首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
2.
Shelf‐edge deltas are a key depositional environment for accreting sediment onto shelf‐margin clinoforms. The Moruga Formation, part of the palaeo‐Orinoco shelf‐margin sedimentary prism of south‐east Trinidad, provides new insight into the incremental growth of a Pliocene, storm wave‐dominated shelf margin. Relatively little is known about the mechanisms of sand bypass from the shelf‐break area of margins, and in particular from storm wave‐dominated margins which are generally characterized by drifting of sand along strike until meeting a canyon or channel. The studied St. Hilaire Siltstone and Trinity Hill Sandstone succession is 260 m thick and demonstrates a continuous transition from gullied (with turbidites) uppermost slope upward to storm wave‐dominated delta front on the outermost shelf. The basal upper‐slope deposits are dominantly mass‐transport deposited blocks, as well as associated turbidites and debrites with common soft‐sediment‐deformed strata. The overlying uppermost slope succession exhibits a spectacular set of gullies, which are separated by abundant slump‐scar unconformities (tops of rotational slides), then filled with debris‐flow conglomerates and sandy turbidite beds with interbedded mudstones. The top of the study succession, on the outer‐shelf area, contains repeated upward‐coarsening, sandstone‐rich parasequences (2 to 15 m thick) with abundant hummocky and swaley cross‐stratification, clear evidence of storm‐swell and storm wave‐dominated conditions. The observations suggest reconstruction of the unstable shelf margin as follows: (i) the aggradational storm wave‐dominated, shelf‐edge delta front became unstable and collapsed down the slope; (ii) the excavated scars of the shelf margin became gullied, but gradually healed (aggraded) by repeated infilling by debris flows and turbidites, and then new gullying and further infilling; and (iii) a renewed storm wave‐dominated delta‐front prograded out across the healed outer shelf, re‐establishing the newly stabilized shelf margin. The Moruga Formation study, along with only a few others in the literature, confirms the sediment bypass ability of storm wave‐dominated reaches of shelf edges, despite river‐dominated deltas being, by far, the most efficient shelf‐edge regime for sediment bypass at the shelf break.  相似文献   

3.
The evolution of incised valleys is an important area of research due to the invaluable data it provides on sea‐level variations and depositional environments. In this article the sedimentary evolution of the Ría de Ferrol (north‐west Spain) from the Last Glacial Maximum to the present is reconstructed using a multidisciplinary approach, combining seismic and sedimentary facies, and supported by radiocarbon data and geochemical proxies to distinguish the elements of sedimentary architecture within the ria infill. The main objectives are: (i) to analyse the ria environment as a type of incised valley to evaluate the response of the system to the different drivers; (ii) to investigate the major controlling factors; and (iii) to explore the differentiation between rias and estuaries. As a consequence of the sea‐level rise subsequent to the Last Glacial Maximum (ca 20 kyr bp ), an extensive basin, drained by a braided palaeoriver, evolved into a tide‐dominated estuary and finally into a ria environment. Late Pleistocene and Holocene high‐frequency sea‐level variations were major factors that modulated the type of depositional environments and their evolution. Another major modulating factor was the antecedent morphology of the ria, with a rock‐incised narrow channel in the middle of the basin (the Ferrol Strait), which influenced the evolution of the ria as it became flooded during Holocene transgression. The strait acted as a rock‐bounded ‘tidal inlet’ enhancing the tidal erosion and deposition at both ends, i.e. with an ebb‐tidal delta in the outer sector and tidal sandbanks in the inner sector. The final step in the evolution of the incised valley into the modern‐defined ria system was driven by the last relative sea‐level rise (after 4 kyr bp ) when the river mouths retreated landward and a single palaeoriver was converted into minor rivers and streams with scattered mouths in an extensive coastal area.  相似文献   

4.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号