首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultural eutrophication of lakes occurring over the last 100 years is well known. Less well known is the eutrophication of lakes in earlier, late Quaternary time due to human and other causes. The recent and earlier trophic changes are documented in the sedimentary record by several groups of parameters. Among the most revealing of these are the diverse carotenoid pigments that originate from phytoplankton, photosynthetic bacteria, and other biota. The interpretation of the carotenoids in ancient sediments is facilitated by the study of carotenoids in recent sediments from lakes with relevant limnological and historical information. I support these contentions with evidence from several Swiss lakes, with emphasis on the late Quaternary development of Pfaffikersee and Soppensee.This is the eighth of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Drs. Davis and Löffler are serving as guest editors of this series.  相似文献   

2.
Diatoms, crustaceans, and pollen from sediment cores, in conjunction with dated shoreline tufas provide evidence for lake level and environmental fluctuations of Walker Lake in the late Quaternary. Large and rapid changes of lake chemistry and level apparently resulted from variations in the course and discharge of the Walker River. Paleolimnological evidence suggests that the basin contained a relatively deep and slightly saline to freshwater lake before ca. 30 000 years B.P. During the subsequent drawdown, the Walker River apparently shifted its course and flowed northward into the Carson Sink. As a result, Walker Lake shallowed and became saline. During the full glacial, cooler climates with more effective moisture supported a shallow brine lake in the basin even without the Walker River. As glacial climates waned after 15 000 years ago, Walker Lake became a playa. The Walker River returned to its basin 4700 years ago, filling it with fresh water in a few decades. Thereafter, salinity and depth increased as evaporation concentrated inflowing water, until by 3000 years ago Walker Lake was nearly 90 m deep, according to dated shoreline tufas. Lake levels fluctuated throughout this interval in response to variations in Sierra Nevada precipitation and local evaporation. A drought in the Sierras between 2400 and 2000 years ago reduced Walker Lake to a shallow, brine lake. Climate-controlled refilling of the lake beginning 2000 years ago required about one millennium to bring Walker lake near its historic level.Through time, lake basins in the complex Lake Lahontan system, fill and desiccate in response to climatic, tectonic and geomorphic events. Detailed, multidisciplinary paleolimnologic records from related subbasins are required to separate these processes before lake level history can be reliably used to interpret paleoclimatology.This is the fifth of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Drs. Davis and Löffler are serving as guest editors of this series.  相似文献   

3.
The remains of diatoms, cladocerans, and midges are usually the most abundant of freshwater organisms and to now have been most useful in interpreting past conditions in a lake. Each taxocene consists of two separate communities, one in the warm littoral zone and the other offshore. Remains of inshore organisms are moved offshore by wind-generated currents, the amount of transport varying with individual characteristics of the lakes. Nowhere do remains of the two communities become completely integrated numerically, although the remains of the littoral chydorid Cladocera become integrated by species before they are incorporated into the sediments. The taxa of the planktonic Eubosmina and of the offshore midges correspond to levels of productivity in present-day lakes, and hence changes in the fossil record are commonly regarded as indicating eutrophication over time. The deepwater midges respond to the concentration of dissolved oxygen in deep water, which may be controlled more by a decrease in volume of deep water through accumulation of sediments than by any real increase in edaphic productivity. While such changes are going on offshore during the Holocene, the littoral communities of cladocerans and midges are scarcely changing at all, suggesting a different response of the inshore from the offshore communities to longterm changes resulting from increasing productively or from other functions. Thus, considering these different responses of the two communities of organisms and their incomplete mixing, the remains of littoral and offshore taxa recovered from an offshore core of sediments must be tabulated separately and interpreted separately. For any studies involving accumulation rates, there must be an understanding of the integration of inshore and offshore remains, its variation over the lake bottom, and how it may have varied with marked fluctuations in water level.This is the third of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Drs. Davis and Löffler are serving as guest editors of this series.  相似文献   

4.
The 1400 m deep drilling of Lake Biwa has revealed that the lake probably originated ca. 5 · 106 yr ago. After a geographic shift to its present position, and by more than 3.105 yr ago, it had become a large and deep lake. The considerable longevity, large size and high diversity of habitats of this lake are considered to have contributed to its high abundance of endemic taxa. These taxa fall into two categories: (1) relict species of the Asiatic continent, higher latitude or marine origin; (2) species differentiated in the lake from littoral-lacustrine species, and having adapted to habitats peculiar to Lake Biwa. I discuss some of these endemic organisms, briefly review recent in vestigations on fossil organisms of the lake, and more fully discuss the origin of a representative endemic species, the pelagic gobiid fish Chaenogobius isaza Tanaka. This species is regarded as having differentiated from some littoral Chaenogobius species, creating a novel niche in the open water area after Lake Biwa was established as a deep lake.This is the seventh of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Drs. Davis and Löffler are serving as guest editors of this series.  相似文献   

5.
Sevier Lake is the modern lake in the topographically closed Sevier Lake basin, and is fed primarily by the Sevier River. During the last 12 000 years, the Beaver River also was a major tributary to the lake. Lake Bonneville occupied the Sevier Desert until late in its regressive phase when it dropped to the Old River Bed threshold, which is the low point on the drainage divide between the Sevier Lake basin and the Great Salt Lake basin. Lake Gunnison, a shallow freshwater lake at 1390 m in the Sevier Desert, overflowed continuously from about 12 000 to 10 000 yr B.P., into the saline lake in the Great Salt Lake basin, which continued to contract. This contrast in hydrologic histories between the two basins may have been caused by a northward shift of monsoon circulation into the Sevier Lake basin, but not as far north as the Great Salt Lake basin. Increased summer precipitation and cloudiness could have kept the Sevier Lake basin relatively wet.By shortly after 10 000 yr B.P. Lake Gunnison had stopped overflowing and the Sevier and Beaver Rivers had begun depositing fine-grained alluvium across the lake bed. Sevier Lake remained at an altitude below 1381 m during the early and middle Holocene. Between 3000 and 2000 yr B.P. the lake expanded slightly to an altitude of about 1382.3 m. A second expansion, probably in the last 500 years, culminated at about 1379.8 m. In the mid 1800s the lake had a surface altitude of 1379.5 m. Sevier Lake was essentially dry (1376 m) from 1880 until 1982. In 1984–1985 the lake expanded to a 20th-century high of 1378.9 m in response to abnormally high snow-melt runoff in the Sevier River. The late Holocene high stands of Sevier Lake were most likely related to increased precipitation derived from westerly air masses.This is the first of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Drs. Davis and Löffler are serving as guest editors of this series.  相似文献   

6.
Based on extensive data from a long-term investigation, a new genetic classification of lake basins is proposed for Estonia. Eight lake groups are distinguished, tectonic-denudation, glacial, chemical, fluvial, coastal (neotectonic), telmatogenic, cosmogenic and artificial, containing 13 subgroups and 19 basin types. Also proposed is a new lithological classification of Estonia's organic and calcareous lake sediments, based on analyses of more than 2000 sediment samples from 90 contemporary and 50 late-glacial (extinct) lakes. Of the ca. 1150 Estonian lake basins that formed on mineral substrate, the two largest basins are of preglacial, tectonic-denudation origin, later modified by glaciers. Eight hundred lakes are of glacial origin, and 300 of other origins in the Holocene. In addition, ca 20 000 bog pools formed on peat in the Holocene. Only minerogenous sedimentation occurred in the lakes in the late-glacial period. After that, organic (gyttjas) and/or calcareous sediments have formed. Azonal factors have been largely responsible for the wide variation in Estonia's lacustrine deposits.This article belongs to a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Dr. Davis is serving as guest editor of this series.  相似文献   

7.
Lake Ontario water levels have been rising for the past 11 500 years due to differential isostatic rebound of the St. Lawrence outlet. Small scale fluctuations in water level superimposed on this general trend have received little study, with the exception of the Nipissing Flood.The transgression of a Grenadier Pond was studied from cores along a transect from the bar that separates the pond from Lake Ontario to the marsh on the north shore. Radiocarbon dates of the transition from swamp peat to pond marl in five cores provide estimates of the rate of water level rise since 4230 years B.P. These estimates are supported by changes in sediment type and in abundance of pollen and seeds of aquatic plants. There were three short intervals of accelerated water level rise in Grenadier Pond, around 4200, 3000, and 2000 years B.P., when water levels rose up to 2 m instantaneously, within the resolution of radiocarbon dating. Sedimentological and paleobotanical data suggest that Grenadier Pond was an open embayment of Lake Ontario until 1970–1850 years B.P., when it was isolated by the bar, and therefore sediments deposited prior to this time reflect water levels in Lake Ontario.Short term departure of up to 2 m from the average rate of water level rise over the past 4000 years, as observed in the record at Grenadier Pond, is of the same range as historically observed departures from the mean lake stage of Lake Ontario. This implies that a threshold discharge exists above which broadening of the outflow channel occurs to accommodate further increase in discharge with little rise in lake level. The intervals of accelerated water level rise in Lake Ontario broadly coincide with periods of cool, wet climate, suggesting that increased moisture may have caused the short term fluctuations in water level.This is the second of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Drs. Davis and Löffler are serving as guest editors of this series.  相似文献   

8.
Two distinct episodes of increased water flux imposed on the Great Lakes system by discharge from upstream proglacial lakes during the period from about 11.5 to 8 ka resulted in expanded outflows, raised lake levels and associated climate changes. The interpretation of these major hydrological and climatic effects, previously unrecognized, is mainly based on the evidence of former shorelines, radiocarbon-dated shallow-water sediment sequences, paleohydraulic estimates of discharge, and pollen diagrams of vegetation change within the basins of the present Lakes Superior, Michigan, Huron, Erie and Nipissing. The concept of inflow from glacial Lake Agassiz adjacent to the retreating Laurentide Ice Sheet about 11–10 and 9.5–8.5 ka is generally supported, with inflow possibly augmented during the second period by backflooding of discharge from glacial Lake Barlow-Ojibway.Although greater dating control is needed, six distinct phases can be recognized which characterize the hydrological history of the Upper Great Lakes from about 12 to 5 ka; 1) an early ice-dammed Kirkfield phase until 11.0 ka which drained directly to Ontario basin; 2) an ice-dammed Main Algonquin phase (11.0–10.5 ka) of relatively colder surface temperature with an associated climate reversal caused by greater water flux from glacial Lake Agassiz; 3) a short Post Algonquin phase (about 10.5–10.1 ka) encompassing ice retreat and drawdown of Lake Algonquin; 4) an Ottawa-Marquette low phase (about 10.1–9.6 ka) characterized by drainage via the then isostatically depressed Mattawa-Ottawa Valley and by reduction in Agassiz inflow by the Marquette glacial advance in Superior basin; 5) a Mattawa phase of high and variable levels (about 9.6–8.3 ka) which induced a second climatic cooling in the Upper Great Lakes area. Lakes of the Mattawa phase were supported by large inflows from both Lakes Agassiz and Barlow-Ojibway and were controlled by hydraulic resistance at a common outlet — the Rankin Constriction in Ottawa Valley — with an estimated base-flow discharge in the order of 200000 m3s–1. 6) Lakes of the Nipissing phase (about 8.3–4.7 ka) existed below the base elevation of the previous Lake Mattawa, were nourished by local precipitation and runoff only, and drained by the classic North Bay outlet to Ottawa Valley.Geological Survey of Canada Contribution 42488.This is the twelfth of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Dr. Davis is serving as guest editor of this series.  相似文献   

9.
We utilized paleoecological techniques to reconstruct long-term changes in lake-water chemistry, lake trophic state, and watershed vegetation and soils for three lakes located on an elevational gradient (661–1150 m) in the High Peaks region of the Adirondack Mountains of New York State (U.S.A.). Diatoms were used to reconstruct pH and trophic state. Sedimentary chrysophytes, chlorophylls and carotenoids supplied corroborating evidence. Pollen, plant macrofossils, and metals provided information on watershed vegetation, soils, and biogeochemical processes. All three lakes were slightly alkaline pH 7–8 and more productive in the late-glacial. They acidified and became less productive at the end of the late-glacial and in the early Holocene. pH stabilized 8000–9000 yr B.P. at the two higher sites and by 6000 yr B.P. at the lowest. An elevational gradient in pH existed throughout the Holocene. The highest site had a mean Holocene pH close to or below 5; the lowest site fluctuated around a mean of 6. The higher pH and trophic state of the late-glacial was controlled by leaching of base cations from fresh unweathered till, a process accelerated by the development of histosols in the watersheds as spruce-dominated woodlands replaced tundra. An apparent pulse of lake productivity at the late-glacial-Holocene boundary is correlated with a transient, but significant, expansion of alder (Alnus crispa) populations. The alder phase had a significant impact on watershed (and hence lake) biogeochemistry. The limnological changes of the Holocene and the differences between lakes were a function of an elevational gradient in temperature, hydrology (higher precipitation and lower evapotranspiration at higher elevation), soil thickness (thinner tills at higher elevation), soil type (histosols at higher elevation), vegetation (northern hardwoods at lower elevation, spruce-fir at higher), and different Holocene vegetational sequences in the three watersheds.This is the thirteenth of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Dr. Davis is serving as guest editor of this series.  相似文献   

10.
Chironomids typical of cold, well-oxygenated, oligotrophic environments are common in late-Pleistocene deposits, but these taxa are rare in Holocene sediments of most small temperate lakes. Hypotheses to explain the demise of these taxa include variations in climate, lake trophic state, lake levels, terrestrial vegetation, and/or sediment composition. In southwestern British Columbia, this demise correlates with palynological evidence for a lodgepole pine decline, and for rapid climatic amelioration, at about 10 000 yr B.P. Faunal changes are poorly correlated with lithological boundaries. The similar timing of the declines among lakes suggests that a regional influence, climate, has possibly been the principal determinant of early chironomid faunal succession.This is the eleventh of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R.B. Davis for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Dr. Davis is serving as guest editor of this series.  相似文献   

11.
I describe Quaternary paleolimnology on the basis of a review of abstracts published for meetings of: (1) American Society of Limnology and Oceanography (ASLO), 10 meetings since 1980; (2) International Association of Theoretical and Applied Limnology (SIL), 4 since 1977, (3) International Symposia on Paleolimnology (ISP), 4 since 1967, and (4) International Union for Quaternary Research (INQUA), 5 since 1969. A total of 9538 abstracts were scanned to find 678 with paleolimnological content. A data base constructed from the 678 contains frequencies of coverage of techniques, parameters, themes, interpretive aspects, and character and geography of study sites. These data indicate that Quaternary paleolimnology has been a diverse science dealing with many of the same aspects of lakes as neolimnology but with a longer time perspective. Most frequently studied paleolimnological characteristics were trophic state, water chemistry (particularly salinity, pH, alkalinity (ANC), micronutrients and oxygen), water levels, lake morphology, and mixis and other hydrology. Lake biological parameters that received greatest attention were diatoms, pigments, Cladocera, Mallomonadaceae, non-siliceous algae, Ostracoda, and Mollusca. Most often considered to influence these characteristics and parameters were climate; catchment vegetation, soil, geology, land use and erosion; water chemistry; aerial and non aerial pollutants; sedimentation; and tectonism. Most frequent chronologic sequences were (1) late-glacial to present, and (2) modern (ca. 0.3 ka to present). Lakes in moist temperate and boreal regions were most heavily studied.Of the four series, INQUA covered the longest time scales (to late Tertiary), but emphasized the last 100 ka. INQUA stressed outside-lake geomorphology (as it relates to lake) and lake morphology, physical forcing functions (e.g., climate and tectonism), hydrologic factors including water levels, paleosalinities, and reconstruction of paleoclimates. In contrast, SIL and ASLO rarely covered pre-15 ka. Most SIL and ASLO abstracts dealt with only the most recent 0.3 ka. Of strong interest to SIL and ASLO were the effects of catchment vegetation and soils, land uses, and pollutants (e.g., acid deposition) on past lake chemistry, biology, and trophic conditions. To infer these conditions from sediment contents, frequent use was made of modern analogues and, starting in the 1970's of microfossil (mostly diatoms) transfer functions based on calibration data sets. In several respects, ISP subject coverage and approaches were intermediate between those of INQUA and SIL/ASLO.Major improvements in paleolimnology have occurred since the 1960's, particularly in the areas of chronology and use of multivariate statistical techniques for paleoenvironmental inference based on microfossils. I conclude this paper with several suggestions for further advancement of the science.Over the last several issues, the Journal of Paleolimnology has published 13 papers that were presented in the paleolimnology sessions organized by R.B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Dr. Davis served as guest editor for this series. This present review paper is an abridged version of the introductory chapter of a book containing these INQUA paper, entitled Paleolimnology and the Reconstruction of Ancient Environments, to be published by Kluwer Academic Publishers.  相似文献   

12.
对采自西藏东南部的喜马拉雅冷杉和林芝云杉交叉定年后 ,进行了过去 1 0 0年的年轮δ13 C分析。结果表明 :冷杉和云杉年轮δ13 C序列记录了大气CO2 浓度升高引起大气CO2 的δ13 C下降的全球性趋势 ,但两者的响应程度不同。冷杉和云杉年轮δ13 C高频变化包含共同的气候环境变化信息 ,但在细节变化上存在差异。在对气候变化的响应上 ,两者记录的信息可以进行相互比较 ,以便利用不同地区不同树种的δ13 C进行大区域气候重建。  相似文献   

13.
气候变化对中国农业生产的影响初探   总被引:17,自引:2,他引:15  
本文初步估计了我国的农业气候资源潜力。假设±1℃的温度变化和±100毫米的降水变化为单位气候变化。我国农业气候资源潜力在±1℃的温度变化时具有600亿斤的可能变化,在±100毫米的降水量变化时具有1600亿斤的可能变化。此外,还根据对历史时期、地质时代气候变化的最大幅度的分析,推论对生态系统可能的影响。最后得出“气候生态序列”。  相似文献   

14.
植物响应气候变化模型模拟研究进展   总被引:9,自引:0,他引:9  
尽管温室气体的增温效应及幅度大小具有很大的不确定性 ,存在许多分歧 ,然而植物对于气候变化的响应研究仍然成为众多学者关注的热点。近十年来 ,国内外学者从模型模拟的角度进行了多层面定量研究。归纳起来 ,已有的模型可以归并为生物地理相关模型、生态响应面模型、立地模型、植物生理模型以及统计模型等五类。本文逐一进行了评述 ,分析了它们的优势与不足 ,最后对模型模拟的发展趋势进行了展望。  相似文献   

15.
Rates of accommodation and sediment supply are the principal controls on stacking patterns in siliciclastic basin fills. Stratigraphic inversion is aimed at reconstruction of these controls from the detrital record. Efforts to ‘explain’ siliciclastic basin fills have been focused on analysis and numerical modelling of sequence geometry in response to changes in accommodation, whereas comparatively few studies have attempted to address the role of sediment supply. The compositional and textural properties of siliciclastic basin fills are linked with the evolution of drainage basins through the principle of climatic–physiographic control of sediment production and supply. Application of this principle leads to a method of compositional analysis for distinguishing sequences controlled by high-frequency changes in the rate of accommodation from sequences controlled by high-frequency variations in the rate of sediment supply (order of 10 kyr). This method does not require detailed time control. Changes in rate and type of sediment supplied to depositional systems in response to environmental perturbations in drainage basins are explored in greater detail by means of a numerical model of sediment production under various scenarios of climatic and tectonic forcing. Simulation experiments suggest that drainage basins respond differently to high-frequency tectonic and climatic perturbations. Synthetic time series of cyclically forced sediment production display different types of asymmetric variations in grain size, accumulation rate and residence time of sediments in response to tectonic and climatic forcing. The results also highlight the role of vegetation as the principal modulator of climate forcing, and show that the nonlinear response to climate change may frustrate any attempts at providing broad generalizations of the system's responses. The modelling results confirm the usefulness of a combined analysis of sediment composition and sequence geometry, and the mathematically rich behaviour of the system suggests that further development of this approach is likely to increase our ability to reconstruct forcing mechanisms and initial boundary conditions from the detrital record.  相似文献   

16.
30年来呼伦贝尔地区草地植被对气候变化的响应(英文)   总被引:8,自引:3,他引:5  
Global warming has led to significant vegetation changes especially in the past 20 years. Hulun Buir Grassland in Inner Mongolia, one of the world’s three prairies, is undergoing a process of prominent warming and drying. It is essential to investigate the effects of climatic change (temperature and precipitation) on vegetation dynamics for a better understanding of climatic change. NDVI (Normalized Difference Vegetation Index), reflecting characteristics of plant growth, vegetation coverage and biomass, is used as an indicator to monitor vegetation changes. GIMMS NDVI from 1981 to 2006 and MODIS NDVI from 2000 to 2009 were adopted and integrated in this study to extract the time series characteristics of vegetation changes in Hulun Buir Grassland. The responses of vegetation coverage to climatic change on the yearly, seasonal and monthly scales were analyzed combined with temperature and precipitation data of seven meteorological sites. In the past 30 years, vegetation coverage was more correlated with climatic factors, and the correlations were dependent on the time scales. On an inter-annual scale, vegetation change was better correlated with precipitation, suggesting that rainfall was the main factor for driving vegetation changes. On a seasonal-interannual scale, correlations between vegetation coverage change and climatic factors showed that the sensitivity of vegetation growth to the aqueous and thermal condition changes was different in different seasons. The sensitivity of vegetation growth to temperature in summers was higher than in the other seasons, while its sensitivity to rainfall in both summers and autumns was higher, especially in summers. On a monthly-interannual scale, correlations between vegetation coverage change and climatic factors during growth seasons showed that the response of vegetation changes to temperature in both April and May was stronger. This indicates that the temperature effect occurs in the early stage of vegetation growth. Correlations between vegetation growth and precipitation of the month before the current month, were better from May to August, showing a hysteresis response of vegetation growth to rainfall. Grasses get green and begin to grow in April, and the impacts of temperature on grass growth are obvious. The increase of NDVI in April may be due to climatic warming that leads to an advanced growth season. In summary, relationships between monthly-interannual variations of vegetation coverage and climatic factors represent the temporal rhythm controls of temperature and precipitation on grass growth largely.  相似文献   

17.

The Thornthwaite method for computing evapotranspiration has been employed in a variety of climatic realms. Recently, the equation for computing potential evapotranspiration has been shown to underestimate measured moisture losses in dry environments. This study presents monthly calibration equations that enhance the reliability of the Thornthwaite estimates of evapotranspiration for California stations. Six years of calibrated monthly potential evapotranspiration are compared with lysimetermeasured evapotranspiration at Davis and with other estimates of evapotranspiration for this site.  相似文献   

18.
Sediment flux from an uplifting fault block   总被引:5,自引:1,他引:4  
The stratigraphy of rift basins is a direct result of sediment liberation and transport through catchment–fan systems whose dynamics are controlled by both external and internal factors. We investigate the response of catchment–fan systems established across an active normal fault to variations in both tectonic and climatic boundary conditions. Numerical experiments show that the ratio of fan area to catchment area provides a sensitive indicator of tectonic activity. A step decrease in fault slip rate results in a delayed response by the catchment–fan systems; the response time is ∼50 kyr for a variety of parameter values. Decreased slip rate also gives rise to an abrupt but transient pulse in sediment discharge from the fans due to a drop in the hangingwall subsidence rate. In contrast, variations in climatic activity, using precipitation rate as a proxy, produce extremely rapid responses throughout the catchment–fan system. Thus, high-frequency climatic changes will overprint lower frequency tectonic variations in the stratigraphic record of fan deposits. Finally, we map out possible combinations of fault geometry, fault slip rate and precipitation rate that allow fan progradation and high rates of sediment discharge from the system.  相似文献   

19.
近30 年来呼伦贝尔地区草地植被变化对气候变化的响应   总被引:46,自引:4,他引:46  
基于1981-2006 年的GIMMS NDVI数据和2000-2009 年的MODIS NDVI数据反演呼伦贝尔地区草地变化,结合1981-2009 年该地区7 个气象站点的气温和降水数据,分别从年际变化、季节变化和月变化角度分析该地区草地变化对气候变化的响应。结果表明,从年际变化来看,降水是驱动草地植被年际变化的主要因素;从季节变化来看,草地植被生长在不同季节对水热条件变化的敏感性不同,春季草地植被生长对气温变化的敏感性较降水变化高,夏季和秋季草地植被的生长对降水变化的敏感性则高于对气温变化的敏感性,其中以夏季最为显著;从月变化来看,4 月和5 月草地植被变化受气温变化影响较明显;5-8 月与前一月降水变化关系密切,说明植被生长对降水变化具有一定的滞后性;4 月正值草本植物萌芽期,而4 月份草地生长与年气温变化关系最为密切,一定程度上说明4 月份表征植被生长的NDVI值增加可能是由于气候变暖引起的草地植被生长季提前产生的。综上所述,通过植被与气候要素月变化的关系可以具体地揭示气温和降水对草地植被生长的季节韵律控制。  相似文献   

20.
Stream-terrace genesis: implications for soil development   总被引:3,自引:0,他引:3  
Genesis of three distinct types of stream terraces can be understood through application of the concepts of tectonically induced downcutting, base level of erosion, complex response, threshold of critical power, diachronous and synchronous response times, and static and dynamic equilibrium. Climatic and tectonic stream terraces are major terraces below which flights of minor complex-response degradation terraces can form.These three types of terraces can be summarized by describing a downcutting-aggradation-renewed downcutting sequence for streams with gravell bedload. By tectonically induced downcutting, streams degrade to achieve and maintain a dynamic equilibrium longitudinal profile at the base level of erosion. Lateral erosion bevels bedrock beneath active channels to create major straths that are the fundamental tectonic stream-terrace landform. Aggradation events record brief reversals of long-term tectonically induced downcutting because they raise active channels. They may be considered as major (the result of climatic perturbations) or minor (the result of complex-response model types of perturbations). Climatically controlled aggradation followed by degradation leaves an aggradation surface; this type of fill-terrace tread is the fundamental climatic stream-terrace landform. Aggradation surfaces may be buried by subsequent episodes of deposition unless intervening tectonically induced downcutting is sufficient for younger aggradation surfaces to form below older surfaces. Raising of the active channel by either tectonic uplift or by climatically induced aggradation provides the vertical space for degradation terraces to form; first in alluvial fill and then in underlying bedrock along tectonically active streams. These are complex-response terraces because they result from interactions of dependent variables within a given fluvial system. Pauses in degradation to a new base level of erosion, and/or minor episodes of backfilling, lead to formation of complex-response fill-cut and strath, or of fill terraces. Fill-cut terraces are formed in alluvium; they are complex-response terraces because they are higher than the base level of erosion. Good exposures and dating are needed to distinguish static equilibrium complex-response minor strath terraces from dynamic equilibrium tectonic (major) straths. Strath terraces may be regarded as complex-response terraces where degradation rates between times terrace-tread formation exceed the long-term uplift rate for the reach based on ages and positions of tectonic terraces.Late Quaternary global climatic changes control aggradation events and even the times of cutting of major (tectonic) straths, because the base level of erosion can not be attained during times of climatically driven aggradation-degradation events.Most terrace soils form on treads of climatic and complex-response terraces. Aggradation surfaces may provide an ideal flight of terraces on which to study a soils chronosequence. Each aggradation event is recorded by a single relict soil where tectonically induced downcutting is sufficient to provide clear altitudinal separation of the terrace treads. Multiple paleosols are typical of tectonically stable regions where younger aggradation events spread alluvium over treads of older climatic terraces. Pedons on a climatic terrace in a small fluvial system commonly are roughly synchronous - variations of soil properties that can be attributed to temporal differences will be minor compared to altitudinally controlled climatic factors. Climatic terraces of adjacent watersheds also should be roughly synchronous (correlatable) - variations of soil properties that can be attributed to temporal differences will be minor compared to lithologic and climatic factors between different watersheds. Such generalizations may not apply to basins with sufficient relief that geomorphic responses to climatic changes occur at different and overlapping times, and to large rivers whose widely separated reaches are characterized by different response times to climatic perturbations. Soils on climatic terraces of distant watershedswill not be synchronous if their respective aggradation events occur during full-glacial times and interglacial times. Soils on some complex-response terraces may be diachronous within a given fluvial system, and typically are diachronous between watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号