首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
The Magallanes‐Austral Basin of Patagonian Chile and Argentina is a retroforeland basin associated with Late Cretaceous–Neogene uplift of the southern Andes. The Upper Cretaceous Dorotea Formation records the final phase of deposition in the Late Cretaceous foredeep, marked by southward progradation of a shelf‐edge delta and slope. In the Ultima Esperanza district of Chile, laterally extensive, depositional dip‐oriented exposures of the Dorotea Formation contain upper slope, delta‐front and delta plain facies. Marginal and shallow marine deposits include abundant indicators of tidal activity including inclined heterolithic stratification, heterolithic to sandy tidal bundles, bidirectional palaeocurrent indicators, flaser/wavy/lenticular bedding, heterolithic tidal flat deposits and a relatively low‐diversity Skolithos ichnofacies assemblage in delta plain facies. This work documents the stratigraphic architecture and evolution of the shelf‐edge delta that was significantly influenced by strong tidal activity. Sediment was delivered to a large slump scar on the shelf‐edge by a basin‐axial fluvial system, where it was significantly reworked and redistributed by tides. A network of tidally modified mouth bars and tidal channels comprised the outermost reaches of the delta complex, which constituted the staging area and initiation point for gravity flows that dominated the slope and deeper basin. The extent of tidal influence on the Dorotea delta also has important implications for Magallanes‐Austral Basin palaeogeography. Prior studies establish axial foreland palaeodrainage, long‐term southward palaeotransport directions and large‐scale topographic confinement within the foredeep throughout Late Cretaceous time. Abundant tidal features in Dorotea Formation strata further suggest that the Magallanes‐Austral Basin was significantly embayed. This ‘Magallanes embayment’ was formed by an impinging fold–thrust belt to the west and a broad forebulge region to the east.  相似文献   

2.
The seaward end of modern rivers is characterized by the interactions of marine and fluvial processes, a tract known as the fluvial to marine transition zone, which varies between systems due to the relative strength of these processes. To understand how fluvial and tidal process interactions and the fluvial to marine transition zone are preserved in the rock record, large‐scale outcrops of deltaic deposits of the Middle Jurassic Lajas Formation (Neuquén Basin, Argentina) have been investigated. Fluvial–tidal indicators consist of cyclically distributed carbonaceous drapes in unidirectional, seaward‐oriented cross‐stratifications, which are interpreted as the result of tidal modulation of the fluvial current in the inner part of the fluvial to marine transition zone. Heterolithic deposits with decimetre‐scale interbedding of coarser‐grained and finer‐grained facies with mixed fluvial and tidal affinities are interpreted to indicate fluvial discharge fluctuations (seasonality) and subordinate tidal influence. Many other potential tidal indicators are argued to be the result of fluvial–tidal interactions with overall fluvial dominance or of purely fluvial processes. No purely tidal or tide‐dominated facies were recognized in the studied deposits. Moreover, fluvial–tidal features are found mainly in deposits interpreted as interflood (forming during low river stage) in distal (delta front) or off‐axis (interdistributary) parts of the system. Along major channel axes, the interpreted fluvial to marine transition zone is mainly represented by the fluvial‐dominated section, whereas little or no tide‐dominated section is identified. The system is interpreted to have been hyposynchronous with a poorly developed turbidity maximum. These conditions and the architectural elements described, including major and minor distributary channels, terminal distributary channels, mouth bars and crevasse mouth bars, are consistent with an interpretation of a fluvial‐dominated, tide‐influenced delta system and with an estimated short backwater length and inferred microtidal conditions. The improved identification of process interactions, and their preservation in ancient fluvial to marine transition zones, is fundamental to refining interpretations of ancient deltaic successions.  相似文献   

3.
Current models of alluvial to coastal plain stratigraphy are concept‐driven and focus on relative sea‐level as an allogenic control. These models are tested herein using data from a large (ca 100 km long and 300 m thick), continuous outcrop belt (Upper Cretaceous Blackhawk Formation, central Utah, USA). Many channelized fluvial sandbodies in the Blackhawk Formation have a multilateral and multistorey internal character, and they generally increase in size and abundance (from ca 10% to ca 30% of the strata) from base to top of the formation. These regional, low‐resolution trends exhibit much local variation, but are interpreted to reflect progressively decreasing tectonic subsidence in the upper Blackhawk Formation and overlying Castlegate Sandstone. The trend may also incorporate progressively more frequent channel avulsion during deposition of the lower Blackhawk Formation. Laterally extensive coal zones formed on the coastal plain during shallow‐marine transgressions, and define the high‐resolution stratigraphic framework of the lower Blackhawk Formation. Large (up to 25 m thick and 1 to 6 km wide), multistorey, multilateral, fluvial channel‐complex sandbodies that overlie composite erosion surfaces occur at distinct stratigraphic levels, and are interpreted as fluvial incised valley fills. Low amplitude (<30 m) relative sea‐level variations are interpreted as the dominant control on stratigraphic architecture in the lower Blackhawk Formation, which was deposited up to 50 km inland from the coeval shoreline. In contrast, the high‐resolution stratigraphy of the upper Blackhawk Formation is poorly defined, and channelized fluvial sandbodies are poorly organized. Vertical and laterally offset stacking of a small proportion (<10%) of sandbodies produced ‘clusters’ that are not confined by ‘master’ erosion surfaces. Avulsion is interpreted to dominate the stratigraphic architecture of the upper Blackhawk Formation. This data‐driven analysis indicates that alluvial to coastal plain stratigraphic architecture reflects a combination of various allogenic controls and autogenic behaviours. The relative sea‐level control emphasized in sequence stratigraphic models is only rarely dominant.  相似文献   

4.
Nine different types of cross‐stratified packages from the coal‐bearing, deltaic succession of the Barakar Formation (Permian) of the Satpura Gondwana Basin, central India, are described. The deposits are characterized by periodic mudstone drapes, reactivation surfaces including all other features suggestive of deposition from periodically unsteady, tidally‐influenced flows. The inferred flow patterns varied from purely bidirectional to pulsating unidirectional. The different types of cross‐stratified packages are interpreted to have resulted from superimposition of ebb‐oriented, steady, unidirectional fluvial currents of variable strength on the tidal flow in a deltaic setting. The study helps to distinguish cross‐strata that may develop in settings where fluvial and tidal currents interact. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Carbon, oxygen and clumped isotope (Δ47) values were measured from lacustrine and tufa (spring)‐mound carbonate deposits in the Lower Jurassic Navajo Sandstone of southern Utah and northern Arizona in order to understand the palaeohydrology. These carbonate deposits are enriched in both 18O and 13C across the basin from east to west; neither isotope is strongly sensitive to the carbonate facies. However, 18O is enriched in lake carbonate deposits compared to the associated spring mounds. This is consistent with evaporation of the spring waters as they exited the mounds and were retained in interdune lakes. Clumped isotopes (Δ47) exhibit minor systematic differences between lake and tufa‐mound temperatures, suggesting that the rate of carbonate formation under ambient conditions was moderate. These clumped isotope values imply palaeotemperature elevated beyond reasonable surface temperatures (54 to 86°C), which indicates limited bond reordering at estimated burial depths of ca 4 to 5 km, consistent with independent estimates of sediment thickness and burial depth gradients across the basin. Although clumped isotopes do not provide surface temperature information in this case, they still provide useful burial information and support interpretations of the evolution of groundwater locally. The findings of this study significantly extend the utility of combining stable isotope and clumped isotope methods into aeolian environments.  相似文献   

6.
The Pennsylvanian to Permian lower Cutler beds comprise a 200 m thick mixed continental and shallow marine succession that forms part of the Paradox foreland basin fill exposed in and around the Canyonlands region of south‐east Utah. Aeolian facies comprise: (i) sets and compound cosets of trough cross‐bedded dune sandstone dominated by grain flow and translatent wind‐ripple strata; (ii) interdune strata characterized by sandstone, siltstone and mudstone interbeds with wind‐ripple, wavy and horizontal planar‐laminated strata resulting from accumulation on a range of dry, damp or wet substrate‐types in the flats and hollows between migrating dunes; and (iii) extensive, near‐flat lying wind‐rippled sandsheet strata. Fluvial facies comprise channel‐fill sandstones, lag conglomerates and finer‐grained overbank sheet‐flood deposits. Shallow marine facies comprise carbonate ramp limestones, tidal sand ridges and bioturbated marine mudstones. During episodes of sand sea construction and accumulation, compound transverse dunes migrated primarily to the south and south‐east, whereas south‐westerly flowing fluvial systems periodically punctuated the dune fields from the north‐east. Several vertically stacked aeolian sequences are each truncated at their top by regionally extensive surfaces that are associated with abundant calcified rhizoliths and bleaching of the underlying beds. These surfaces record the periodic shutdown and deflation of the dune fields to the level of the palaeo‐water‐table. During episodes of aeolian quiescence, fluvial systems became more widespread, forming unconfined braid‐plains that fed sediment to a coastline that lay to the south‐west and which ran approximately north‐west to south‐east for at least 200 km. Shallow marine systems repeatedly transgressed across the broad, low‐relief coastal plain on at least 10 separate occasions, resulting in the systematic preservation of units of marine limestone and calcarenite between units of non‐marine aeolian and fluvial strata, to form a series of depositional cycles. The top of the lower Cutler beds is defined by a prominent and laterally extensive marine limestone that represents the last major north‐eastward directed marine transgression into the basin prior to the onset of exclusively non‐marine sedimentation of the overlying Cedar Mesa Sandstone. Styles of interaction between aeolian, fluvial and marine facies associations occur on two distinct scales and represent the preserved expression of both small‐scale autocyclic behaviour of competing, coeval depositional systems and larger‐scale allocyclic changes that record system response to longer‐term interdependent variations in climatic and eustatic controlling mechanisms. The architectural relationships and system interactions observed in the lower Cutler beds demonstrate that the succession was generated by several cyclical changes in both climate and relative sea‐level, and that these two external controls probably underwent cyclical change in harmony with each other in the Paradox Basin during late Pennsylvanian and Permian times. This observation supports the hypothesis that both climate and eustasy were interdependent at this time and were probably responding to a glacio‐eustatic driving mechanism.  相似文献   

7.
Falling‐stage deltas are predicted by sequence stratigraphic models, yet few reliable criteria are available to diagnose falling‐stage deltaic systems in surface exposures. Recent work on the Upper Cretaceous (Turonian) Ferron Sandstone in the western Henry Mountains Syncline of south‐central Utah has established its environment of deposition as a series of modest‐sized (5 to 20 km wide), probably asymmetrical, mixed‐influence deltas (‘Ferron Notom Delta’) that dispersed sediment eastwards from the rising Sevier orogenic hinterland into the Western Cordilleran Foreland Basin. Analysis of sandstone body stacking patterns in a 67 km long, depositional strike‐parallel (north–south) transect indicates that the growth of successive deltas was strongly forced by synsedimentary growth of a long wavelength (ca 100 km), 50 m amplitude fold structure. Herein, two discrete areas within this transect, superbly exposed in three dimensions, are documented in order to determine the details of stratal stacking patterns in the depositional dip direction, and thereby to assess the stratigraphic context of the Ferron Notom Delta. In the two study areas, dip transects expose facies representing river mouth bar to distal delta front environments over distances of 2 to 4 km. Key stratal packages are clinothems that offlap, downlap, and describe descending regressive trajectories with respective to basal and top datums; they are interpreted as the product of relative sea‐level fall. The vertical extent of clinoforms suggests that deltas prograded into <30 m of water. Furthermore, these deltaic successions preserve abundant evidence of delta front slope failure, growth faulting, and incision and filling of deep (<15 m) slope gullies. Gully fills are composed of chaotic intraformational breccia and/or massive sandstone, and constitute linear, ‘shoestring’ sandbodies in the distal portions of individual palaeodelta systems. They are interpreted to have been cut and filled during the late falling‐stage and lowstand of relative sea‐level cycles. The north–south distribution of the stratal style described above seems to be focused on the flanks of the growth anticline, and so the numerous falling‐stage systems tracts preserved within the Ferron Notom Delta probably owe their origin to synsedimentary structural growth, and the unstable fluid pressure regime that this growth imposed on the sea floor and shallow subsurface.  相似文献   

8.
Lower to Middle Turonian deposits within the Bohemian Cretaceous Basin (Central Europe) consist of coarse‐grained deltaic sandstones passing distally into fine‐grained offshore sediments. Dune‐scale cross‐beds superimposed on delta‐front clinoforms indicate a vigorous basinal palaeocirculation capable of transporting coarse‐grained sand across the entire depth range of the clinoforms (ca 35 m). Bi‐directional, alongshore‐oriented, trough cross‐set axes, silt drapes and reactivation surfaces indicate tidal activity. However, the Bohemian Cretaceous Basin at this time was over a thousand kilometres from the shelf break and separated from the open ocean by a series of small islands. The presence of tidally‐influenced deposits in a setting where co‐oscillating tides are likely to have been damped down by seabed friction and blocked by emergent land masses is problematic. The Imperial College Ocean Model, a fully hydrodynamic, unstructured mesh finite element model, is used to test the hypothesis that tidal circulation in this isolated region was capable of generating the observed grain‐size distributions, bedform types and palaeocurrent orientations. The model is first validated for the prediction of bed shear stress magnitudes and sediment transport pathways against the present‐day North European shelf seas that surround the British Isles. The model predicts a microtidal to mesotidal regime for the Bohemian Cretaceous Basin across a range of sensitivity tests with elevated tidal ranges in local embayments. Funnelling associated with straits increases tidal current velocities, generating bed shear stresses that were capable of forming the sedimentary structures observed in the field. The model also predicts instantaneous bi‐directional currents with orientations comparable with those measured in the field. Overall, the Imperial College Ocean Model predicts a vigorous tide‐driven palaeocirculation within the Bohemian Cretaceous Basin that would indisputably have influenced sediment dispersal and facies distributions. Palaeocurrent vectors and sediment transport pathways however vary markedly in the different sensitivity tests. Accurate modelling of these parameters, in this instance, requires greater palaeogeographic certainty than can be extracted from the available rock record.  相似文献   

9.
The interaction of river and marine processes in the fluvial to marine transition zone fundamentally impacts delta plain morphology and sedimentary dynamics. This study aims to improve existing models of the facies distribution, stratigraphic architecture and preservation in the fluvial to marine transition zone of mixed-process deltas, using a comprehensive sedimentological and stratigraphic dataset from the Middle Miocene Lambir Formation, Baram Delta Province, north-west Borneo. Eleven facies associations are identified and interpreted to preserve the interaction of fluvial and marine processes in a mixed-energy delta, where fluvial, wave and tidal processes display spatially and temporally variable interactions. Stratigraphic successions in axial areas associated with active distributary channels are sandstone-rich, comprising fluvial-dominated and wave-dominated units. Successions in lateral areas, which lack active distributary channels, are mudstone-rich, comprising fluvial-dominated, tide-dominated and wave-dominated units, including mangrove swamps. Widespread mudstone preservation in axial and lateral areas suggests well-developed turbidity maximum zones, a consequence of high suspended-sediment concentrations resulting from tropical weathering of a mudstone-rich hinterland. Within the fluvial to marine transition zone of distributary channels, interpreted proximal–distal sedimentological and stratigraphic trends suggest: (i) a proximal fluvial-dominated, tide-influenced subzone; (ii) a distal fluvial-dominated to wave-dominated subzone; and (iii) a conspicuously absent tide-dominated subzone. Lateral areas preserve a more diverse spectrum of facies and stratigraphic elements reflecting combined storm, tidal and subordinate river processes. During coupled storm and river floods, fluvial processes dominated the fluvial to marine transition zone along major and minor distributary channels and channel mouths, causing significant overprinting of preceding interflood deposits. Despite interpreted fluvial–tidal channel units and mangrove influence implying tidal processes, there is a paucity of unequivocal tidal indicators (for example, cyclical heterolithic layering). This suggests that process preservation in the fluvial to marine transition zone preserved in the Lambir Formation primarily records episodic (flashy) river discharge, river flood and storm overprinting of tidal processes, and possible backwater dynamics.  相似文献   

10.
Many modern deltas show complex morphologies and architectures related to the interplay of river, wave and tidal currents. However, methods for extracting the signature of the individual processes from the stratigraphic architecture are poorly developed. Through an analysis of facies, palaeocurrents and stratigraphic stacking patterns in the Jurassic Lajas Formation, this paper: (i) separates the signals of wave, tide and river currents; (ii) illustrates the result of strong tidal reworking in the distal reaches of deltaic systems; and (iii) discusses the implications of this reworking for the evolution of mixed‐energy systems and their reservoir heterogeneities. The Lajas Formation, a sand‐rich, shallow‐marine, mixed‐energy deltaic system in the Neuquén Basin of Argentina, previously defined as a tide‐dominated system, presents an exceptional example of process variability at different scales. Tidal signals are predominantly located in the delta front, the subaqueous platform and the distributary channel deposits. Tidal currents vigorously reworked the delta front during transgressions, producing intensely cross‐stratified, sheet‐like, sandstone units. In the subaqueous platform, described for the first time in an ancient outcrop example, the tidal reworking was confined within subtidal channels. The intensive tidal reworking in the distal reaches of the regressive delta front could not have been predicted from knowledge of the coeval proximal reaches of the regressive delta front. The wave signals occur mainly in the shelf or shoreface deposits. The fluvial signals increase in abundance proximally but are always mixed with the other processes. The Lajas system is an unusual clean‐water (i.e. very little mud is present in the system), sand‐rich deltaic system, very different from the majority of mud‐rich, modern tide‐influenced examples. The sand‐rich character is a combination of source proximity, syndepositional tectonic activity and strong tidal‐current reworking, which produced amalgamated sandstone bodies in the delta‐front area, and a final stratigraphic record very different from the simple coarsening‐upward trends of river‐dominated and wave‐dominated delta fronts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号