首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voloshinite, a new mineral of the mica group, a rubidium analogue of lepidolite, has been found from the rare-element granitic pegmatite at Mt. Vasin-Myl’k, Voron’i Tundras, Kola Peninsula, Russia. It is closely associated with pollucite and lepidolite and commonly with muscovite, albite, and quartz; K,Rb-feldspar, rubicline, spodumene, montebrasite, and elbaite are among associated minerals as well. Voloshinite, a late mineral that formed after pollucite, commonly fills polymineralic veinlets and pods within the pollucite aggregates. It occurs as rims up to 0.05 mm thick around lepidolite, as intergrowths of tabular crystals up to 0.25 mm in size, and occasionally replaces lepidolite. The new mineral is colorless, transparent, with vitreous luster. Cleavage is eminent parallel to {001}; flakes are flexible. The calculated density is 2.95 g/cm3. The new mineral is biaxial (?), with 2V = 25°, α calc = 1.511, β = 1.586, and γ = 1.590. The optical orientation is Y = b, Z = a. The chemical composition of the type material determined by electron microprobe (average of five point analyses; Li has been determined with ICP-OES) is as follows (wt %): 0.03 Na2O, 3.70 K2O, 12.18 Rb2O, 2.02 Cs2O, 4.0 Li2O, 0.03 CaO, 0.02 MgO, 0.14 MnO, 21.33 Al2O3, 53.14 SiO2, 6.41 F, -O = F2 2.70, total is 100.30. The empirical formula is: (Rb0.54K0.33Cs0.06)Σ0.93(Al1.42Li1.11Mn0.01)Σ2.54(Si3.68Al0.32)Σ4O10 (F1.40(OH)0.60)Σ2. The idealized formula is as follows: Rb(LiAl1.50.5)[Al0.5Si3.5O10]F2. Voloshinite forms a continuous solid solution with lepidolite. According to X-ray single crystal study, voloshinite is monoclinic, space group C2/c. The unit-cell dimensions are: a = 5.191, b = 9.025, c = 20.40 Å, β = 95.37°, V= 951.5 Å3, Z = 4. Polytype is 2M 1. The strongest reflections in the X-ray powder diffraction pattern (d, Å-I[hkl]) are: 10.1-60[001]; 4.55-80[020, 110, 11\(\bar 1\)]; 3.49-50[11\(\bar 4\)]; 3.35-60[024, 006]; 3.02-45[025]; 2.575-100[11\(\bar 6\), 131, 20\(\bar 2\), 13\(\bar 4\)], 2.017-50[136, 0.0.10]. The mineral was named in honor of A.V. Voloshin (born in 1937), the famous Russian mineralogist. The type material is deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow.  相似文献   

2.
Compositional variation (results of electron microprobe analyses and mass-spectrometry analyses) of columbite-group minerals (CGM) from fully differentiated albite–spodumene pegmatites at Kolmozero in the Kola Peninsula is evaluated. Concentric zoning, typical of rare-metal pegmatites, was not observed in the Kolmozero pegmatites. Columbite-group minerals occur in all main parageneses of the pegmatites and form four generations, reflecting the sequence of pegmatite formation. These minerals demonstrate wide variations in the content of major and trace elements. The composition of CGM ranges from columbite-(Fe) to tantalite-(Mn). Fractionation trends were observed in Mn/(Mn + Fe) versus Ta/(Ta + Nb) diagrams and trace-element abundances plotted versus XTa and XMn. The early CGM paragenesis is characterized by homogeneous, oscillatory and progressive oscillatory zoning and corresponds to a primary magmatic type. Late-generation CGM show patchy irregular internal textures replacing earlier regular patterns of zoning. The irregular zoning points to metasomatic replacement processes. For the first time, it is shown that distributions of rare earth elements (REE) in CGM reflect the evolution of a pegmatite-forming system. At Kolmozero, the main trend of REE variation from early to late generations of CGM involves decreasing total REE contents due to a decrease in heavy REE and Y, decreasing negative Eu anomaly and decreasing magnitude of M-shape tetrad effect between Gd and Ho. These changes are accompanied by gradual flattening of the “bird-like” patterns of chondrite-normalized REE distribution. All these features are typical for late differentiates of granitic volatile-rich magma. Late metasomatic tantalite-(Mn) is characterized by sharp changes in its REE distribution pattern: decreasing total REE contents, changing shape of the REE distribution pattern, the absence of Eu anomaly and tetrad effects, and the appearance of a negative Ce anomaly. The textural characteristics and mineral chemistry of CGM indicate that the pegmatite-forming system underwent several stages of evolution. The earliest magmatic stage can be divided into two sub-stages, involving direct crystallization and collective recrystallization, respectively, and was succeeded by a late hydrothermal–metasomatic post-magmatic stage. Variations in chemical composition among the different generations of CGM are explained by the interplay of several processes: fractional crystallization; competitive crystallization of main rock-forming (feldspar, muscovite, spodumene) and accessory (triphylyte–lithiophilite, spessartine, fluorapatite, zircon, microlite) minerals; and evolution of the mineral-forming environment from a melt to a hydrothermal–metasomatic fluid.  相似文献   

3.
Perovskite is a common accessory mineral in a variety of mafic and ultramafic rocks, but perovskite deposits are rare and studies of perovskite ore deposits are correspondingly scarce. Perovskite is a key rock-forming mineral and reaches exceptionally high concentrations in olivinites, diverse clinopyroxenites and silicocarbonatites in the Afrikanda alkaline–ultramafic complex (Kola Peninsula, NW Russia). Across these lithologies, we classify perovskite into three types (T1–T3) based on crystal morphology, inclusion abundance, composition, and zonation. Perovskite in olivinites and some clinopyroxenites is represented by fine-grained, equigranular, monomineralic clusters and networks (T1). In contrast, perovskite in other clinopyroxenites and some silicocarbonatites has fine- to coarse-grained interlocked (T2) and massive (T3) textures. Electron backscatter diffraction reveals that some T1 and T2 perovskite grains in the olivinites and clinopyroxenites are composed of multiple subgrains and may represent stages of crystal rotation, coalescence and amalgamation. We propose that in the olivinites and clinopyroxenites, these processes result in the transformation of clusters and networks of fine-grained perovskite crystals (T1) to mosaics of more coarse-grained (T2) and massive perovskite (T3). This interpretation suggests that sub-solidus processes can lead to the development of coarse-grained and massive perovskite. A combination of characteristic features identified in the Afrikanda perovskite (equigranular crystal mosaics, interlocked irregular-shaped grains, and massive zones) is observed in other oxide ore deposits, particularly in layered intrusions of chromitites and intrusion-hosted magnetite deposits and suggests that the same amalgamation processes may be responsible for some of the coarse-grained and massive textures observed in oxide deposits worldwide.  相似文献   

4.
The extent of fractionation of Rb and Sr is routinely used in petrogenetic modelling of igneous processes, including internal fractionation of individual pegmatites as well as large-scale evolution of pegmatite groups and fields. However, highly evolved granitic pegmatites may contain as much as 14000 ppm Rb and less than 150 ppm Sr. The total Sr in K-feldspar and micas from geologically old and Rb-rich pegmatites may consist predominantly of radiogenic 87Sr, which obscures the original relationship of Rb to common Sr at the time of crystallization. A subtraction of radiogenic 87Sr calculated from the Rb content and age of emplacement is possible, but it commonly results in negative concentrations of Sr. The relative immobility of Rb, analytically determined isotopic composition of Sr, apparent ages of the Rb, Sr-bearing minerals, high concentration of 87Sr in coexisting Rb-poor phases, and experimental evidence indicate that post-crystallization migration of radiogenic 87Sr is significant. Where isotopic data are not available, RbSr trends in geologically old and highly fractionated pegmatites are misleading and cannot be used for geochemical interpretation of pegmatite derivation or evolution.  相似文献   

5.
The geology of the basal-structural Loypishnyun low-sulfide Pt–Pd deposit is characterized, including its mineral composition and the peculiarities of its PGE and chalcophile-element distribution in ore. The deposit is situated in the northeastern part of the Monchetundra basic massif and is localized in its lower norite–orthopyroxenite zone, intensely injected with late gabbroic rocks. Two ore zones are distinguished within the deposit. Ore zone 1 has been traced by drilling for about 1.5 km at a thickness from 10–15 to 120 m and incorporates from two to nine separate lenticular–sheetlike orebodies 0.5–25 m in thickness. Ore zone 2 has been traced for 550 m and is represented by one orebody 5–35 m thick. The internal structure of the orebodies is characterized by alternation of low-grade (Pt + Pd = 0.5–0.9 gpt), ordinary (Pt + Pd = 1.0–1.9 gpt), and high-grade (Pt + Pd > 2 gpt) interlayers of various thickness. The ores are spatially and genetically related to sulfide mineralization (pentlandite–chalcopyrite–pyrrhotite) in an amount of 1–5 vol %. The PGE distribution in ores normalized to primitive mantle is characterized by fractionation of easily fusible platinoids with a positive Pd anomaly. The spectra of chalcophile elements normalized to primitive mantle are notable for elevated Te, Bi, As, and Se contents with respect to Sn, Hg, and Pb, which reflects the significant contribution of Te, Bi, and As in the formation of platinum group minerals (PGM), whereas Se, which is devoid of proper mineral phases, most likely is an admixture in the composition of sulfides. The S/Se value in ore of the Loypishnyun deposit varies from 31 to 814. The platinum group elements (PGE) in ore are represented by 45 noble metal minerals. Ore zone 1 is characterized by lateral mineral zoning, which is expressed as replacement of a bismuthotelluride–sulfide PGM assemblage by an assemblage of copper–PGE compounds and alloys. In ore zone 2, a mineral assemblage of tellurides, copper–PGE compounds and alloys predominates, with native gold, silver, and palladium, as well as sulfides and bismuthotellurides, playing a subordinate role. The formation of PGM ore proceeded under variable sulfur fugacity conditions, beginning with the late magmatic stage at temperatures of 900–700°C and ending with hydrothermal transformation at a temperature of <500°C.  相似文献   

6.
Mineralogical, fluid inclusion, and geochemical studies of precious metal mineralization within the Baimka trend in the western Chukchi Peninsula have been preformed. Porphyry copper–molybdenum–gold deposits and prospects of the Baimka trend are spatially related to monzonitic rocks of the Early Cretaceous Egdygkych Complex. Four types of precious metal-bearing assemblages have been identified: (1) chalcopyrite + bornite + quartz with high-fineness native gold enclosed in bornite, (2) low-Mn dolomite + quartz + sulfide (chalcopyrite, sphalerite, galena, tennantite-tetrahedrite) ± tourmaline with low-fineness native gold and hessite, (3) rhodochrosite + high-Mn dolomite + quartz + sulfide (chalcopyrite, sphalerite, galena, tennantite- tetrahedrite) with low-fineness native gold, electrum, acanthite, Ag and Au–Ag tellurides, and Ag sulfosalts, and (4) calcite + quartz + sulfide (chalcopyrite, sphalerite, galena) with low-fineness native gold, Ag sulfides and selenides, and Ag-bearing sulfosalts. Study of fluid inclusions from quartz, sphalerite, and fluorite have revealed that hydrothermal ores within the Baimka trend precipitated from fluids with strongly variable salinity at temperatures and pressures ranging from 594 to 104°C and from 1200 to 170 bar, respectively. An indicator of vertical AgPbZn/CuBiMo geochemical zoning is proposed. The value range of this indicator makes it possible to estimate the erosion level of the porphyry–epithermal system. The erosion level of the Baimka deposits and prospects deepens in the following order: Vesenny deposit → Pryamoi prospect → Nakhodka prospect → Peschanka deposit → III Vesenny prospect.  相似文献   

7.
This study presents the first fluid inclusion data from quartz of albite–carbonate–quartz altered rocks and metasomatic quartzite hosting gold mineralization in the Pechenga structure of the Pechenga–Imandra–Varzuga greenstone belt. A temperature of 275–370°C, pressure of 1.2–4.5 kbar, and the fluid composition of gold-bearing fluid are estimated by microthermometry, Raman spectroscopy, and LA-ICP-MS of individual fluid inclusions, as well as by bulk chemical analyses of fluid inclusions. In particular, the Au and Ag concentrations have been determined in fluid inclusions. It is shown that albite–carbonate–quartz altered rocks and metasomatic quartzite interacted with fluids of similar chemical composition but under different physicochemical conditions. It is concluded that the gold-bearing fluid in the Pechenga structure is similar to that of orogenic gold deposits.  相似文献   

8.
Electron microprobe analyses of zoned columbite-tantalite crystals from the granitic pegmatites of the Eräjärvi area in Orivesi, southern Finland indicate wide compositional variation within the series FeNb2O6-FeTa2O6-MnNb2O6-MnTa2O6, especially in specimens from thin pegmatite dikes.Most crystals show gentle progressive zoning characterized by small-scale variations in the major elements. Where the compositional variation is large, backscattered electron images indicate oscillatory or patchy zoning or various replacement textures.The zones in oscillatory zoned crystals are usually 1–50 μm in width, exceptions reaching 50–120 μm. The wider zones often consist of a group of very narrow subzones of only slightly different composition. Zoning is due mainly to the compositional variation in Ta and Nb. In two of these crystals, the oscillations in Mn follow the strongest oscillations in Nb content.Patchy zoned crystals exhibit corroded cores of early columbite-tantalite, surrounded by later zones enriched in Ta. The mottled appearance of such crystals results from two or more successive replacements. Replacement tongues or network-like replacement textures are typical in the rims of some crystals.The zoning of the columbite-tantalite is related to the complex crystallization history of the pegmatite dikes. The main factors controlling oscillatory zoning are considered to be the growth dynamics of the crystals, the concentration and diffusion of the main elements, and the successive flows of the magma in an intrusion channel. The generation of a corrosive supercritical vapor phase at the end of magmatic crystallization caused resorption, patchy zoning and the replacement of the columbite-tantalite.  相似文献   

9.
The Volch??etundrovsky Massif occupies the middle part of the autonomous anorthosite complex of the Main Range, has a sheet morphology and marks the tectonic suture between the Kola block and the Belomorian mobile belt. The massif is characterized by homogenous structure and consists of the volumetrically dominant Main Zone including leucogabbro, leucogabbronorites, and anorthosites, and Marginal Zone made up of leuconorites and gabbronorites with subordinate plagioclasites and orthopyroxenites. Chemically, the rocks of the Volch??etundrovsky Massif are ascribed to the normal (tholeiitic and calc-alkaline) petrochemical series with typomorphic high Al2O3 contents (11.71?C29.32 wt %). With Al2O3 increase in the leuconorite-anorthosite series, the SiO2 and TiO2 contents show weak variations, CaO and alkalis insignificantly increase, whereas the MgO and FeO contents sharply decrease. The rocks of the Volch??etundrovsky Massif reveal significant REE fractionation and increase in total REE content in the leuconorite-anorthosite series, most approximating the Paleoproterozoic (Sumian) anorthosites of the Kola region. The anorthosites and leucogabbro are characterized by flat HREE, while the leuconorites is strongly depleted in HREE due to garnet fractionation. All rocks of the massif have significant positive Eu anomalies caused by the plagioclase accumulation. Zircons are characterized by LREE depletion and enrichment in HREE. This defines the steep positive slope of the plots complicated by the negative Eu and positive Ce (in zircons from leucogabbro) anomalies, which is typical of the REE distribution patterns in the unaltered zircons from igneous rocks. In zircons from anorthosites, the Ce anomaly is weak to absent. The trace-element distribution in the rocks of the Volch??etundrovsky Massif show positive Ba, Ta, Pb, Sr, Sc, and V anomalies, being controlled by the mineral specifics of the massif and the presence of definite accessory minerals. New U-Pb zircon data on the rocks of the Volch??etundrovsky Massif indicate that the leuconorites from the Marginal Zone were formed 2473 ± 7 Ma and 2463 ± 2.4 Ma ago, and the leucogabbro from the Main Zone, 2467 ± 8 Ma. These rocks have negative ?Nd(T) from -1.54 up to -3.10, which indicates their derivation from enriched mantle reservoir variably contaminated by crustal material. The anorthosites of the Main Zone define an U-Pb age of 2407 ± 3 Ma and ?Nd(T) = ?3.78, which presumably reflect the timing of hydrothermal-metasomatic alterations in the upper part of the magmatic chamber accompanied by significant crustal contamination.  相似文献   

10.
The granitoids of the Dal’negorsk borosilicate deposit are ascribed mainly to the high-K metaluminous rocks of the calcic and alkali-calcic series. The thermo-baro-geo-chemical studies showed that they originated from melts with low contents of water (H2O < 3.5% H2O) and CO2 at 800–850°C and 65–90 MPa. The data on the average contents of elements in the rock-forming minerals and the estimated initial water content in the magma point to the absence of a genetic relation between the intrusion and boron mineralization. The granitoid magma was responsible for the skarn formation and for the mobilization and remobilization of boron under a favorable environment. The K/Ar dating (51.0 ± 10 Ma), the geochemical typification (signatures of within-plate, subduction, and collisional granitoids), and the low water content in the parental melts of the granitoids, in accordance with the scheme of the geodynamic evolution of the region, indicate their formation in the lithospheric plate sliding environment.  相似文献   

11.
Syenogranitic dykes in the north of Egypt’s Eastern Desert are of geological and economic interest because of the presence of magmatic and supergene enrichment of radioactive mineralization. Zircon crystal morphology within the syenogranitic dykes allows precise definition of sub-alkaline series granites and crystallized at mean temperature of about 637 °C. The growth pattern of the zircons suggest magmatic and hydrothermal origins of radioactive mineralization. Hydrothermal processes are responsible for the formation of significant zircon overgrowth; high U-zircon margins might have occurred contemporaneously with the emplacement of syenogranitic dykes which show anomalous uranium (eU) and thorium (eTh) contents of up to 1386 and 7330 ppm, respectively. Zircon chemistry revealed a relative increase of Hf consistent with decreasing Zr content, suggesting the replacement of Zr by Hf during hydrothermal activity. Visible uranium mineralization is present and recognized by the presence of uranophane and autunite.  相似文献   

12.
Pyroaurite [Mg6Fe23+ (OH)16][(CO3)(H2O)] from the Kovdor Pluton on the Kola Peninsula, Russia, and the Långban deposit in Filipstad, Värmland, Sweden were studied with single crystal and powder X-ray diffraction, an electron microprobe, and Raman spectroscopy. Both samples are rhombohedral, space group R3?m, a = 3.126(3), c = 23.52(2) Å (Kovdor), and a = 3.1007(9), c = 23.34(1) (Långban). The powder XRD revealed only the 3R polytype. The ratio of di- and trivalent cations M2+: M3+ was determined as ~3.1–3.2 (Kovdor) and ~3.0 (Långban). The Raman spectroscopy of the Kovdor sample verified hydroxyl groups and/or water molecules in the mineral (absorption bands in the region of 3600–3500 cm–1) and carbonate groups (absorption bands in the region of 1346–1058 cm–1). Based on the data obtained, the studied samples should be identified as pyroaurite-3R (hydrotalcite group).  相似文献   

13.
The geological structure, age, and genesis of sedimentary—volcanogenic, metamorphic, and metasomatic rocks from the Terskii greenstone belt fringing the southern Imandra—Varzuga structure in the southeastern Kola Peninsula are discussed with defining main stages in endogenic activity of the region in the Late Archean and Early Proterozoic. The U-Pb method (SHRIMP-II, ID-TIMS, and Pb-LS techniques) was used to determine the age of volcano-sedimentary rocks of the Imandra Group as well as that of magmatic and superimposed metamorphic and metasomatic processes. The basic—intermediate metavolcanics of the Imandra Group are dated at 2.67 Ga, which corresponds to the Lopingian Gimol’skii Superhorizon (Late Archean). The Archean metavolcanics were subjected to Early Proterozoic regional metamorphism 2.1 Ga ago and metasomatic processes in the period of 1.85 to 1.77 Ga ago. The obtained data indicate multistage evolution of rock formation in the Terskii greenstone belt located in the southern flank of the Imandra—Varzuga structure in the Kola Peninsula.  相似文献   

14.
The first data on the composition and inner structure of zircon, one of the main ore minerals of the rare-metal metasomatites of the Gremyakha–Vyrmes alkaline-ultramafic massif, are reported. Early zircon generations are enriched in Y and REE and contain numerous inclusions of rock-forming and accessory minerals of metasomatites, as well as syngenetic fluid inclusions of calcite, thorite and thorianite. Late generations differ in the elevated Hf content and contain no inclusions. The elevated concentrations of Ca and Th in the central zones of crystals are related to the presence of numerous micron-sized inclusions of calcite and thorium phases. All zircon varieties have extremely low U and Pb contents. Concentrations and distribution patterns of incompatible and rare-earth elements in zircon from the metasomatites of the Gremyakha–Vyrmes Massif are similar to those of syenite pegmatites and magmatic carbonatites around the world. Mineral from these associations shows a positive Ce anomaly and elevated HREE contents. According to the compositions of zircon and thorite inclusion in it and experimental data on the simultaneous synthesis of these minerals, the crystallization temperature of zircon was 700–750°С. Using Ti-in-zircon temperature dependence, late zurcon was formed at temperature of 700–750°С. The rare-metal metasomatites are formed at the final stages of the massif formation, presumably after foidolites. Carbonatites could initiate metasomatic reworking of foidolites and accumulation of trace metals in them. The evolution of the primary alkaline–ultramafic melt toward the enrichment in trace elements was mainly controlled by crystallization differentiation.  相似文献   

15.
Doklady Earth Sciences - From December 2020 to April 2021, in the northwestern part of the Kola Peninsula, including the infrastructure of the city of Murmansk, the quantity of polymer particles in...  相似文献   

16.
《China Geology》2022,5(4):696-721
The Dayin’gezhuang gold deposit is located in the central part of the Zhaoping Fault metallogenic belt in the Jiaodong gold province —the world ’s third-largest gold metallogenic area. It is a typical successful case of prospecting at a depth of 500‒2000 m in recent years, with cumulative proven gold resources exceeding 180 t. The main orebodies (No. 1 and No. 2 orebody) generally have a pitch direction of NNE and a plunge direction of NEE. As the ore-controlling fault, the Zhaoping Fault is a shovel-shaped stepped fault, with its dip angle presenting stepped high-to-low transitions at the elevation of −2000‒0 m. The gold mineralization enrichment area is mainly distributed in the step parts where the fault plane changes from steeply to gently, forming a stepped metallogenic pattern from shallow to deep. It can be concluded from previous studies that the gold mineralization of the Dayin’gezhuang gold deposit occurred at about 120 Ma. The ore-forming fluids were H2O-CO2-NaCl-type hydrothermal solutions with a medium-low temperature and medium-low salinity. The H-O isotopic characteristics indicate that the fluids in the early ore-forming stage were possibly magmatic water or mantle water and that meteoric water gradually entered the ore-forming fluids in the late ore-forming stage. The S and Pb isotopes indicate that the ore-forming materials mainly originate from the lower crust and contain a small quantity of mantle-derived components. The comprehensive analysis shows that the Dayin ’gezhuang gold deposit was formed by thermal uplifting-extensional tectonism. The strong crust-mantle interactions, large-scale magmatism, and the material exchange arising from the transformation from adakitic granites to arc granites and from the ancient lower crust to the juvenile lower crust during the Early Cretaceous provided abundant fluids and material sources for mineralization. Moreover, the detachment faults formed by the rapid magmatic uplift and the extensional tectonism created favorable temperature and pressure conditions and space for fluid accumulation and gold precipitation and mineralization.©2022 China Geology Editorial Office.  相似文献   

17.
18.
New U?Pb (SHRIMP II) data on the age (2661.8 ± 7.1 Ma) and isotopic (Sm?Nd) composition of the Patchemvarek gabbro?anorthosite massif located in the junction zone between the Neoarchean Kolmozero-Voron’ya greenstone belt and Keivy paragneiss structure are discussed. The established age and geological?tectonic position of gabbro?anorthosites allow the prognostic metallogenic estimate of Ti?V?Fe mineralization to be extended to the entire Kolmozero-Voron’ya?Keivy infrastructural zone of the Kola?Norwegian province of the Fennoscandian shield.  相似文献   

19.
Geology of Ore Deposits - Zircon crystals from the alkaline and nepheline syenites of the Saharjok massif, which were formed during the magmatic (2645 ± 7 Ma), hydrothermal (1832 ± 7 Ma),...  相似文献   

20.
Geology of Ore Deposits - The paper discusses the morphology and compositional variations of ilmenite group minerals from kimberlites of two phases at the Kimozero locality, the oldest in Russia....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号