首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phyllosilicates occurring as replacements of olivine, clinopyroxene and interstitial materials and as veins or fracture-fillings in hydrothermally altered basalts from DSDP Hole 504B, Leg 83 have been studied using transmission and analytical electron microscopy. The parageneses of phyllosilicates generally change systematically with depth and with the degree of alteration, which in turn is related to permeability of basalts. Saponite and some mixed-layer chlorite/smectite are the dominant phyllosilicates at the top of the transition zone. Chlorite, corrensite, and mixed-layer chlorite/corrensite occur mainly in the lower transition zone and upper levels of the sheeted dike zone. Chlorite, talc, and mixed-layer talc/chlorite are the major phyllosilicates in the sheeted dike zone, although replacement of talc or ohvine by saponite is observed. The phyllosilicates consist of parallel or subparallel discrete packets of coherent layers with packet thicknesses generally ranging from< 100 Å to a few hundred Å. The packets of saponite layers are much smaller or less well defined than those of chlorite, corrensite and talc, indicating poorer crystal-linity of saponite. by contrast, chlorite and talc from the lower transition zone and the sheeted dike zone occur in packets up to thousands of Å thick. The Si/(Si+Al) ratio of these trioctahedral phyllosilicates increases and Fe/(Fe+Mg) decreases in the order chlorite, corrensite, saponite, and talc. These relations reflect optimal solid solution consistent with minimum misfit of articulated octahedral and tetrahedral sheets. Variations in composition of hydrothermal fluids and precursor minerals, especially in Si/(Si+Al) and Fe/(Fe+Mg) ratios, are thus important factors in controlling the parageneses of phyllosilicates. The phyllosilicates are generally well crystallized discrete phases, rather than mixed-layered phases, where they have been affected by relatively high fluid/rock ratios as in high-permeability basalts, in veins, or areas adjacent to veins. Intense alteration in basalts with high permeability (indicating high fluid/rock ratios) is characterized by pervasive albitization and zeolitization. Minimal alteration in the basalts without significant albitization and zeolitization is characterized by the occurrence of saponite±mixed-layer chlorite/smectite in the low-temperature alteration zone, and mixed-layer chlorite/corrensite or mixed-layer talc/chlorite in the high-temperature alteration zone. Textural non-equilibrium for phyllosilicates is represented by mixed layering and poorly defined packets of partially incoherent layers. The approach to textural equilibrium was controlled largely by the availability of fluid or permeability.Contribution No. 488 from the Mineralogical Laboratory, Department of Geological Sciences, The University of Michigan  相似文献   

2.
The vein system in the Arinem area is a gold‐silver‐base metal deposit of Late Miocene (8.8–9.4 Ma) age located in the southwestern part of Java Island, Indonesia. The mineralization in the area is represented by the Arinem vein with a total length of about 5900 m, with a vertical extent up to 575 m, with other associated veins such as Bantarhuni and Halimun. The Arinem vein is hosted by andesitic tuff, breccia, and lava of the Oligocene–Middle Miocene Jampang Formation (23–11.6 Ma) and overlain unconformably by Pliocene–Pleistocene volcanic rocks composed of andesitic‐basaltic tuff, tuff breccia and lavas. The inferred reserve is approximately 2 million tons at 5.7 g t?1 gold and 41.5 g t?1 silver at a cut‐off of 4 g t?1 Au, which equates to approximately 12.5t of Au and 91.4t of Ag. The ore mineral assemblage of the Arinem vein consists of sphalerite, galena, chalcopyrite, pyrite, marcasite, and arsenopyrite with small amounts of pyrrhotite, argentite, electrum, bornite, hessite, tetradymite, altaite, petzite, stutzite, hematite, enargite, tennantite, chalcocite, and covellite. These ore minerals occur in quartz with colloform, crustiform, comb, vuggy, massive, brecciated, bladed and calcedonic textures and sulfide veins. A pervasive quartz–illite–pyrite alteration zone encloses the quartz and sulfide veins and is associated with veinlets of quartz–calcite–pyrite. This alteration zone is enveloped by smectite–illite–kaolinite–quartz–pyrite alteration, which grades into a chlorite–smectite–kaolinite–calcite–pyrite zone. Early stage mineralization (stage I) of vuggy–massive–banded crystalline quartz‐sulfide was followed by middle stage (stage II) of banded–brecciated–massive sulfide‐quartz and then by last stage (stage III) of massive‐crystalline barren quartz. The temperature of the mineralization, estimated from fluid inclusion microthermometry in quartz ranges from 157 to 325°C, whereas the temperatures indicated by fluid inclusions from sphalerite and calcite range from 153 to 218 and 140 to 217°C, respectively. The mineralizing fluid is dilute, with a salinity <4.3 wt% NaCl equiv. The ore‐mineral assemblage and paragenesis of the Arinem vein is characteristically of a low sulfidation epithermal system with indication of high sulfidation overprinted at stage II. Boiling is probably the main control for the gold solubility and precipitation of gold occurred during cooling in stage I mineralization.  相似文献   

3.
Coexisting primary minerals and hydrous alteration minerals in basalt lavas of the Upper Permian Broughton Formation of the Sydney Basin are indicative of the involvement of a hydrothermal fluid phase during low‐grade metamorphism. Variation and zonation of alteration phases in vesicles and vugs indicate that the alteration minerals developed in response to several episodes of precipitation, with early CO2‐rich fluids producing assemblages rich in calcite and chlorite‐smectite while later CO2‐poor fluids precipitated Ca‐zeolites, prehnite and pumpellyite. Vesicular parts of flows typically show much higher contents of alteration minerals than more massive parts of the same flow, but no systematic increase in either the style or intensity of alteration with increasing depth in the lava pile is evident. The presence of Ca‐zeolites, prehnite, pumpellyite and rare epidote suggests uppermost zeolite facies to lowermost prehnite‐pumpellyite facies metamorphism. Stability relationships of the metamorphic phases based on experimental and theoretical studies, used in conjunction with measured parameters for modern geothermal systems, indicate a peak metamorphic temperature of ~200–230°C while the extant stratigraphy indicates that the maximum depth of burial was ~ 1200 m. Alteration developed in response to circulation of hot, aqueous fluids generated by thermal convection cells associated with the Permian lavas and/or a large buried intrusion.  相似文献   

4.
Transmission and scanning electron microscopy were utilized to investigate the nature and mechanisms of alteration of abundant detrital biotite of volcanic origin and progressive modification of phyllosilicate aggregates in a prograde sequence of pelitic rocks (illite crystallinity index = 0.19–0.58λ2θ) from the Gaspé Peninsula in Quebec.
Detrital biotite has been diagenetically altered to form corrensite and chlorite through two mechanisms; (1) layer-by-layer replacement gave rise to interstratification of packets of layers and complex mixed layering via several kinds of layer transitions between biotite and chlorite, corrensite or smectite; (2) dissolution-transport-precipitation resulted in the formation of relatively coarse-grained aggregates of randomly orientated, corrensite-rich flakes and fine-grained corrensite intergrown with chlorite and illite in the matrix.
The data show that stacks consisting of alternating packets of trioctahedral and dioctahedral phyllosilicates originated during early diagenesis when lenticular fissures in strained altering biotite were filled by dioctahedral clays. Subsequent prograde evolution of dioctahedral clays occurred through deformation, dissolution and crystallization, and overgrowth. Illite evolved to muscovite, with K in part provided through biotite alteration, and corrensite/chlorite to homogeneous chlorite. The alteration of detrital biotite is closely related to the formation of titanite and magnetite in diagenetic rocks, and pyrite, calcite and anatase or rutile in the higher grade rocks.
The observations demonstrate that detrital biotite of volcanic origin may be the principal precursor of chlorite in chlorite-rich metapelites originating in marginal basins. The mineral parageneses suggest that the transitions from corrensite to chlorite and illite to muscovite may be a function of local chemistry and time.  相似文献   

5.
We have studied textural relationships and compositions of phyllosilicate minerals in the mafic–ultramafic-hosted massive-sulfide deposit of Ivanovka (Main Uralian Fault Zone, southern Urals). The main hydrothermal phyllosilicate minerals are Mg-rich chlorite, variably ferroan talc, (Mg, Si)-rich and (Ca, Na, K)-poor saponite (stevensite), and serpentine. These minerals occur both as alteration products after mafic volcanics and ultramafic protoliths and, except serpentine, as hydrothermal vein and seafloor mound-like precipitates associated with variable amounts of (Ca, Mg, Fe)-carbonates, quartz and Fe and Cu (Co, Ni) sulfides. Brecciated mafic lithologies underwent pervasive chloritization, while interlayered gabbro sills underwent partial alteration to chlorite + illite ± actinolite ± saponite ± talc-bearing assemblages and later localized deeper alteration to chlorite ± saponite. Ultramafic and mixed ultramafic–mafic breccias were altered to talc-rich rocks with variable amounts of chlorite, carbonate and quartz. Chloritization, locally accompanied by formation of disseminated sulfides, required a high contribution of Mg-rich seawater to the hydrothermal fluid, which could be achieved in a highly permeable, breccia-dominated seafloor. More evolved hydrothermal fluids produced addition of silica, carbonates and further sulfides, and led to local development of saponite after chlorite and widespread replacement of serpentine by talc. The Ivanovka deposit shows many similarities with active and fossil hydrothermal sites on some modern oceanic spreading centers characterized by highly permeable upflow zones. However, given the arc signature of the ore host rocks, the most probable setting for the observed alteration–mineralization patterns is in an early-arc or forearc seafloor–subseafloor environment, characterized by the presence of abundant mafic–ultramafic breccias of tectonic and/or sedimentary origin.Editorial responsibility: J. Hoefs  相似文献   

6.
Detailed geological mapping and drilling has shown that the contact between the Cambrian volcano‐sedimentary sequence at Rosebery and the Mt Read Volcanics is formed by a major thrust fault dipping east at 40° and having a displacement of at least 1.5 km. The sedimentary sequence is part of the Dundas Group, a Middle to Late Cambrian forearc‐like sequence which unconformably overlaps the volcanics south of Rosebery. The Rosebery Thrust Fault marks the eastern boundary of a zone of folding, faulting and disruption which affects the Dundas Group and the tectonically interfingered and underlying basaltic greywacke‐mudstone sequence of the Crimson Creek Formation. At least some of this deformation occurred prior to deposition of the Ordovician Limestone, as evidenced by marked angular discordances. The complex area can be interpreted as a Cambrian accretionary prism‐forearc‐arc sequence developed above an east‐dipping subduction zone.

The Henty Fault System, which cuts obliquely through the Mt Read belt and encloses a misfit wedge of sediments, pillow lavas, gabbros and ultramafic rocks, is interpreted as a remnant of an inter‐arc basin. The fault system separates a dacitic‐andesitic arc segment to the northwest from a more rhyolitic segment to the southeast. The latter is overlain by a younger arc sequence, the Tyndall Group, which may have been the source for the Dundas Group volcanic detritus.  相似文献   

7.
The intermediate lavas and pyroclastic rocks of south central Puerto Rico have been subjected to about four kilometers of burial. Despite shallow burial the mineralogy of these rocks has systematically readjusted. The degree of metamorphism is proportional to permeability; secondary phases appear in greater quantities in porous pyroclastics. In lavas, plagioclase and olivine phenoerysts contain a progressive sequence of alteration phases reflecting temperature and pressure conditions during alteration. The generalized sequence of appearance of secondary phases from low to high rank is as follows: 1. analcime, celadonite, chlorite, and sericite; 2. laumontite and albite; 3. prehnite; 4. pumpellyite; 5. epidote; 6. actinolite. Assemblages containing analcime, heulandite, celadonite, and laumontite belong to the zeolite facies. Remaining assemblages belong to the prehnite-pumpellyite facies.During alteration two major thresholds were crossed. First, calcium-aluminum silicates formed from materials released by decomposition of calcium feldspar. Second, clinopyroxene was decomposed in a process that added considerable mafic material to the reacting system, and made bulk rock compositions approximately equivalent to the composition of the reacting system. Comparison with other regions of similar metamorphic rank and composition indicates that zonation of such sequences on the basis of individual mineral occurrences, especially epidote, is justified only for local regions where the behavior of volatiles was uniform.Based on part of a dissertation (Jolly, 1969) presented to the faculty of the Department of Geology, State University of New York at Binghamton.  相似文献   

8.
铜绿山铜铁金矿床是长江中下游铜铁多金属成矿带最重要的矽卡岩型矿床之一,矿床的形成与铜绿山石英闪长岩株体密切相关,矿体主要沿北北东向断裂产于石英闪长岩与大理岩/白云质大理岩的接触带,形成钙-镁复合型矽卡岩铜多金属矿化。围岩蚀变由致矿岩体到接触-蚀变矿化中心为:绢云母-绿泥石-钾化带、高岭石-绿泥石-弱矽卡岩化带、皂石-绿泥石-强矽卡岩化带。蚀变矿化期次可分为岩浆-热液期和表生期,其中,岩浆-热液期可分为矽卡岩阶段、退化蚀变阶段、氧化物阶段、硫化物阶段和碳酸盐阶段。绿泥石是钻孔岩芯中出现最多且分布最为广泛的蚀变矿物之一。经短波红外光谱(SWIR)研究发现,从蚀变矿化中心到外围,绿泥石出现由铁绿泥石/铁镁绿泥石逐渐转变为镁绿泥石,且绿泥石Fe-OH特征吸收峰位值(Pos2250)显示出从高值变为低值的趋势。结合其他蚀变矿物的空间分布特征,文章提出绿泥石的高Fe-OH特征吸收峰位值(Pos22502253 nm)与金云母、蛇纹石、绿帘石、皂石和高岭石的大量出现,对指示铜绿山矽卡岩型矿床的矿化中心具有一定的作用。  相似文献   

9.
The Late Archean Blake River Group is a thick succession of predominantly mafic volcanic rocks within the southern zone of the Abitibi greenstone belt. It contains a number of silicic volcanic centers of different size, including the large Noranda volcanic complex, which is host to 17 past-producing volcanogenic massive sulfide deposits. The Noranda complex consists of a 7- to 9-km-thick succession of bimodal mafic and felsic volcanic rocks erupted during five major cycles of volcanism. Massive sulfide formation coincided with a period of intense magmatic activity (cycle III) and the formation of the Noranda cauldron. Hydrothermal alteration in these rocks is interpreted to reflect large-scale hydrothermal fluid flow associated with rapid crustal extension and rifting of the volcanic complex. The alteration includes abundant albite, chlorite, epidote and quartz (silicification), which exhibit broad stratigraphic and structural control and correlate with previously mapped whole-rock oxygen isotope zonation. The Mine Sequence volcanic rocks are characterized by abundant iron-rich chlorite (Fe/Fe+Mg >0.5), hydrothermal amphibole (ferroactinolite) and coarse-grained epidote of clinozoisite composition (<10 wt% Fe 2O 3). Volcanic rocks of the pre-cauldron sequences, which contain only subeconomic stringer mineralization, are characterized by less abundant chlorite and mainly fine-grained epidote (>10 wt% Fe 2O 3) lacking the clinozoisite solid solution. Alteration in the Mine Sequence volcanic rocks persists along strike well beyond the limits of the main ore deposits (as far as several tens of kilometers) and can be readily distinguished from greenschist facies metamorphic assemblages at a regional scale. The lack of similar alteration in the pre-cauldron sequences is consistent with limited 18O-depletion and suggests that the early history of the volcanic complex did not support large-scale, high-temperature fluid flow in these rocks. Comparisons with a much smaller, barren volcanic complex in nearby Ben Nevis township reveal important differences in the alteration mineralogy between volcanoes of different size, with implications for area selection during regional-scale mineral exploration. The Ben Nevis Complex consists of a 3- to 4-km-thick succession of mafic, intermediate and felsic volcanic rocks centered on a small subvolcanic intrusion. Alteration of the volcanic rocks comprises mainly low-temperature assemblages of prehnite, pumpellyite, magnesium-rich chlorite (Fe/Fe+Mg <0.5), iron-rich epidote (>10 wt% Fe 2O 3) and calcite. Actinolite ± magnetite alteration occurs proximal to the intrusive core of the complex, but the limited extent of this alteration indicates only local high-temperature fluid circulation adjacent to the intrusion. A distal zone of carbonate alteration is located 4–6 km from the center of the volcano. Although iron-bearing carbonates are present locally within this zone, the absence of siderite argues against a high-temperature origin for this alteration. These observations do not offer positive encouragement for the existence of a fossil geothermal system of sufficient size or intensity to have produced a large massive sulfide deposit.  相似文献   

10.
Iheya‐North‐Knoll is one of the small knolls covered with thick sediments in the Okinawa Trough back‐arc basin. At the east slope of Iheya‐North‐Knoll, nine hydrothermal vents with sulfide mounds are present. The Integrated Ocean Drilling Program (IODP) Expedition 331 studied Iheya‐North‐Knoll in September 2010. The expedition provided us with the opportunity to study clay minerals in deep sediments in Iheya‐North‐Knoll. To reveal characteristics of clay minerals in the deep sediments, samples from the drilling cores at three sites close to the most active hydrothermal vent were analyzed by X‐ray diffraction, scanning electron microscope and transmission electron microscope. The sediments are classified into Layer 0 (shallow), Layer 1 (deep), Layer 2 (deeper) and Layer 3 (deepest) on the basis of the assemblage of clay minerals. Layer 0 contains no clay minerals. Layer 1 contains smectite, kaolinite and illite/smectite mixed‐layer mineral. Layer 2 contains chlorite, corrensite and chlorite/smectite mixed‐layer mineral. Layer 3 is grouped into three sub‐layers, 3A, 3B and 3C; Sub‐layer 3A contains chlorite and illite/smectite mixed‐layer mineral, sub‐layer 3B contains chlorite/smectite and illite/smectite mixed‐layer minerals, and sub‐layer 3C contains chlorite and illite. Large amounts of di‐octahedral clay minerals such as smectite, kaolinite, illite and illite/smectite mixed‐layer mineral are found in Iheya‐North‐Knoll, which is rarely observed in hydrothermal fields in mid‐ocean ridges. Tri‐octahedral clay minerals such as chlorite, corrensite and chlorite/smectite mixed‐layer mineral in Iheya‐North‐Knoll have low Fe/(Fe + Mg) ratios compared with those in mid‐ocean ridges. In conclusion, the characteristics of clay minerals in Iheya‐North‐Knoll differ from those in mid‐ocean ridges; di‐octahedral clay minerals and Fe‐poor tri‐octahedral clay minerals occur in Iheya‐North‐Knoll but not in mid‐ocean ridges.  相似文献   

11.
The Himalia Ridge Formation (Fossil Bluff Group), AlexanderIsland is a 2·2-km-thick sequence of Upper Jurassic–LowerCretaceous conglomerates, sandstones and mudstones, derivedfrom an andesitic volcanic arc and deposited in a fore-arc basin.The metamorphic and thermal history of the formation has beendetermined using authigenic mineral assemblages and vitrinitereflectance measurements. Metamorphic effects include compaction,pore-space reduction, cementation and dissolution and replacementof detrital grains by clay minerals (smectite, illite/smectite,corrensite and kaolinite), calcite, chlorite, laumontite, prehnite,pumpellyite, albite and mica, with less common quartz, haematite,pyrite and epidote. The authigenic mineral assemblages exhibita depth-dependence, and laumontite and calcite exhibit a strongantipathetic relationship. Detrital organic matter in the argillaceouslayers has vitrinite reflectance values (Ro) ranging from 2·3to 3·7%. This indicates considerable thermal maturation,with a systematic increase in reflectivity with increasing depth.There is good correlation of metamorphic mineral assemblageswith chlorite crystallinity and vitrinite reflectance values—allindicating temperatures in the range of 140 ± 20°Cat the top of the sequence to 250 ± 10°C at the baseof the sequence. The temperatures suggest a geothermal gradientof 36–64°C/km and a most likely gradient of 50°C/km.It is suggested that this higher-than-average gradient for afore-arc basin resulted either from rifting during basin formationor from a late-stage arc migration event. KEY WORDS: Antarctica; diagenesis; fore-arc basin; low-temperature metamorphism; vitrinite reflectance  相似文献   

12.
Important mafic–ultramafic masses have been located for the first time in the intersection area between the Keraf Shear Zone and the Nakasib Suture Zone of the Nubian Shield. The masses, comprising most of the members of the ophiolite suite, are Sotrebab and Qurun complexes east of the Nile, and Fadllab complex west of the Nile. The new mafic–ultramafic masses are located on the same trend of the ophiolitic masses decorating the Nakasib Suture. A typical complete ophiolite sequence has not been observed in these complexes, nevertheless, the mafic–ultramafic rocks comprise basal unit of serpentinite and talc chlorite schists overlain by a thick cumulate facies of peridotites, pyroxenites and layered gabbros overlain by basaltic pillow lavas with dolerite dykes and screens of massive gabbros. Associated with pillow lavas are thin layers of carbonates and chert. The best section of cumulate mafic–ultramafic units has been observed in Jebel Qurun and El Fadlab complexes, comprising peridotites, pyroxenites and layered gabbros. Dolerite dykes and screens of massive gabbros have been observed with basaltic pillow lava sections in Wadi Dar Tawaiy. The basal ultramafic units of the complexes have been fully or partly retrograded to chlorite magnetite schist and talc to talc-carbonate rocks (listowenites), especially in the Jebel Qurun and Sotrebab complexes. Petrographically, the gabbros (layered and massive) and the basaltic pillow lavas show mineral assemblages of epidote amphibolite facies. The mafic members from the three complexes show a clear tholeiitic trend and oceanic floor affinity. The pillow lavas plot in the field of oceanic floor basalt, namely in the back arc field. Primitive mantle normalized spider diagram of the pillow lavas reveals a closer correspondence to Enrich-Mid-Oceanic Ridge Basalt (E-MORB) type, which is confirmed by the flat chondrite normalized Rare Earth Elements (REE) pattern. Field, petrographical and geochemical evidence supports ophiolitic origin of the three complexes. The newly discovered ophiolitic complexes mark the western continuation of the Nakasib Suture Zone.  相似文献   

13.
朱溪是近年来在江西塔前-赋春成矿带发现的一个世界级超大型钨铜矿床。本文采用短波红外+热红外光谱技术对矿区13个钻孔进行了光谱测量,结合岩石-矿物地球化学分析,探讨了朱溪矿床矽卡岩中典型蚀变矿物的形成与演化过程,厘定了矽卡岩形成不同阶段矿物组合的光谱特征,构建了朱溪矿床的短波红外+热红外光谱勘查模型。研究发现:(1)区内不同矿物组合形成了明显的蚀变分带,由内向外依次为绢云母(富Si)+长石(岩体顶层蚀变,多期流体叠加综合作用)→外矽卡岩:钙铝榴石+透辉石+(绢云母)→透辉石+蛇纹石+绿泥(帘)石+滑石→绢云母(富Al)+绿泥(帘)石(基底不整合面蚀变);(2)Al-OH波长的移动可指示成矿流体压力、温度及pH值的变化;(3)研究区透辉石的形成、演化与矿体之间关系密切,虽然富矿体赋存于矽卡岩形成早期的透辉石-石榴子石蚀变带,但大量矿体则赋存于矽卡岩退蚀变阶段的蛇纹石-绿泥石蚀变带;(4)矿体的形成与流体的混合作用关系极大,伊利石光谱吸收特征能够指示外部冷水(大气降水或地下水)的灌入轨迹。  相似文献   

14.
FLOYD  P. A. 《Journal of Petrology》1976,17(4):522-545
The characteristic rocks of the Upper Palaeozoic greenstonesof S.W. England are intrusive dolerites and extrusive basicpillow lavas with minor intermediate volcanics and ultrabasics(picrites). Pyroclastics are represented by keratophyric andbasic tuffs. The intrusive greenstones show varying degrees of alteration(spilitization) from a primary ilmenite-plagioclase-clinopyroxene?olivineassemblage to a hydrous low-grade spilite (or meta-dolerite)assemblage composed of variable proportions of albite, chlorite,epidote, calcite, and amphibole. Based on the distribution of elements little affected by secondaryprocesses (Ti, P, Y, Nb, and Zn), the intrusive greenstonescontain representatives of both the alkali olivine basalt andtholeiitic basalt magma series. Magmatic differentiation isgenerally minimal with the Devonian alkali basalt greenstonesbeing principally basaltic, while some of the Carboniferousalkali basalt greenstones tend towards mugearitic compositions.No intrusive acid differentiates have yet been reported. Apart from differences of magma type and minor differentiation,low-grade alteration or ‘spilitization’ has alsogoverned the geochemical variation seen in the greenstones.Spilitization caused (a) local redistribution of principallyCa (forming epidote-rich and calcite-rich patches) and Mg (formingchlorite-rich patches), together with their respective coherenttrace elements, and (b) the variable, but often limited, lossof Ca, Sr, K, Rb, and Ba from many bodies, together with a gainin Na and H2O. Progressive hydration, however, caused a decreasein the oxidation ratio—a feature found to be common inmany spilitic suites and mainly governed by the relative distributionof chlorite versus epidote.  相似文献   

15.
Heterogeneous andesitic and dacitic lavas on Cordn El Guadalbear on the general problem of how magmas of differing compositionsand physical properties interact in shallow reservoirs beneathcontinental arc volcanoes. Some of the lavas contain an exceptionallylarge proportion (<40%) of undercooled basaltic andesiticmagma in various states of disaggregation. Under-cooled maficmagma occurs in the silicic lavas as large (<40 cm) basalticandesitic magmatic inclusions, as millimeter-sized crystal-clotsof Mg-rich olivine phenocrysts plus adhering Carich plagioclasemicrophenocrysts (An50–70), and as uniformly distributed,isolated phenocrysts and microphenocrysts. Compositions andtextures of plagioclase phenocrysts indicate that inclusion-formingmagmas are hybrids formed by mixing basaltic and dacitic melts,whereas textural features and compositions of groundmass phasesindicate that the andesitic and dacitic lavas are largely mechanicalmixtures of dacitic magma and crystallized basaltic andesiticmagma. This latter observation is significant because it indicatesthat mechanical blending of undercooled mafic magma and partiallycrystallized silicic magma is a possible mechanism for producingthe common porphyritic texture of many calc-alkaline volcanicrocks. The style of mafic-silicic magma interaction at CordonEl Guadal was strongly dependent upon the relative proportionsof the endmembers. Equally important in the Guadal system, however,was the manner in which the contrasting magmas were juxtaposed.Textural evidence preserved in the plagioclase phenocrysts indicatesthat the transition from liquid-liquid to solid-liquid mixingwas not continuous, but was partitioned into periods of magmachamber recharge and eruption, respectively. Evidently, duringperiods of recharge, basaltic magmas rapidly entrained smallamounts of dacitic magma along the margins of a turbulent injectionfountain. Conversely, during periods of eruption, dacitic magmagradually incorporated small parcels of basaltic andesitic magma.Thus, the coupled physical-chemical transition from mixed inclusionsto commingled lavas is presumably not coincidental. More likely,it probably provides a partial record of the dynamic processesoccurring in shallow magma chambers beneath continental arevolcanoes. KEY WORDS: Chile; commingling; magma mixing; magmatic inclusions *Present address: Department of Earth Sciences, Montana State University, Bozeman, MT 59717, USA  相似文献   

16.
Massive Zn‐Pb‐Ag sulfide mineralization appears conformable with felsic volcanism, developed in an Upper Jurassic volcanic arc to the Southwest (SW) of the Serbo‐Macedonian continent in Northern Greece. The host volcanic sequence of the mineralization comprises mylonitized rhyolitic to rhyodacitic lavas, pyroclastics, quartz‐feldspar porphyries, and cherty tuffs. A “white mica—quartz—pyrite” mineral assemblage characterizes the volcanic rocks in the footwall and hanging‐wall of massive sulfide ore layers, formed as a result of greenschist‐grade regional metamorphism on “clay‐quartz‐pyrite” hydrothermal alteration haloes. Massive ore lenses are usually underlain by deformed Cu‐pyrite and quartz‐pyrite stockworks. Most of the sulfide ore bodies have proximal‐type features. Ductile deformation and regional metamorphism have transformed many of the stockwork structures. The mineralization is characterized by high Zn, Pb, and Ag contents, while Cu and critical metals are low. Primary depositional textures, for example, layering, clastic pyrite, colloform, and atoll textures were identified. The overall textural features of the mineralization indicate it has undergone mechanical deformation. The most prominent features of the effects of metamorphism, folding and shearing, are modification of the ore body morphology toward flattened and boudinage structures and transformation of the ore textures toward the dominance of planar fabrics. Sulfur isotope analyses of sulfides along with textural observations are consistent with a dual source of sulfide sulfur. Sulfur isotope values for sphalerite, non‐colloform pyrite, galena, and chalcopyrite fall in a limited range from ?1.6 to +4.8‰ (mean δ34S + 2‰), indicating a hydrothermal source derived from the reduction of coeval seawater sulfate in the convective system. Pyrites with colloform and atoll textures are characterized by a 34S depletion, indicating a bacterial reduction of coeval seawater sulfate. The morphology of ore beds, the mineralogy, sulfide textures, and ore chemistry along with the petrology and tectonic setting of the host rocks can be attributed to typical of a bimodal‐felsic metallogenesis. Although similar in many respects to classic Kuroko‐type volcanogenic massive sulfide mineralization, it has some atypical features, like the absence of barite ore, which is possibly a result of significant temporal depletion in sulfate due to bacterial reduction, a conclusion supported by the widespread occurrence of colloidal and atoll textures of pyrite.  相似文献   

17.
Middle Miocene (11.18–10.65 Ma) low sulfidation‐type epithermal gold mineralization occurred in the Cibaliung area, southwestern part of Java Island, Indonesia. It is hosted by andesitic to basaltic andesitic lavas of the Middle Miocene Honje Formation (11.4 Ma) and is covered by Pliocene Cibaliung tuff (4.9 Ma). The exploration estimates mineral resource of approximately 1.3 million tonnes at 10.42 g/t gold and 60.7 g/t silver at a 3 g/t Au cut‐off. This equates to approximately 435,000 ounces of gold and 2.54 million ounces of silver. That resource resulted from two ore shoots: Cibitung and Cikoneng. Studies on ore mineralogy, hydrothermal alteration, geology, fluid inclusion, stable isotopes and age dating were conducted in order to characterize the deposit and to understand a possible mechanism of preservation of the deposit. The ore mineral assemblage of the deposit consists of electrum, naumannite, Ag‐Se‐Te sulfide minerals, chalcopyrite, pyrite, sphalerite and galena. Those ore minerals occur in quartz veins showing colloform–crustiform texture. They are enveloped by mixed layer clay illite/smectite zone, which grades into smectite zone outward. The temperature of mineralization revealed by fluid inclusion study on quartz in the veins ranges from 170 and 220°C at shallow and deep level, respectively. The temperature range is in agreement with the temperature deduced from the hydrothermal alteration mineral assemblage including mixed layered illite/smectite and laumontite. The mineralizing fluid is dilute, with a salinity <1 wt% NaCl equivalent and has stable isotopes of oxygen and hydrogen composition indicating a meteoric water origin. Although the deposit is old enough that it would have been eroded in a tropical island arc setting, the coverage by younger volcanic deposits such as the Citeluk tuff and the Cibaliung tuff most probably prevented this erosion.  相似文献   

18.
Two ore and three alteration types were identified in the Lascogon Project of Philex Gold Philippines, in Surigao del Norte, Mindanao Island, Philippines. The jasperoid ore is the host to the Carlin‐like gold mineralization in the Lascogon and Danao prospects. The ore occurs in a decalcified and silicified horizon, with minor chlorite and goethite, stibnite, pyrite and quartz crystals ranging from cryptocrystalline to botryoidal. The stringer–stockwork type Cu‐Au mineralization in the Suyoc prospect is hosted in argillized andesitic rocks of the Mabuhay Formation. The primary ore minerals are chalcopyrite with minor amounts of sphalerite. The alteration types identified are propylitic alteration, argillic alteration and silicification. The propylitized basaltic and andesitic flows of the Bacuag Formation bound the jasperoid mineralization in the Lascogon prospect. Stratigraphically, the relationship between propylitized basalts and stringer–stockwork Cu‐Au is not clear but a lateral change can be inferred from jasperoid in the center and stringer–stockwork towards the east.  相似文献   

19.
治岭头金矿位于浙江省遂昌县,是我国东南沿海的一座大型金矿床。该矿床围岩蚀变发育,类型有硅化、绢云母化、绿泥石化、黄铁矿化、方解石化和菱锰矿化。从矿体到围岩可以划分为4个蚀变带:强硅化带、弱硅化-黄铁绢英岩化带、绢云母化带和绿泥石化带。沿矿体走向,蚀变强度整体上呈波动性变化,与矿体呈透镜状产出特征一致。硅化、黄铁矿化、菱锰矿化与金矿化关系最密切,而且这些蚀变具有相似的变化趋势。绢云母化和绿泥石化与硅化的变化趋势不同,且与矿化关系不密切。另外,矿区还发育方解石化,且强度较弱。金矿化及围岩蚀变均发育在古元古界八都群变质岩中,未进入上覆中生代火山岩盖层,证明治岭头金矿成矿作用与中生代火山活动无关。定量计算结果显示:蚀变过程中Al_2O_3、TiO_2、P_2O_5为惰性组分;SiO_2、CaO、MnO、Au、Ag、Cu、Pb、Zn等为明显带入组分;Fe_2O_3、FeO、MgO、K_2O、Na_2O、Ba、Sr等为明显带出组分。根据围岩蚀变和稳定同位素分析,推断治岭头金矿原始成矿热液流体应是富含Si、Ca、Mn、Au、Ag、Cu、Pb、Zn等组分的岩浆热液,后期有大气降水的加入。  相似文献   

20.
The Agnew nickel sulfide deposit is spatially associated with a lenticular body of ultramafic rocks which shows a concentric zonation in metamorphic mineralogy. Olivine + tremolite + chlorite + cummingtonite ±enstatite assemblages occur at the margin of the ultramafic lens, giving way to olivine + anthophyllite, olivine + talc and olivine + antigorite assemblages successively inwards. These rocks are interpreted as having crystallized from komatiitic lavas, and exhibit a spectrum of compositions from those of original flow tops to pure olivine adcumulates. The relative modal abundances of metamorphic olivine, tremolite and chlorite reflect original proportions of cumulus olivine and komatiite liquid in the protolith. Peak metamorphic conditions are estimated at 550° C, based on garnet-biotite thermometry, at a maximum pressure of 3 kb. This temperature falls within the narrow range over which metamorphic olivine may co-exist with enstatite, anthophyllite, talc or antigorite depending upon the fugacity of water in the metamorphic fluid. The observed mineralogical zonation is therefore attributed to infiltration by CO2-rich fluids, generated by decarbonation of talc-carbonate rocks formed during pre-metamorphic marginal alteration of the ultramafic lens. Metamorphic fluids were essentially binary mixtures of water and CO2, with minor H2S having a maximum partial pressure less than 1 percent of total pressure. Enstatite-bearing assemblages formed in the presence of CO2-rich fluids at fluid: rock volume ratios close to one, while anthophyllite, talc and antigorite bearing assemblages formed in the presence of progressively more water-rich fluids at progressively lower fluid-rock ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号