mouth is an important component of submarine‐fan systems and is thought to play a significant role in the transformation of turbidity currents. However, the depositional and erosional structures that characterize canyon mouths have received less attention than other components of submarine‐fan systems. This study investigates the facies organization and geometry of turbidites that are interpreted to have developed at a canyon mouth in the early Pleistocene Kazusa forearc basin on the Boso Peninsula, Japan. The canyon‐mouth deposits have the following distinctive features: (i) The turbidite succession is thinner than both the canyon‐fill and submarine‐fan successions and is represented by amalgamation of sandstones and pebbly sandstones as a result of bypassing of turbidity currents. (ii) Sandstone beds and bedsets show an overall lenticular geometry and are commonly overlain by mud drapes, which are massive and contain fewer bioturbation structures than do the hemipelagic muddy deposits. (iii) The mud drapes have a microstructure characterized by aggregates of clay particles, which show features similar to those of fluid‐mud deposits, and are interpreted to represent deposition from fluid mud developed from turbidity current clouds. (iv) Large‐scale erosional surfaces are infilled with thick‐bedded to very thick‐bedded turbidites, which show lithofacies quite similar to those of the surrounding deposits, and are considered to be equivalent to scours. (v) Concave‐up erosional surfaces, some of which face in the upslope direction, are overlain by backset bedding, which is associated with many mud clasts. (vi) Tractional structures, some of which are equivalent to coarse‐grained sediment waves, were also developed, and were overlain locally by mud drapes, in association with mud drape‐filled scours, cut and fill structures and backset bedding. The combination of these outcrop‐scale erosional and depositional structures, together with the microstructure of the mud drapes, can be used to identify canyon‐mouth deposits in ancient deep‐water successions.  相似文献   

3.
Preserved in Quebrada de las Lajas, near San Juan, Argentina, is an ancient subaqueous proglacial sedimentary succession that includes a small‐scale (ca 50 m thick and ca 200 m wide) channel–levée system with excellent exposure of the channel axis and levée sediments. Coeval deposition of both the channel axis and the levées can be demonstrated clearly by lateral correlation of individual beds. The channel axis consists predominantly of a disorganized, pebble to boulder conglomerate with a poorly sorted matrix. The channel axis varies from 10 to 20 m wide and has a total amalgamated thickness of around 50 m. Beds fine gradationally away from the cobble–boulder conglomerates of the channel axis within a few metres, transitioning to well‐organized pebble to cobble conglomerates and sandstones of the channel margin. Within 60 m outboard of the channel axis in both directions, perpendicular to the trend of the channel axis, the mean grain size of the beds in the levées is silt to fine‐grained sand. Deposits in this channel–levée system are the product of both debris flows (channel axis) and co‐genetic turbidity currents (channel margins and levées). Bed thicknesses in the levées increase for up to 10 to 25 m away from the channel axis, beyond which bed thicknesses decrease with increasing distance. The positions of the bed thickness maxima define the levée crests, and the thinning beds constitute the outer levée slopes. From these relationships it is clear that the levée crest migrated both away from and toward the channel axis, and varied in height above the channel axis from 4 to 5 m (undecompacted), whereas the height of the levée crest relative to the distal levée varied from 4·5 to 10 m, indicating that the channel was at times super‐elevated relative to the distal levée. Bed thickness decay on the outside of the levée crest can be described quite well with a power‐law function (R2 = 0·85), whereas the thickness decay from the levée crest toward the channel axis follows a linear function (R2 = 0·78). Grain‐size changes are quite predictable from the channel margin outward, and follow logarithmic (R2 = 0·77) or power‐law (R2 = 0·72) decay curves, either of which fit the data quite well. This study demonstrates that, in at least this case: (i) levée thickness trends can be directly related to channel‐flow processes; (ii) individual bed thickness changes may control overall levée geometry; and (iii) levée and channel deposits can be coeval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号