共查询到20条相似文献,搜索用时 31 毫秒
1.
Stratification in channel belts is the key to reconstructing formative channel dimensions and palaeoflow conditions; this requires an understanding of the relation between river morphodynamics and set thickness. So far, theories for reconstruction of the original morphology from preserved stratification have not been tested for meandering river channels due to the lack of detailed bathymetry. This paper reports the results of an experiment that reproduced a dynamic meandering gravel‐bed river with the objectives to: (i) test the prediction of set thickness as a function of the morphology formed by a meandering river channel; and (ii) explore and explain spatial and temporal set thickness variations in the resulting channel belt. High‐resolution measurements of time‐dependent surface elevation were used to quantitatively relate the preserved stratification to the meandering river morphology. Mean set thickness agrees well with the theoretical prediction from channel morphology. The mean preserved set thickness was 30% of the mean channel depth. Due to the absence of aggradation during the experiment, this provides a lower limit for the preserved mean set thickness which is also to be expected for aggrading systems, because reworking is some orders of magnitude faster than aggradation. Furthermore, the time required to mature a channel belt and its set thickness distribution was about the same as the time required to develop and propagate bends that fill the channel belt surface. Finally, there was much systematic spatial variation in set thickness related to repetitive point bar growth and chute cut‐off. Undisturbed and thick sets occurred close to channel belt margins and more irregular stratification with stacked thinner sets was observed in the centre of the channel belt. 相似文献
2.
基于能量守恒原理,通过实体模型试验的方法,对河流发生弯曲的机理进行了探讨。研究认为,河流具有弯曲的自然属性,其弯曲程度主要取决于水流能量的大小,与流量、比降有很大关系;河流发生弯曲是水流为补偿能量损失得以保持运动而形成的一种自然造床过程,河流在运动过程中,通过弯曲形成上游壅水,增加势能,使下游比降相对增大,动能得以增加,从而保持河段内的水沙输移达到相对平衡,此即"动能自补偿"的弯曲机理;河流弯曲程度与需要补偿的动能多少有关,河段上下断面的动能差越大,河段弯曲系数就越大。"动能自补偿"的机理得到了实验室观测结果的验证和野外原型定位观测资料的佐证。 相似文献
3.
Valley sequences of Late Quaternary alluvial units reflect alluvial preservation as well as alluvial production factors. Effects of lateral channel migration, incision, aggradation and channel stability on preservation potential are explored and then considered in the light of 14 available data sets: cartographically dated and model data based on lateral channel migration; well‐mapped and dated Late Quaternary valley unit surveys; and composite age–frequency plots for dated alluvial units and flood sediments. Despite much expectable variation between sites, and the complex effects of river‐activity combinations, a common characteristic of the data sets examined is the significance of preservation factors. Lateral migration tends to eliminate older units as it creates new alluvial deposits, whereas incision may lead to the preferential preservation of older units beyond the incision slot. Aggradational environments are likely to preserve more complete records, although simultaneous lateral migration may eliminate, possibly repeatedly, the upper parts of alluvial units. The common pattern of inset and incised streams within Pleistocene and early Holocene fills or bedrock gives finite extent to later units within narrowing valleys so that development of new valley‐floor units is necessarily at the expense of reprocessing earlier ones. Floods associated with both slack water deposits and berms are also responsible for the removal of accessible earlier materials, thus limiting the preserved record of earlier events. In light of these censoring effects of river activities, the sequence of preserved Late Quaternary units within UK sequences is reconsidered. It is concluded that preservation potential factors have led to spatial and temporal bias in the alluvial record, and that both here and elsewhere preservation potential needs to be considered systematically alongside variable sedimentation resulting from allogenic environmental factors when interpreting the alluvial archive. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
4.
以长春岭油田C107区块扶余油层为例,综合应用岩心、录井、动态及测试等资料,按层次分析的思路对曲流河储层进行了构型分析。在井上单河道砂体识别的基础上,采用相控对比方法进行了单河道砂体的井间对比。基于现代沉积,提出了"S"型、同向式、背向式和切割式4类点坝砂体的组合模式,结合点坝砂体厚度特征以及与其紧邻废弃河道分布特征,在研究区识别出8个点坝砂体,单个点坝砂体面积在0.02~0.16km2。综合录井、岩心和测井等资料,在单井侧积层识别的基础上,结合对子井分析法,计算出侧积层的倾角为5°左右,侧积体的宽度为25~70m,建立了点坝砂体内部构型定量模式。应用曲流河构型分析成果,指导了热采动态分析。 相似文献
5.
曲流河地层内部结构复杂,岩性界面具有穿时性,传统的地震相分析法不能满足油藏开发地质研究中对储层内部结构精细解释的需要,急需探索有效的地震解释方法。采用基于探地雷达的露头探测、点坝复合体三维正演模拟和实际地震资料相结合的方法,分析了地震资料频率和地层厚度对曲流河内部结构地震反射特征的影响,研究了利用地层切片解释曲流河沉积结构的原理和方法,建立了开发尺度的曲流河内部结构地震沉积学解释技术。研究发现:(1)高频地震资料中地震反射能够反映曲流河侧积复合体边界,而低频地震资料中反射同相轴与岩性界面一致;(2)不同厚度的点坝侧积单元地震反射特征存在差异,造成反射剖面的多解性。同时指出曲流河内部结构地震沉积学解释的技术关键:(1)发挥地震资料平面与剖面信息的相互约束和补充;(2)将地质体作为三维空间发育的成因体,利用其平面与剖面特征的成因联系指导解释;(3)级次化解释方法,在不同级次上采用针对性的解释方法。将该方法应用于墨西哥湾新近系地震沉积学解释,实现了曲流河点坝复合体内部结构的三维刻画。 相似文献
6.
对于已经进入注水开发中后期的油藏,开展储层构型研究是精细化油藏描述、深化剩余油分布认识的必要举措。本文以靖边油田梁镇区域延9曲流河储层为研究对象,结合岩芯、测井等资料,通过密井网解剖,识别不同级次的构型界面并分级次细分构型单元。本研究在梁镇区域主力油层延92-1单层内部划分出了3—5级构型界面;延92-1小层同期单河道之间以孤立式、对接式为主,不同期次河道垂向上以叠加式、切叠式为主,该小层整体上呈侧向拼接-垂向切叠式复合河道结构形式;在单河道内部识别出3个单一点坝,同时,在点坝内部识别出3个侧积层,4个侧积体构型单元。本次储层构型单元划分研究可以为下一步储层构型定量解剖及剩余油挖潜提供地质依据。 相似文献
7.
Sedimentological outcrop analysis and sub‐surface ground‐penetrating radar (GPR) surveys are combined to characterize the three‐dimensional sedimentary architecture of Quaternary coarse‐grained fluvial deposits in the Neckar Valley (SW Germany). Two units characterized by different architectural styles are distinguished within the upper part of the gravel body, separated by an erosional unconformity: (i) a lower unit dominated by trough‐shaped depositional elements with erosional, concave‐up bounding surfaces that are filled by cross‐bedded sets of mainly openwork and filled framework gravel; and (ii) an upper unit characterized by gently inclined sheets of massive and openwork gravels with thin, sandy interlayers that show lateral accretion on a lower erosional unconformity. The former is interpreted as confluence scour pool elements formed in a multi‐channel, possibly braided river system, the latter as extensive point bar deposits formed by the lateral migration of a meandering river channel. The lateral accretion elements are locally cut by chute channels mainly filled by gravels rich in fines, and by fine‐grained abandoned channel fills. The lateral accretion elements are associated with gravel dune deposits characterized by steeply inclined cross‐beds of alternating open and filled framework gravel. Floodplain fines with a cutbank and point bar morphology cover the gravel deposits. The GPR images, revealing the three‐dimensional geometries of the depositional elements and their stacking patterns, confirm a change in sedimentary style between the two stratigraphic units. The change occurred at the onset of the Holocene, as indicated by 14C‐dating of wood fragments, and is related to a re‐organization of the fluvial system that probably was driven by climatic changes. The integration of sedimentological and GPR results highlights the heterogeneity of the fluvial deposits, a factor that is important for modelling groundwater flow in valley‐fill aquifers. 相似文献
8.
9.
曲流河古河道储层构型精细解剖——以孤东油田七区西馆陶组为例 总被引:9,自引:3,他引:9
以胜利油区孤东油田七区西为例,在沉积微相研究的基础上,主要应用研究区岩心、测井,动态等资料,对曲流河古河道砂体进行了系统的储层层次构型精细解剖。在点坝定量分布模式的指导下,根据点坝砂体垂向上典型的正韵律、砂体厚度大以及紧邻废弃河道分布等特征,在研究区Ng522单层复合河道砂体内部识别出2个单一点坝。综合露头和现代沉积的研究成果、经验公式预测以及对子井分析,建立了研究区点坝内部构型定量模式,以单井上识别的泥质侧积层作为依据,点坝内部定量模式及动态监测结果作为指导,进行模式拟合,达到系统解剖点坝内部构型的目的。建立了点坝内部泥质侧积层控制的剩余油分布模式,提出了采用在点坝砂体中上部钻水平井的方式开采侧积层控制的剩余油。点坝构型解剖成果在研究区得到了较好的应用效果,而且对类似油田储层精细研究及剩余分布预测都有较好的借鉴作用。 相似文献
10.
结合遥感影像、野外调查和形态统计,深入分析斜槽裁弯现象,将其划分为切滩冲刷、串沟冲刷和主流顶冲3种模式。切滩模式发生于洪水期间主流水流动力轴线偏向凸滩后,形成漫流水流冲刷,极可能在边滩形成新的斜槽。切滩裁弯的形态统计表明,弯道曲率半径与平均河宽之比约2.92,分流角约54.8°。串沟模式是前期洪水漫过河湾内侧洪泛平原,漫滩水流冲刷形成若干串沟,后续洪水沿串沟继续冲刷,串沟逐步横向展宽和向下游侵蚀,直至形成新的河槽。主流顶冲模式是水流顶冲河湾内侧河岸,形成湾状缺口,后续洪水持续顶冲湾状缺口,直至上下游水流贯通,形成斜槽裁弯。 相似文献
11.
克拉玛依油田一中区克拉玛依组S41小层组发育的低弯度曲流河储层为该区块的主要油层之一,目前由于缺乏相对应的精细地质模型,已严重影响了该区块的剩余油分布研究工作。为了解决上述问题,通过对山西省柳林地区二叠系石盒子组低弯度曲流河地质露头实地测量,应用层次分析法和构型要素分析法建立低弯度曲流河露头地质模型。使用该模型并充分利用岩心和测录井资料,对S41小层组沉积时期所发育的低弯度曲流河储层内部构型表征进行了预测,取得了较好的效果。研究表明,露头地质模型不仅对低弯度曲流河沉积模式的建立、单河道的划分,以及井间砂体的对比研究具有重要指导意义,而且能够准确的厘定井下区域单河道砂体及增生体规模、隔层密度、倾角和排列方式等,可为剩余油分布富集规律预测提供理论依据。 相似文献
12.
Simon A. Smith 《Geological Journal》1989,24(3):193-204
Previous studies of meandering gravel-bed rivers have illustrated a wide range of bar types. The River Tywi of South Wales shows that significant variations of accretionary style can also occur within a single river. There is a downstream decrease in the proportion of lateral bars to point bars and changes in the morphological characteristics of these point bars. Three types are recognized: simple, linguoid and multi-unit point bars. Sedimentation on the concave sides of meander bends is locally important. The changes of bar type are accompanied by different styles of channel behaviour. The River Tywi is interpreted to have deposited multilateral gravel sheets, composed of partially reworked and abandoned bars and dissected by palaeochannels and sloughs. Bar deposits consist of parallel-bedded gravel, inclined laterally-accreted gravel, local angle-of-repose foresets and inclined lenses of heterolithic beds. The proportion of the various sedimentary structures and the geometry of the abandoned bars varies along the Tywi valley because of the patterns of bar distribution and channel behaviour. The deposits of this river have strong affinities with Tertiary sequences in the Italian Apennines, previously interpreted as the deposits of meandering gravel-bed rivers. This type of river is not readily distinguished from ‘Scott type’ braided streams in the geological record, unless exposures are particularly good. In this respect, the presence of abundant, inclined heterolithic wedges and lenses may be a useful diagnostic criterion. 相似文献
13.
14.
The alluvial architecture of a suspended sediment dominated meandering river: the Río Bermejo,Argentina 下载免费PDF全文
Gregory H. Sambrook Smith James L. Best Jessica Z. Leroy Oscar Orfeo 《Sedimentology》2016,63(5):1187-1208
The alluvial architecture of fine‐grained (silt‐bed) meandering rivers remains poorly understood in comparison to the extensive study given to sand‐bed and gravel‐bed channels. This paucity of knowledge stems, in part, from the difficulty of studying such modern rivers and deriving analogue information from which to inform facies models for ancient sediments. This paper employs a new technique, the parametric echosounder, to quantify the subsurface structure of the Río Bermejo, Argentina, which is a predominantly silt‐bed river with a large suspended sediment load. These results show that the parametric echosounder can provide high‐resolution (decimetre) subsurface imaging from fine‐grained rivers that is equivalent to the more commonly used ground‐penetrating radar that has been shown to work well in coarser‐grained rivers. Analysis of the data reveals that the alluvial architecture of the Río Bermejo is characterized by large‐scale inclined heterolithic stratification generated by point‐bar evolution, and associated large‐scale scour surfaces that result from channel migration. The small‐scale and medium‐scale structure of the sedimentary architecture is generated by vertical accretion deposits, bed sets associated with small bars, dunes and climbing ripples and the cut and fill from small cross‐bar channels. This style of alluvial architecture is very different from other modern fine‐grained rivers reported in the literature that emphasize the presence of oblique accretion. The Río Bermejo differs from these other rivers because it is much more active, with very high rates of bank erosion and channel migration. Modern examples of this type of highly active fine‐grained river have been reported rarely in the literature, although ancient examples are more prevalent and show similarities with the alluvial architecture of the Río Bermejo, which thus represents a useful analogue for their identification and interpretation. Although the full spectrum of the sedimentology of fine‐grained rivers has yet to be revealed, meandering rivers dominated by lateral or oblique accretion probably represent end members of such channels, with the specific style of sedimentation being controlled by grain size and sediment load characteristics. 相似文献
15.
Gregory H. Sambrook Smith Andrew P. Nicholas James L. Best Jonathan M. Bull Simon J. Dixon Steven Goodbred Maminul H. Sarker Mark E. Vardy 《Sedimentology》2019,66(2):391-407
Channel confluences are key nodes within large river networks, and yet surprisingly little is known about their spatial and temporal evolution. Moreover, because confluences are associated with vertical scour that typically extends to several times the mean channel depth, the deposits associated with such scours should have a high preservation potential within the rock record. Paradoxically, such scours are rarely observed, and their preservation and sedimentological interpretation are poorly understood. The present study details results from a physically‐based morphodynamic model that is applied to simulate the evolution and alluvial architecture of large river junctions. Boundary conditions within the model were defined to approximate the junction of the Ganges and Jamuna rivers, Bangladesh, with the model output being supplemented by geophysical datasets collected at this junction. The numerical simulations reveal several distinct styles of sedimentary fill that are related to the morphodynamic behaviour of bars, confluence scour downstream of braid bars, bend scour and major junction scour. Comparison with existing, largely qualitative, conceptual models reveals that none of these can be applied simply, although elements of each are evident in the deposits generated by the numerical simulation and observed in the geophysical data. The characteristics of the simulated scour deposits are found to vary according to the degree of reworking caused by channel migration, a factor not considered adequately in current conceptual models of confluence sedimentology. The alluvial architecture of major junction scours is thus characterized by the prevalence of erosion surfaces in conjunction with the thickest depositional sets. Confluence scour downstream of braid bar and bend scour sites may preserve some large individual sets, but these locations are typically characterized by lower average set thickness compared to major junction scour and by a lack of large‐scale erosional surfaces. Areas of deposition not related to any of the specific scour types highlighted above record the thinnest depositional sets. This variety in the alluvial architecture of scours may go some way towards explaining the paradox of ancient junction scours, that while abundant large scours are likely in the rock record, they have been reported rarely. The present results outline the likely range of confluence sedimentology and will serve as a new tool for recognizing and interpreting these deposits in the ancient fluvial record. 相似文献
16.
Morphology and evolution of bars in a wandering gravel-bed river; lower Fraser river, British Columbia, Canada 总被引:2,自引:0,他引:2
STEPHEN P. RICE MICHAEL CHURCH§ COLIN L. WOOLDRIDGE† EDWARD J. HICKIN‡ 《Sedimentology》2009,56(3):709-736
A hierarchical typology for the channels and bars within aggradational wandering gravel-bed rivers is developed from an examination of a 50 km reach of lower Fraser River, British Columbia, Canada. Unit bars, built by stacking of gravelly bedload sheets, are the key dynamic element of the sediment transfer system, linking sediment transport during individual freshets to the creation, development and remoulding of compound bar platforms that have either a lateral or medial style. Primary and secondary unit bars are identified, respectively, as those that deliver sediment to compound bars from the principal channel and those that redistribute sediment across the compound bar via seasonal anabranches and smaller channels. The record of bar accretion evident in ground-penetrating radar sequences is consistent with the long-term development of bar complexes derived from historical aerial photographs. For two compound bars, inter-annual changes associated with individual sediment transport episodes are measured using detailed topographic surveys and longer-term changes are quantified using sediment budgets derived for individual bars from periodic channel surveys. Annual sediment turnover on the bars is comparable with the bed material transfer rate along the channel, indicating that relatively little bed material bypasses the bars. Bar construction and change are accomplished mainly by lateral accretion as the river has limited capacity to raise bed load onto higher surfaces. Styles of accretion and erosion and, therefore, the major bar form morphologies on Fraser River are familiar and consistent with those in gravelly braided channels but the wandering style does exhibit some distinctive features. For example, 65-year histories reveal the potential for long sequences of uninterrupted accretion in relatively stable wandering rivers that are unlikely in braided rivers. 相似文献
17.
天然河流中一些下切性河流具有独特的河床演变规律,如不规则形式的纵剖面等。通过现场调查、资料统计和GIS分析等方式,探讨了河道自然下切过程中河床演变相关机理及其对河流纵剖面的影响,揭示了其中蕴含的定量规律。分析结果表明,下切性河流系统存在床沙的响应与补偿机制,是河流系统由下切转为平衡的重要动力因素之一。响应调整后深切河段的床沙能消耗更多侵蚀能量,从而维持高比降的陡坡河道。因此,下切深度的沿程分布与一些特殊的纵剖面形态有关。经统计发现,流量与床沙(下垫面条件)是最重要的纵剖面控制性因素,引入量纲一参数可与比降建立良好的线性关系。 相似文献
18.
MASSIMILIANO GHINASSI 《Sedimentology》2011,58(3):618-642
This paper focuses on Holocene deposits of the Firenze alluvial plain (Northern Apennines, Italy) and deals with the sedimentary features of chute channels draining the down‐river edges of the meander neck formed by 70 to 100 m wide and 1 to 1·5 m deep sinuous channels. Two main types of chute channels have been recognized. Type 1 is represented by 3 to 6 m wide and 0·5 to 1 m deep straight channels filled with mud aggregates overlying a basal gravel lag made of reworked caliches. These channels drained the point bar top during floods, and are thought to have been initiated as small rills when a shallow flow overpassed the downstream side of the point bar. Type 2 channels, 3 to 6 m wide and 1 to 1·5 m deep, are moderately to highly sinuous and filled with well‐stratified sand and gravels sourced from nearby rocky highlands. Type 2 channels were connected to the main river channel also during the base flow stage. The transition from Type 1 to Type 2 channels is documented and is interpreted as the result of the meander cut‐off process. Type 1 chute channels represent the early stage of the cut‐off phase, when a headcut is incised on the down‐river edges of the meander neck. The headcut migrates up‐river across the meander neck during floods, when fast currents shape the chute channels into a straight route. The transition from Type 1 into Type 2 channels is linked to the connection of the up‐river migrating headcut with the main channel and the termination of the cut‐off process. At this stage, the cut‐off channel is drained permanently and receives bedload from the main channel. The progressive shaping of the newly formed channel will convert it into the main channel and lead to the formation of an oxbow lake in the abandoned meander branch. Development of chute channels in the Firenze alluvial plain is thought to have heralded a decrease in sinuosity of the main channels, triggered by a climate‐driven increase in water discharge. 相似文献
19.
辐射沙脊群内潮汐水道由于没有固定的边界,其稳定性对人类活动影响更加敏感。通过收集近20年来辐射沙脊群南翼小庙洪海域实测高分辨率水下地形资料,结合数学模型分析研究人类活动对小庙洪海域水动力和地形冲淤累积影响。研究结果表明:近20年来小庙洪水域边滩匡围面积达126.09 km2,边滩匡围导致小庙洪尾部、中部及口门段断面流量分别减小14.2%、15.79%和9.13%;尾部、中部及口门段深槽区平均流速分别减小20~30 cm/s、10~20 cm/s和5~10 cm/s。小庙洪水道南侧-5 m等深线变化幅度较小,基本保持稳定状态;-10 m等深线继续向西延伸,向南拓展。近20年来小庙洪边滩匡围虽导致水道内纳潮量和水动力有所减弱,但由于目前匡围区均处于高滩区域,各匡围工程所引起的泥沙冲淤仅限于工程区附近,对小庙洪水道整体稳定性、深槽主轴南逼、口门水道整体北淤南冲的演变趋势没有产生明显影响。 相似文献
20.
以海安南地区堡1断块泰州组一段为例,在岩石薄片和压汞资料分析的基础上,从砂体的内部结构入手对水下分流河道储层特征进行了研究,将泰一段储层的孔隙结构划分为三种类型。经研究表明:泰一段辫状河三角洲前缘水下分流河道砂体内部结构单元为典型的中一低孔、中一低渗储层,碎屑组份成分成熟度和结构成熟度均较低,储层孔隙类型以次生孔隙为主,原生孔隙较不发育;填隙物为泥质杂基和碳酸盐矿物胶结物,属长石岩屑质砂岩和岩屑长石质砂岩;成岩作用主要发育压实作用、胶结交代作用和溶解溶蚀作用等,塑性颗粒的变形、碎屑颗粒的破裂甚至错断、石英次生加大、方解石及铁白云石交代碎屑组份、溶蚀现象等均较普遍。对各结构单元孔隙结构类型参数分析表明,水下分流河道内部结构单元河道主体砂岩储集性能好于河道侧缘,认为岩相类型和沉积环境是影响储层物性的原生因素。 相似文献