首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The aim of this investigation is to study how to use a gravimetric(quasi) geoid for levelling by GPS data in an optimal way.The advent of precise geodetic GPS has made the use of a technique possible,which might be called GPS- gravimetric geoid determination.In this approach,GPS heights above the reference ellipsoid are determined for points whose levelled (orthometric) height H is above sea level people have already surveyed;for these points,we thus have the values of the geoid undulation N.These values are then used to constrain the geoid undulations N‘ obtained from the gravimetric solution.  相似文献   

2.
This paper describes the ocean loading tides corrections of GPS stations in Antarctica, such as the Great Wall station and Zhongshan station. Based on the theory of ocean loading tides, the displacement corrections of ocean loading tides on GPS stations in Antarctica are calculated by using the CRS4.0 ocean loading tides model. These corrections are also applied to GPS data processing. The GPS data are analyzed by the GAMIT software with and without these corrections. We compared and analyzed the GPS baseline components to get the differences. The results show that the ocean tidal displacement corrections have obvious effects upon GPS baseline components. Therefore, we should not ignore the ocean loading tides corrections of GPS stations in Antarctica to obtain precise and reliable results.  相似文献   

3.
Xu  Jun  Bao  Jingyang  Liu  Yanchun  Yu  Caixia 《地球空间信息科学学报》2008,11(1):17-20
An algorithm (differential mode) is presented for the improvement of harmonic tidal analysis along T/P tracks, in which the differences between the observed sea surface heights at adjacent points are taken as observations. Also, the observation equations are constrained with the results of the crossover analysis; the parameter estimations are performed at 0.1° latitude intervals by the least squares. Cycle 10 to 330 T/P altimeter data covering the China Sea and the Northwest Pacific Ocean (2°-50° N,105°-150° E) are adopted for a refined along-track harmonic tidal analysis, and harmonic constants of 12 constituents in 8 474 points are obtained, which indicates that the algorithm can efficiently remove non-tidal effects in the altimeter observations, and improve the precision of tide parameters. Moreover, parameters along altimetry tracks represent a smoother distribution than those obtained by traditional algorithms. The root mean squares of the fitting errors between the tidal height model and the observations reduce from 11 cm to 1.3 cm.  相似文献   

4.
The feasibility of monitoring the change of city settlement using GPS surveying instead of leveling is studied. A fiducial network and a monitoring network are established in Ningbo city. Two periods of GPS observation are completed. Some measures are taken during the observation in order to ensure to obtain the high-precise height component. The Saastamoinen model is adopted in the data processing of the dry component part of the tropospheric delay. The wet component change of the tropospheric delay is estimated by stochastic processes model. When Bernese software is used to process the data, the millimeter level precision of height measuring is achieved.  相似文献   

5.
An algorithm (differential mode) is presented for the improvement of harmonic tidal analysis along T/P tracks, in which the differences between the observed sea surface heights at adjacent points are taken as observations. Also, the observation equations are constrained with the results of the crossover analysis; the parameter estimations are performed at 0.1° latitude intervals by the least squares. Cycle 10 to 330 T/P altimeter data covering the China Sea and the Northwest Pacific Ocean (2°-50°N,105°-150°E) are adopted for a refined along-track harmonic tidal analysis, and harmonic constants of 12 constituents in 8 474 points are obtained, which indicates that the algorithm can efficiently remove non-tidal effects in the altimeter observations, and improve the precision of tide parameters. Moreover, parameters along altimetry tracks represent a smoother distribution than those obtained by traditional algorithms. The root mean squares of the fitting errors between the tidal height model and the observations reduce from 11 cm to 1.3 cm.  相似文献   

6.
The Above Ground Biomass(AGB) estimates of vegetation comprise both the bole biomass determined through a volumetric equation and litter biomass collected from the ground.For mature trees,the AGB estimated in phenologically different time periods is directly affected by the litter biomass since the Diameter at Breast Height(DBH) and height(H) of such trees that are used in the estimation of bole biomass would remain unchanged over a reasonable time period.In the present study,we have determined the AGB of Sal trees(Shorea robusta) in two contrasting seasons:the peak green period in October being devoid of lit-ter on the ground and the leaf shedding period in February with abundant amount of litter present on the ground.Estimation of AGB for the month of February included the litter biomass.In contrast,the AGB for October represented only the bole biomass.AGB was estimated for ten different plots selected in the study area.The AGB estimated from ten sampling plots for each time period was re-gressed with the individual tree parameters such as the average DBH and height of trees measured from the corresponding plots.The regression analysis exhibited a significantly stronger relationship between the AGB and DBH for the month of October as compared to February.Furthermore,the correlation between the remotely sensed derived data and AGB was also found to be significantly higher for the month of October than February.This observation indicates that inclusion of the litter biomass in AGB will tend to decrease the re-gression relationship between AGB and DBH and also between the remotely sensed data and AGB.Therefore,these conclusions invite careful consideration while estimating AGB from satellite data in phenologically different time periods.  相似文献   

7.
This paper describes the structure,geometric model and geo-metric calibration of Photogrammetron I-the first type of photogrammetron which is designed to be a coherent stereo photogrammetric system in which two cameras are mounted on a physical base but driven by an intelligent agent architecture.The system calibration is divided into two parts:the in-lab calibration determines the fixed parameters in advance of system operation,and the insitu calibration keeps tracking the free parameters in real-time during the system operation.In a video surveillance set-up, prepared control points are tracked in stereo image sequences,so that the free parameters of the system can be continuously updated through iterative bundle adjustment and kalman filtering.  相似文献   

8.
Satellite-to-Satellite Tracking in low-low model (SST-Ⅱ) is a new technique to resolve the series of problems met in the determination of the earth's gravity field. As the key technique of SST-Ⅱ, KBR can get SST-Ⅱ measurements directly. So the KBR performance analysis is the first step in SST-Ⅱ design. In this paper, assuming that the satellite pairs of SST-Ⅱ are in near circle polar orbits, the spectrum relationship between the earth gravity field and KBR is established using analytic method. And then some examples are analyzed, the suggestions and conclusions are drawn from these examples. The research results could be taken as a reference for future satellite gravity project of China.  相似文献   

9.
1 IntroductionChnventional DGPS is limited by the range overwhich the differential corrections are valid due tothe rapid decorrelation of the error sources with in-creasing distance from the reference station to user.In wide area differential GPS (WWPS) errorsources in GPS measurements are medeled sepa-rately,on the basis of a limited number of referencestaitOns, to overcome this drawback. The main er-ror sources are regarded as broadcast ephemeris er-ror,atmospheric refraction and satel…  相似文献   

10.
With the help of CCD images,the realization of high precision po-sitioning and measurement has become the basic standard for machine vision andreal time photogrammetry systems.However,deformation and other sorts ofdegradation occurring during transmission are major limiting factors of the preci-sion attainable with most current CCD cameras and frame grabbers.So a preciseradiometric and geometric transmission of images from CCD sensor to memory is afundamental aspect of CCD camera calibration.The geometric calibration system,which uses some image processing algorithms of the CCD camera based on the re-searched and developed system is discussed.The reliability and validity are alsodiscussed.The experimental results for the calibration of the CCD array will betaken as an important quality index for CCD evaluation.  相似文献   

11.
This paper investigates the normal-orthometric correction used in the definition of the Australian Height Datum, and also computes and evaluates normal and Helmert orthometric corrections for the Australian National Levelling Network (ANLN). Testing these corrections in Australia is important to establish which height system is most appropriate for any new Australian vertical datum. An approximate approach to assigning gravity values to ANLN benchmarks (BMs) is used, where the EGM2008-modelled gravity field is used to ‘re-construct’ observed gravity at the BMs. Network loop closures (for first- and second-order levelling) indicate reduced misclosures for all height corrections considered, particularly in the mountainous regions of south eastern Australia. Differences between Helmert orthometric and normal-orthometric heights reach 44 cm in the Australian Alps, and differences between Helmert orthometric and normal heights are about 26 cm in the same region. Normal-orthometric heights differ from normal heights by up to 18 cm in mountainous regions >2,000 m. This indicates that the quasigeoid is not compatible with normal-orthometric heights in Australia.  相似文献   

12.
When height networks are being adjusted, many geodesists advocate the approach where the adjustment should be done by using geopotential numbers rather than the orthometric or normal heights used in practice. This is based on a conviction that neither orthometric nor normal heights can be used for the adjustment because these height systems are not holonomic, meaning–among other things–that height increments (orthometric or normal) when summed around a closed loop do not sum up to zero. If this was the case, then the two height systems could not be used in the adjustment; the non-zero loop closure would violate the basic, usually unspoken, assumption behind the adjustment, namely that the model claiming that height differences are observable is correct. In this paper, we prove in several different ways that orthometric and normal heights are theoretically just as holonomic as the geopotential numbers are, when they are obtained from levelled height differences using actual gravity values. This disposes of the argument that geopotential numbers should be used in the adjustment. Both orthometric and normal heights are equally qualified to be used in the adjustment directly.  相似文献   

13.
14.
章传银  蒋涛  柯宝贵  王伟 《测绘学报》2017,46(8):945-951
从高程系统定义出发,探讨高程基准面的重力等位性质,测试分析不同类型高程系统地面点高程之间的差异,考察GNSS代替水准与实际水准测量成果的一致性,进而提出新的GNSS代替水准算法。主要结论包括:(1)当精度要求达到厘米级水平时,正常高的基准面也应是大地水准面。中国国家1985高程基准采用正常高系统,其高程基准面是过青岛零点的大地水准面。(2)近地空间中等解析正高面与大地水准面平行,GNSS代替水准能直接测定地面点的解析正高,但正常高系统更有利于描述地势和地形起伏。(3)本文给出的GNSS代替水准测定近地点正常高算法,大地高误差对正常高结果的影响比大地水准面误差大,前者影响约为后者的1.5倍。  相似文献   

15.
为解决世界各国高程基准差异的问题,提出联合卫星重力场模型、地面重力数据、GNSS大地高、局部高程基准的正高或正常高,按大地边值问题法确定局部高程基准重力位差的方法。首先推导了利用传统地面"有偏"重力异常确定高程基准重力位差的方法;接着利用改化Stokes核函数削弱"有偏"重力异常的影响,并联合卫星重力场模型和地面"有偏"重力数据,得到独立于任何局部高程基准的重力水准面,以此来确定局部高程基准重力位差;最后利用GNSS+水准数据和重力大地水准面确定了美国高程基准与全球高程基准W0的重力位差为-4.82±0.05 m2s-2。  相似文献   

16.
Following our earlier definition of the rigorous orthometric height [J Geod 79(1-3):82–92 (2005)] we present the derivation and calculation of the differences between this and the Helmert orthometric height, which is embedded in the vertical datums used in numerous countries. By way of comparison, we also consider Mader and Niethammer’s refinements to the Helmert orthometric height. For a profile across the Canadian Rocky Mountains (maximum height of ~2,800 m), the rigorous correction to Helmert’s height reaches ~13 cm, whereas the Mader and Niethammer corrections only reach ~3 cm. The discrepancy is due mostly to the rigorous correction’s consideration of the geoid-generated gravity disturbance. We also point out that several of the terms derived here are the same as those used in regional gravimetric geoid models, thus simplifying their implementation. This will enable those who currently use Helmert orthometric heights to upgrade them to a more rigorous height system based on the Earth’s gravity field and one that is more compatible with a regional geoid model.  相似文献   

17.
The method of geometric-astronomical leveling is presented as a suited technique for the validation of GNSS (Global Navigation Satellite System) heights. In geometric-astronomical leveling, the ellipsoidal height differences are obtained by combining conventional spirit leveling and astronomical leveling. Astronomical leveling with recently developed digital zenith camera systems is capable of providing the geometry of equipotential surfaces of the gravity field accurate to a few 0.1 mm per km. This is comparable to the accuracy of spirit leveling. Consequently, geometric-astronomical leveling yields accurate ellipsoidal height differences that may serve as an independent check on GNSS height measurements at local scales. A test was performed in a local geodetic network near Hanover. GPS observations were simultaneously carried out at five stations over a time span of 48 h and processed considering state-of-the-art techniques and sophisticated new approaches to reduce station-dependent errors. The comparison of GPS height differences with those from geometric-astronomical leveling shows a promising agreement of some millimeters. The experiment indicates the currently achievable accuracy level of GPS height measurements and demonstrates the practical applicability of the proposed approach for the validation of GNSS height measurements as well as the evaluation of GNSS height processing strategies.  相似文献   

18.
GPS高程拟合转换正常高的研究   总被引:1,自引:3,他引:1  
通过对GPS测高与水准测量理论及其异同分析的基础上,阐述了确定似大地水准面的原理与方法,分析了用数学模型法,用少量GPS与水准重合点将GPS大地高直接转换为具有cm量级正常高的实现方法。实验结合黑龙江省虎林地区的地形特点,提出了用线性内插法、平面模型法和二次曲面模型法等来转GPS高程,证明在黑龙江省虎林地区可以通过少量且分布合理的水准点来直接求出该地区具有cm量级的正常高,且精度可以达到四等水准测量的精度要求,满足一般工程的需要。  相似文献   

19.
The rigorous determination of orthometric heights   总被引:1,自引:2,他引:1  
The main problem of the rigorous definition of the orthometric height is the evaluation of the mean value of the Earth’s gravity acceleration along the plumbline within the topography. To find the exact relation between rigorous orthometric and Molodensky’s normal heights, the mean gravity is decomposed into: the mean normal gravity, the mean values of gravity generated by topographical and atmospheric masses, and the mean gravity disturbance generated by the masses contained within geoid. The mean normal gravity is evaluated according to Somigliana–Pizzetti’s theory of the normal gravity field generated by the ellipsoid of revolution. Using the Bruns formula, the mean values of gravity along the plumbline generated by topographical and atmospheric masses can be computed as the integral mean between the Earth’s surface and geoid. Since the disturbing gravity potential generated by masses inside the geoid is harmonic above the geoid, the mean value of the gravity disturbance generated by the geoid is defined by applying the Poisson integral equation to the integral mean. Numerical results for a test area in the Canadian Rocky Mountains show that the difference between the rigorously defined orthometric height and the Molodensky normal height reaches ∼0.5 m.  相似文献   

20.
高程现代化问题   总被引:18,自引:1,他引:17  
海拔高在工程应用中有不可代替的作用。测量海拔高的经典方法是几何水准,它的主要缺点是劳动强度大、效率低、花费大、实时性差。GPS海拔高测量在很大程度上克服了这些缺点,而且可以满足许多应用的高程需求。GPS海拔高测量代替水准测量,以GPS海拔高测量为主的"高程现代化"代表大地测量的一个发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号