首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of the chemical composition of stars and galaxies is a key topic for understanding their origin and evolution. In this study, we present the results of the calculation of solar abundances of the isotopes 1H, 4He, 12C, 14N, 15O, 16O, 17O, and 18O during the four phases of the solar life: hydrogen burning, onset of rapid growth and red giant, helium burning and helium exhaustion. The open source package “NucNet Tools” from the Webnucleo Group in Clemson University, SC, USA was used for this purpose. The results for all isotopes are listed in tables for future use. Abundances found, globally, agree fairly well with those predicted in the literature. Results obtained for the last two phases have no equivalents elsewhere.  相似文献   

2.
This work is about the identification of modern cosmic dust that had survived heating during its high-velocity passage through the Earth’s atmosphere from 3He isotope concentrations in marine (Gulf of Finland) ferromanganese nodules (FMNs). The measured bulk composition of helium includes components of various origins, enabling the determination of the age (1800 years) of the shallow-water Baltic FMNs and the average time of exposure (8 × 107 years) of cosmic dust particles during their existence in space. The concentration of cosmic dust per gram of FMN material is found to be 0.036 μg. The contribution of solar-wind helium to the Earth’s atmospheric helium is found to be small. The experiments are conducted by the stepheating method in vacuo with the subsequent mass-spectrometric analysis of the helium released from the samples.  相似文献   

3.
An analysis of the hydrogen and helium isotopic composition from EPHIN data, during the quiet-time period from January 1 to June 1, 1996, is presented. An isotopic discrimination and background rejection have been applied and relationships between the abundances of 2H/1H, 3He/4He, and 4He/1H have been calculated. The energy spectra in the 4–50 MeV nucl–1 range have been obtained and the contribution of the different spectral components have been analysed in this energy range. We conclude that the main contribution to the 4He spectrum is of anomalous origin, while the proton and 3He spectra have contributions mainly from particles of solar origin at low energies and from the galactic cosmic radiation modulated by the heliosphere at high energies. The deuterium spectrum is mainly of galactic origin.  相似文献   

4.
Clayton  E.G.  Guzik  T.G.  Wefel  J.P. 《Solar physics》2000,195(1):175-194
During the 1990–1991 solar maximum, the CRRES satellite measured helium from 38 to 110 MeV n–1, with isotopic resolution, during both solar quiet periods and a number of large solar flares, the largest of which were seen during March and June 1991. Helium differential energy spectra and isotopic ratios are analyzed and indicate that (1) the series of large solar energetic particle (SEP) events of 2–22 June display characteristics consistent with CME-driven interplanetary shock acceleration; (2) the SEP events of 23–28 March exhibit signatures of both CME-driven shock acceleration and impulsive SEP acceleration; (3) below about 60 MeV n–1, the helium flux measured by CRRES is dominated by solar helium even during periods of least solar activity; (4) the solar helium below 60 MeV n–1 is enriched in 3He, with a mean 3He/4He ratio of about 0.18 throughout most of the CRRES mission `quiet' periods; and (5) an association of this solar component with small CMEs occurring during the periods selected as solar `quiet' times.  相似文献   

5.
In this paper we use the observations of solar wind helium ions made by the Ion Composition Instrument (ICI) on the ISEE-3/ICE spacecraft to study the variation of helium abundance in the solar wind and to arrive at an average value of that quantity for the period August 1978 to December 1982. The abundance varies in a similar way to that observed in the previous solar cycle, but more detailed dependence on velocity and solar cycle epoch is observed. The long-term average helium abundance is used in conjunction with long term abundances of 3He, O, Ne, Si, and Fe, measured with respect to helium using the same instrument, to compile abundances with respect to hydrogen which can be reliably compared with solar system abundances. With the extended data set we are able to show Si and Fe to be overabundant by a factor of three with respect to solar system abundances and He underabundant by a factor of two.  相似文献   

6.
We hypothesize the formation of neon associated with isotopically anomalous xenon (Xe-HL) in meteoritic nanodiamonds and designated as Ne-X through the mixing of the Ne-HL and Ne-S subcomponents. The Ne-HL subcomponent is neon from the helium (He/C) zone of a type II supernova or a mixture of neon from this zone and its hydrogen zone, while the Ne-S subcomponent is spallation neon formed during a supernova explosion in nuclear spallation reactions induced by high-energy protons. Based on this hypothesis and the presumed abundances of neon isotopes in the zones of a high-mass (25M ) supernova after its explosion, we have calculated the abundances of neon components in nanodiamond separates and its grain-size fractions. Our calculations have shown the following. (1) The main source of Ne-HL is neon from the helium zone of the supernova; as a result, the 20Ne/22Ne and 21Ne/22Ne ratios for Ne-X are 0.26 ± 0.03 and 0.19 ± 0.04, respectively. The isotopic composition of Ne-X is identical to that for Ne-A2 if Ne-HL is produced by the mixing of neon from the helium and hydrogen zones in proportion 1: 1.06. (2) In meteoritic nanodiamonds, the main neon abundance is determined by neon of the P3 component (Ne-P3). Ne-P3 is retained during thermal metamorphism, because it is sited in traps of the crystal lattice of diamond with a high energy of its activation. (3) The Ne-X/Ne-P3 ratio increases with nanodiamond grain size; as a result, there is no need to invoke an additional neon component (Ne-P6) to interpret the data on neon in meteoritic nanodiamonds.  相似文献   

7.
We report the results of age determination of a lunar soil column, delivered by the Luna 16 mission in September 1970 from the Sea of Fertility. We elaborated and applied the soil age determination method using the kinetic parameter, the regolith accumulation rate. The age of the soil delivered by Luna 16 is about 90 Myr. The isotopic ratio of 3He/4He in the column is slightly higher than in the soil column delivered by the Luna 24 mission. The abundance of helium in the fine fraction of the soil (about 100 µm) is significantly higher and is close to the maximum abundance from the Luna 24 soil column. These differences are most likely associated with the variations of solar corpuscular fluxes. Based on the measurements of the helium isotope abundance in the samples of lunar soil columns, we have estimated the values of ancient solar fluxes of protons and helium and variations thereof in the time interval of up to 600 Myr. We demonstrate that during this epoch there were two strong bursts of the helium flux, about 80 and 470 Myr ago, respectively. The existence of the first peak was assumed earlier from the paleodendrochronological data.  相似文献   

8.
Abstract— Chemical and mineral analysis of the Bhawad chondrite, which fell in Rajasthan in 2002, suggest that this stone belongs to LL6 group of chondrites. Based on helium, neon, and argon isotopes, it has a cosmic ray exposure age of 16.3 Ma. The track density in the olivines shows a narrow range of 1.7–6.8 times 106/cm2. The 22Na/26Al ratio of 1.13 is about 25% lower than the solar cycle average value of about 1.5, but is consistent with irradiation of the meteoroid to modulated galactic cosmic ray fluxes as expected for a fall around the solar maximum. The cosmogenic records indicate a pre‐atmospheric radius of about 7.5 cm. Based on U/Th‐4He and K‐40Ar, the gas retention ages are low (about 1.1 Ga), indicating a major thermal event or shock event that lead to the complete loss of radiogenic 4He and 40Ar and the partial loss of radiogenic 129Xe and fission Xe from 244Pu.  相似文献   

9.
Abstract— Noble gas data from Martian meteorites have provided key constraints about their origin and evolution, and their parent body. These meteorites have witnessed varying shock metamorphic overprinting (at least 5 to 14 GPa for the nakhlites and up to 45–55 GPa (e.g., the lherzolitic shergottite Allan Hills [ALH] A77005), solar heating, cosmic‐ray exposure, and weathering both on Mars and Earth. Influences on the helium budgets of Martian meteorites were evaluated by using a new data set and literature data. Concentrations of 3He, 4He, U, and Th are measured and shock pressures for same sample aliquots of 13 Martian meteorites were determined to asses a possible relationship between shock pressure and helium concentration. Partitioning of 4He into cosmogenic and radiogenic components was performed using the lowest 4He/3He ratio we measured on mineral separates (4He/3He = 4.1, pyroxene of ALHA77005). Our study revealed significant losses of radiogenic 4He. Systematics of cosmogenic 3He and neon led to the conclusion that solar radiation heating during transfer from Mars to Earth and terrestrial weathering can be ruled out as major causes of the observed losses of radiogenic helium in bulk meteorites. For bulk rock we observed a correlation of shock pressure and radiogenic 4He loss, ranging between ?20% for Chassigny and other moderately shocked Martian meteorites up to total loss for meteorites shocked above 40 GPa. A steep increase of loss occurs around 30 GPa, the pressure at which plagioclase transforms to maskelynite. This correlation suggests significant 4He loss induced by shock metamorphism. Noble gas loss in rocks is seen as diffusion due to (1) the temperature increase during shock loading (shock temperature) and (2) the remaining waste heat after adiabatic unloading (post shock temperature). Modeling of 4He diffusion in the main U, Th carrier phase apatite showed that post‐shock temperatures of ?300 °C are necessary to explain observed losses. This temperature corresponds to the post‐shock temperature calculated for bulk rocks shocked at about 40 GPa. From our investigation, data survey, and modeling, we conclude that the shock event during launch of the meteorites is the principal cause for 4He loss.  相似文献   

10.
The abundances of very light elements D,3He,4He and7Li in low-mass stars and their cosmological implications are discussed.  相似文献   

11.
3He is an intermediate product in the proton-proton chain, and standard models of the Sun predict a large bulge of enhanced 3He abundance near M r /M 0 = 0.6 in the contemporary Sun. The relatively low abundance of 3He at the solar surface, which is derived from solar wind observations, poses severe constraints to non-standard solar models.Direct measurements of the 3He abundance in the solar atmosphere are extremely difficult, whereas indirect measurements, e.g., in the solar wind, have been performed with considerable precision. The interpretation of solar wind observations with respect to solar surface abundances has been greatly improved in recent years. Abundance measurements have been performed under a large variety of solar wind conditions and refined models have been developed for the transport processes in the chromosphere and the transition region and for the processes occurring in the solar corona. From these measurements we estimate the present isotopic number ratio 3He/4He to be (4.1 ± 1.0) × 10–4 at the solar surface, corresponding to the weight abundance X 3 = (9.0 ± 2.4) × 10–5. The zero-age Main-Sequence abundance of 3He (after burning of D) might have been slightly lower (by about 10 to 20%) than the present-day value.Non-standard solar models involving mild turbulent diffusion (Lebreton and Maeder, 1987) could account for a slow secular increase of the 3He/4He ratio in the solar atmosphere. On the other hand it is difficult to reconcile models with severe mass loss as proposed by Guzik, Willson, and Brunish (1987) with this constraint. The slowing down of the solar rotation during the early Main-Sequence evolution was accompanied by stronger differential rotation probably implying a more effective mixing of the inner parts. Again, the surface abundance of 3He imposes severe limits on the evolution of the distribution of momentum within the early Sun.  相似文献   

12.
The differential flux and energy spectra of solar cosmic ray heavy ions of He, C, O, Ne, Mg, Si, and Fe were determined in the energy interval E = 3–30 MeV amu-1 for two large solar events of January 24, 1971 and September 1, 1971 in rocket flights made from Ft. Churchill. From these data the relative abundances and the abundance enhancement factors, ξ, relative to photospheric abundances were obtained for these elements. Similar results were obtained for a third event on August 4, 1972 from the available published data. Characteristic features of ξ vs nuclear charge dependences were deduced for five energy intervals. The energy dependence of ξ for He shows a moderate change by a factor of about 3, whereas for Fe, ξ shows a very dramatic decrease by a factor of 10–20 with increasing energy. It is inferred that these abundance enhancements of solar cosmic ray heavy ions at low energies seem to be related to their ionization states (Z *) and hence studies of Z * can give information on the important parameters such as temperature and density in the accelerating region in the Sun.  相似文献   

13.
Ravit Helled  Gerald Schubert 《Icarus》2009,199(2):368-377
We present ‘empirical’ models (pressure vs. density) of Saturn's interior constrained by the gravitational coefficients J2, J4, and J6 for different assumed rotation rates of the planet. The empirical pressure-density profile is interpreted in terms of a hydrogen and helium physical equation of state to deduce the hydrogen to helium ratio in Saturn and to constrain the depth dependence of helium and heavy element abundances. The planet's internal structure (pressure vs. density) and composition are found to be insensitive to the assumed rotation rate for periods between 10h:32m:35s and 10h:41m:35s. We find that helium is depleted in the upper envelope, while in the high pressure region (P?1 Mbar) either the helium abundance or the concentration of heavier elements is significantly enhanced. Taking the ratio of hydrogen to helium in Saturn to be solar, we find that the maximum mass of heavy elements in Saturn's interior ranges from ∼6 to 20 M. The empirical models of Saturn's interior yield a moment of inertia factor varying from 0.22271 to 0.22599 for rotation periods between 10h:32m:35s and 10h:41m:35s, respectively. A long-term precession rate of about 0.754 yr−1 is found to be consistent with the derived moment of inertia values and assumed rotation rates over the entire range of investigated rotation rates. This suggests that the long-term precession period of Saturn is somewhat shorter than the generally assumed value of 1.77×106 years inferred from modeling and observations.  相似文献   

14.
We present an LTE analysis of high resolution echelle optical spectra obtained with the 3.9-m Anglo-Australian Telescope (AAT) and the UCLES spectrograph for a B1Ib high galactic latitude supergiant HD119608. A fresh determination of the atmospheric parameters using line-blanketed LTE model atmospheres and spectral synthesis provided Teff = 23 300 ± 1000 K, log g = 3.0 ± 0.3, and the microturbulent velocity ξ = 6.0 ± 1.0 kms?1 and [Fe/H] = 0.16. The rotational velocity of the star was derived fromC, O, N, Al, and Fe lines as v sin i = 55.8 ± 1.3 kms?1. Elemental abundances were obtained for 10 different species. He, Al, and P abundances of the star were determined for the first time. In the spectra, hot post-AGB status as well as the Pop I characteristics of the star were examined. The approximately solar carbon and oxygen abundances, along with mild excess in helium and nitrogen abundances do not stipulate a CNO processed surface composition, hence a hot post-AGB status. The LTE abundances analysis also indicates solar sulphur and moderately enriched magnesium abundances. The average abundances of B dwarfs of well studied OB associations and Population I stars show a striking resemblance to abundances obtained for HD119608 in this study. This may imply a runaway status for the star.  相似文献   

15.
Rocket measurements of absolute intensities in the solar X-ray spectrum on November 4, 1964 around 16:35 UT yield the following results : 1.8·10-2 erg cm-2 sec-1 (wavelength band 44–60 Å); and 1.5·10-3 erg cm-2 sec-1 (wavelength band 8–15Å). These values were obtained under nearly quiet minimum conditions of the sun.  相似文献   

16.
Long-exposure spectroscopy of Mars and Venus with the Extreme Ultraviolet Explorer (EUVE) has revealed emissions of He 584 Å on both planets and He 537 Å/O+ 539 Å and He+ 304 Å on Venus. Our knowledge of the solar emission at 584 Å, eddy diffusion in Mars' upper atmosphere, electron energy distributions above Mars' ionopause, and hot oxygen densities in Mars' exosphere has been significantly improved since our analysis of the first EUVE observation of Mars [Krasnopolsky, Gladstone, 1996, Helium on Mars: EUVE and Phobos data and implications for Mars' evolution, J. Geophys. Res. 101, 15,765-15,772]. These new results and a more recent EUVE observation of Mars are the motivation for us to revisit the problem in this paper. We find that the abundance of helium in the upper atmosphere, where the main loss processes occur, is similar to that in the previous paper, though the mixing ratio in the lower and middle atmosphere is now better estimated at 10±6 ppm. Our estimate of the total loss of helium is almost unchanged at 8×1023 s−1, because a significant decrease in the loss by electron impact ionization above the ionopause is compensated by a higher loss in collisions with hot oxygen. We neglect the outgassing of helium produced by radioactive decay of U and Th because of the absence of current volcanism and a very low upper limit to the seepage of volcanic gases. The capture of solar wind α-particles is currently the only substantial source of helium on Mars, and its efficiency remains at 0.3. A similar analysis of EUV emissions from Venus results in a helium abundance in the upper atmosphere which is equal to the mean of the abundances measured previously with two optical and two mass spectrometers, and a derived helium mixing ratio in the middle and lower atmosphere of 9±6 ppm. Helium escape by ionization and sweeping out of helium ions by the solar wind above the ionopause is smaller than that calculated by Prather and McElroy [1983, Helium on Venus: implications for uranium and thorium, Science 220, 410-411] by a factor of 3. However, charge exchange of He+ ions with CO2 and N2 between the exobase and ionopause and collisions with hot oxygen ignored previously add to the total loss which appears to be at the level of 106 cm−2 s−1 predicted by Prather and McElroy [1983, Science 220, 410-411]. The loss of helium is compensated by outgassing of helium produced by radioactive decay of U and Th and by the capture of the solar wind α-particles with an efficiency of 0.1. We also compare our derived α-particle capture efficiencies for Mars and Venus with observed X-ray emissions resulting from the charge exchange of solar wind heavy ions with the extended atmospheres on both planets [Dennerl et al., 2002, Discovery of X-rays from Venus with Chandra, Astron. Astrophys. 386, 319-330; Dennerl, 2002, Discovery of X-rays from Mars with Chandra, Astron. Astrophys. 394, 1119-1128]. The emissions from both disk and halo on Mars agree with our calculated values; however, we do not see a reasonable explanation for the X-ray halo emission on Venus. The ratio of the charge exchange efficiencies derived from the disk X-ray emissions of Mars and Venus is similar to the ratio of the capture efficiencies for these planets. The surprisingly bright emission of He+ at 304 Å observed by EUVE and Venera 11 and 12 suggests that charge exchange in the flow of the solar wind α-particles around the ionopause is much stronger than in the flow of α-particles into the ionosphere.  相似文献   

17.
Zero-age main-sequence models for stars of 20, 10, 5 and 2M with no heavy elements are constructed for three different possible primordial helium abundances:Y=0.00,Y=0.23, andY=0.30. The latter two values ofY bracket the range of primordial helium abundances cited by Wagoner. With the exceptions of the two 20M models that contain helium, these models are found to be self-consistent in the sense that the formation of carbon through the triple-alpha process during pre-main sequence contraction is not sufficient to bring the CN cycle into competition with the proton-proton chain on the ZAMS. The zero-metal models of the present study have higher surface and central temperatures, higher central densities, smaller radii, and smaller convective cores than do the population I models with the same masses. If galaxies containing the zero-metal stars were formed as recently as one third the Hubble time, they would likely appear very blue today — perhaps bluer even that most known quasars — and their redshifted effective temperatures could range as high as 3×104 K to 4×104 K.  相似文献   

18.
Slitless spectrograms obtained during the eclipse of 10 June 1972 have been analyzed to determine the height distribution of the D3 He line intensity.For undisturbed regions the maximum of D3 line intensity is confirmed to exist at about 1700km above the limb. Besides the above mentioned maximum, in plages a considerable intensity may be observed at low heights (h < 1000 km).An analysis of these observations for h > 1000 km has been carried out within the low temperature mechanism of triplet helium emission taking into account the helium ionization by XUV radiation. The density dependence of the 23 S level population at different XUV flux values has been calculated. Our observations give N e 2 × 1010 cm–3 in the chromosphere at h = 2000 km. The probable coincidence of the H and He emission small filaments in the middle chromosphere is discussed.  相似文献   

19.
Abstract— Measurements of He isotopes in cluster interplanetary dust particles (IDPs) from stratospheric dust collector L2009 reveal anomalous 3He/4He ratios comparable to those seen earlier, up to ~40x the solar wind ratio, in particles from the companion collector L2011. These overabundances of 3He in the L2009 samples are masked by much higher 4He contents compared to the L2011 particles, and are visible only in minor gas fractions evolved by stepwise heating at high temperatures. Cosmic‐ray induced spallogenic reactions are efficient producers of 3He. The majority of this paper is devoted to a detailed assessment of the possible role of spallation in generating the 3He excesses in these and other cluster IDPs. A model of collisional erosion and fragmentation during inward transit through the interplanetary dust environment is used to estimate space lifetimes of particles from asteroidal and Edgeworth–Kuiper Belt sources. Results of the modeling indicate that Poynting–Robertson orbital evolution timescales of IDPs small enough to elude destruction on their way to Earth from either location are far shorter than the cosmic‐ray exposure ages required to account for observed 3He overabundances. Grains large enough to have sufficiently long space residence times are fragmented close to their sources. An alternative to long in‐space exposure could be prolonged irradiation of particles buried in parent body regoliths prior to their ejection as IDPs. A qualitative calculation suggests, however, that collisional erosion of asteroidal upper‐regolith materials is likely to occur on timescales shorter than the > 1 Ga burial times needed for accumulation of spallogenic 3He to the levels seen in several cluster particles. In contrast, regoliths on Edgeworth–Kuiper Belt objects may be stable enough to account for the 3He excesses, and delivery of heavily pre‐irradiated IDPs to the inner solar system by short‐period Edgeworth–Kuiper Belt comets remains a possibility. A potential problem is that the expected associated abundances of spallation‐produced 21Ne appear to be absent, although here the present IDP data base is too sparse and for the most part too imprecise to rule out a spallogenic origin. Relatively short periods of pre‐ejection residence in asteroidal regoliths may be responsible for the curiously broad exposure age distributions reported for micrometeorites extracted from Greenland and sea‐floor sediments.  相似文献   

20.
Abstract– We measured cosmogenic radionuclides and noble gases in the L3–6 chondrite breccia Northwest Africa (NWA) 869, one of the largest meteorite finds from the Sahara. Concentrations of 10Be, 26Al, and 36Cl in stone and metal fractions of six fragments of NWA 869 indicate a preatmospheric radius of 2.0–2.5 m. The 14C and 10Be concentrations in three fragments yield a terrestrial age of 4.4 ± 0.7 kyr, whereas two fragments show evidence for a recent change in shielding, most likely due to a recent impact on the NWA meteoroid, approximately 105 yr ago, that excavated material up to approximately 80 cm deep and exposed previously shielded material to higher cosmic‐ray fluxes. This scenario is supported by the low cosmogenic 3He/21Ne ratios in these two samples, indicating recent loss of cosmogenic 3He. Most NWA samples, except for clasts of petrologic type 4–6, contain significant amounts of solar Ne and Ar, but are virtually free of solar helium, judging from the trapped 4He/20Ne ratio of approximately 7. Trapped planetary‐type Kr and Xe are most clearly present in the bulk and matrix samples, where abundances of 129Xe from decay of now extinct 129I are highest. Cosmogenic 21Ne varies between 0.55 and 1.92 × 10?8 cm3 STP g?1, with no apparent relationship between cosmogenic and solar Ne contents. Low cosmogenic (22Ne/21Ne)c ratios in solar gas free specimens are consistent with irradiation in a large body. Combined 10Be and 21Ne concentrations indicate that NWA 869 had a 4π cosmic‐ray exposure (CRE) age of 5 ± 1 Myr, whereas elevated 21Ne concentrations in several clasts and bulk samples indicate a previous CRE of 10–30 Myr on the parent body, most probably as individual components in a regolith. Unlike many other large chondrites, NWA 869 does not show clear evidence of CRE as a large boulder near the surface of its parent body. Radiogenic 4He concentrations in most NWA 869 samples indicate a major outgassing event approximately 2.8 Gyr ago that may have also resulted in loss of solar helium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号