共查询到20条相似文献,搜索用时 0 毫秒
1.
Zeng-Zhen Hu Bohua Huang Yu-Tai Hou Wanqiu Wang Fanglin Yang Cristiana Stan Edwin K. Schneider 《Climate Dynamics》2011,36(9-10):1795-1811
In this work, we examine the sensitivity of tropical mean climate and seasonal cycle to low clouds and cloud liquid water path (CLWP) by prescribing them in the NCEP climate forecast system (CFS). It is found that the change of low cloud cover alone has a minor influence on the amount of net shortwave radiation reaching the surface and on the warm biases in the southeastern Atlantic. In experiments where CLWP is prescribed using observations, the mean climate in the tropics is improved significantly, implying that shortwave radiation absorption by CLWP is mainly responsible for reducing the excessive surface net shortwave radiation over the southern oceans in the CFS. Corresponding to large CLWP values in the southeastern oceans, the model generates large low cloud amounts. That results in a reduction of net shortwave radiation at the ocean surface and the warm biases in the sea surface temperature in the southeastern oceans. Meanwhile, the cold tongue and associated surface wind stress in the eastern oceans become stronger and more realistic. As a consequence of the overall improvement of the tropical mean climate, the seasonal cycle in the tropical Atlantic is also improved. Based on the results from these sensitivity experiments, we propose a model bias correction approach, in which CLWP is prescribed only in the southeastern Atlantic by using observed annual mean climatology of CLWP. It is shown that the warm biases in the southeastern Atlantic are largely eliminated, and the seasonal cycle in the tropical Atlantic Ocean is significantly improved. Prescribing CLWP in the CFS is then an effective interim technique to reduce model biases and to improve the simulation of seasonal cycle in the tropics. 相似文献
2.
The sensitivity of tropical Atlantic climate to upper ocean mixing is investigated using an ocean-only model and a coupled
ocean–atmosphere model. The upper ocean thermal structure and associated atmospheric circulation prove to be strongly related
to the strength of upper ocean mixing. Using the heat balance in the mixed layer it is shown that an excessively cold equatorial
cold tongue can be attributed to entrainment flux at the base of the oceanic mixed layer, that is too large. Enhanced entrainment
efficiency acts to deepen the mixed layer and causes strong reduction in the upper ocean divergence in the central equatorial
Atlantic. As a result, the simulated sea surface temperature, thermocline structure, and upwelling velocities are close to
the observed estimates. In the coupled model, the seasonal migration of the Intertropical Convergence Zone (ITCZ) reduces
when the entrainment efficiency in the oceanic mixed layer is enhanced. The precipitation rates decrease in the equatorial
region and increase along 10°N, resulting in a more realistic Atlantic Marine ITCZ. The reduced meridional surface temperature
gradient in the eastern tropical Atlantic prohibits the development of convective precipitation in the southeastern part of
the tropical Atlantic. Also, the simulation of tropical Atlantic variability as expressed in the meridional gradient mode
and the eastern cold tongue mode improves when the entrainment efficiency is enhanced. 相似文献
3.
Sae-Rim Yeo Kwang-Yul Kim Sang-Wook Yeh Baek-Min Kim Taehyoun Shim Jong-Ghap Jhun 《Climate Dynamics》2014,42(9-10):2423-2437
The thermal state of the Bering Sea exhibits interdecadal variations, with distinct changes occurred in 1997–1998. After the unusual thermal condition of the Bering Sea in 1997–1998, we found that the recent climate variability (1999–2010) in the Bering Sea is closely related to Pacific basin-scale atmospheric and oceanic circulation patterns. Specifically, warming in the Bering and Chukchi Seas in this period involves sea ice reduction and stronger oceanic heat flux to the atmosphere in winter. The atmospheric response to the recent warming in the Bering and Chukchi Seas resembles the North Pacific Oscillation (NPO) pattern. Further analysis reveals that the recent climate variability in the Bering and Chukchi Seas has strong covariability with large-scale climate modes in the Pacific, that is, the North Pacific Gyre Oscillation and the central Pacific El Niño. In this study, physical connections among the recent climate variations in the Bering and Chukchi Seas, the NPO pattern and the Pacific large-scale climate patterns are investigated via cyclostationary empirical orthogonal function analysis. An additional model experiment using the National Center for Atmospheric Research Community Atmospheric Model, version 3, is conducted to support the robustness of the results. 相似文献
4.
Tides affect transport and mixing in the Indonesian Seas, impacting the throughflow and the return flow of the global thermohaline circulation. In a previous study, barotropic and baroclinic tides were simulated for the Indonesian Seas at 5 km resolution in order to characterize the tides of the region and to identify and quantify locations of tidal mixing. Baroclinic tidal velocities exceeded barotropic velocities except in shallow regions and their variability was on smaller scales. Model results agreed reasonably with observations and are consistent with the resolution. However, only four mooring locations were available for comparison. The new International Nusantara Stratification (INSTANT) data set enables a more comprehensive comparison. With the exception of Lombok Strait, the model replicated the observed INSTANT velocity spectra, falling within the 90% confidence limits of the observed spectra, both in regions of high and low baroclinic tidal activity for the band of frequencies from 0.02 cph to 0.33 cph (periods of 50–3 h, respectively), which includes the major semidiurnal and diurnal tides and several of their first harmonics. The model overestimated the semidiurnal baroclinic tides in the narrow Lombok Strait, which is not well resolved in the model. Comparisons of vertical profiles of the major axes of the tidal ellipses at the mooring sites generally reproduced the vertical pattern, although there were exceptions, such as Lombok and Ombai Straits. Rms differences between the model estimates and hourly observations for the major axes of the tidal ellipses were typically 1–8 cm s−1 in regions of high tidal activity, 1–5 cm s−1 in regions of low tidal activity, and 1–20 cm s−1 for the semidiurnal tides in Lombok and Ombai Straits. Rms errors of 1–6 cm s−1 are typical in regions of moderate baroclinic tidal activity at this model resolution (5 km). Many of the larger rms differences result from vertical discrepancies in the depths of the internal tidal beams. The local nature of the internal tides generation and beam propagation results in large differences from small vertical shifts in the beams or generation due to topographic differences between the model topography and the actual topography. In addition, the moorings experienced severe blowdown. The blowdown adds uncertainty to the depths of the instruments and introduces errors in the observational tidal analysis in magnitude of the tidal constituents, both of which contribute to rms differences. Tidal mixing was found to occur in intense local regions with strong internal tidal shear. The local regions of mixing were typically along the bottom in steep slopes and over sills. In conclusion, the tidal model was found to reproduce the kinetic energy distribution and transfer of energy from tides to other frequencies in the Indonesian Seas and to roughly replicate the observed structure and magnitude of the tidal currents. Improvements in the tidal simulations in reproducing observations are expected with increased resolution. 相似文献
5.
Coupled ocean-atmosphere surface variability and its climate impacts in the tropical Atlantic region
This study examines time evolution and statistical relationships involving the two leading ocean-atmosphere coupled modes
of variability in the tropical Atlantic and some climate anomalies over the tropical 120 °W–60 °W region using selected historical
files (75-y near global SSTs and precipitation over land), more recent observed data (30-y SST and pseudo wind stress in the
tropical Atlantic) and reanalyses from the US National Centers for Environmental Prediction (NCEP/NCAR) reanalysis System
on the period 1968–1997: surface air temperature, sea level pressure, moist static energy content at 850 hPa, precipitable
water and precipitation. The first coupled mode detected through singular value decomposition of the SST and pseudo wind-stress
data over the tropical Atlantic (30 °N–20 °S) expresses a modulation in the thermal transequatorial gradient of SST anomalies
conducted by one month leading wind-stress anomalies mainly in the tropical north Atlantic during northern winter and fall.
It features a slight dipole structure in the meridional plane. Its time variability is dominated by a quasi-decadal signal
well observed in the last 20–30 ys and, when projected over longer-term SST data, in the 1920s and 1930s but with shorter
periods. The second coupled mode is more confined to the south-equatorial tropical Atlantic in the northern summer and explains
considerably less wind-stress/SST cross-covariance. Its time series features an interannual variability dominated by shorter
frequencies with increased variance in the 1960s and 1970s before 1977. Correlations between these modes and the ENSO-like
Nino3 index lead to decreasing amplitude of thermal anomalies in the tropical Atlantic during warm episodes in the Pacific.
This could explain the nonstationarity of meridional anomaly gradients on seasonal and interannual time scales. Overall the
relationships between the oceanic component of the coupled modes and the climate anomaly patterns denote thermodynamical processes
at the ocean/atmosphere interface that create anomaly gradients in the meridional plane in a way which tends to alter the
north–south movement of the seasonal cycle. This appears to be consistent with the intrinsic non-dipole character of the tropical
Atlantic surface variability at the interannual time step and over the recent period, but produces abnormal amplitude and/or
delayed excursions of the intertropical convergence zone (ITCZ). Connections with continental rainfall are approached through
three (NCEP/NCAR and observed) rainfall indexes over the Nordeste region in Brazil, and the Guinea and Sahel zones in West
Africa. These indices appear to be significantly linked to the SST component of the coupled modes only when the two Atlantic
modes+the ENSO-like Nino3 index are taken into account in the regressions. This suggests that thermal forcing of continental
rainfall is particularly sensitive to the linear combinations of some basic SST patterns, in particular to those that create
meridional thermal gradients. The first mode in the Atlantic is associated with transequatorial pressure, moist static energy
and precipitable water anomaly patterns which can explain abnormal location of the ITCZ particularly in northern winter, and
hence rainfall variations in Nordeste. The second mode is more associated with in-phase variations of the same variables near
the southern edge of the ITCZ, particularly in the Gulf of Guinea during the northern spring and winter. It is primarily linked
to the amplitude and annual phase of the ITCZ excursions and thus to rainfall variations in Guinea. Connections with Sahel
rainfall are less clear due to the difficulty for the model to correctly capture interannual variability over that region
but the second Atlantic mode and the ENSO-like Pacific variability are clearly involved in the Sahel climate interannual fluctuations:
anomalous dry (wet) situations tend to occur when warmer (cooler) waters are present in the eastern Pacific and the gulf of
Guinea in northern summer which contribute to create a northward (southward) transequatorial anomaly gradient in sea level
pressure over West Africa.
Received: 14 April 1998 / Accepted: 24 December 1998 相似文献
6.
7.
8.
—Upper ocean thermal data and surface marine observations are used to describe the three-dimensional, basinwide co-evolution
of interannual variability in the tropical Pacific climate system. The phase propagation behavior differs greatly from atmosphere
to ocean, and from equatorial to off-equatorial and from sea surface to subsurface depths in the ocean. Variations in surface
zonal winds and sea surface temperatures (SSTs) exhibit a standing pattern without obvious zonal phase propagation. A nonequilibrium
ocean response at subsurface depths is evident, characterized by coherent zonal and meridional propagating anomalies around
the tropical North Pacific: eastward on the equator but westward off the equator. Depending on geographic location, there
are clear phase relations among various anomaly fields. Surface zonal winds and SSTs in the equatorial region fluctuate approximately
in-phase in time, but have phase differences in space. Along the equator, zonal mean thermocline depth (or heat content) anomalies
are in nonequilibrium with the zonal wind stress forcing. Variations in SSTs are not in equilibrium either with subsurface
thermocline changes in the central and western equatorial Pacific, with the former lagging the latter and displaced to the
east. Due to its phase relations to SST and winds, the basinwide temperature anomaly evolution at thermocline depths on an
interannual time scale may determine the slow physics of ENSO, and play a central role in initiating and terminating coupled
air-sea interaction. This observed basinwide phase propagation of subsurface anomaly patterns can be understood partially
as water discharge processes from the western Pacific to the east and further to high latitudes, and partially by the modified
delayed oscillator physics.
Received: 17 January 1997 / Accepted: 10 March 1998 相似文献
9.
The International Nusantara Stratification and Transport (INSTANT) program measured currents through multiple Indonesian Seas passages simultaneously over a three-year period (from January 2004 to December 2006). The Indonesian Seas region has presented numerous challenges for numerical modelers — the Indonesian Throughflow (ITF) must pass over shallow sills, into deep basins, and through narrow constrictions on its way from the Pacific to the Indian Ocean. As an important region in the global climate puzzle, a number of models have been used to try and best simulate this throughflow. In an attempt to validate our model, we present a comparison between the transports calculated from our model and those calculated from the INSTANT in situ measurements at five passages within the Indonesian Seas (Labani Channel, Lifamatola Passage, Lombok Strait, Ombai Strait, and Timor Passage). Our Princeton Ocean Model (POM) based regional Indonesian Seas model was originally developed to analyze the influence of bottom topography on the temperature and salinity distributions in the Indonesian seas region, to disclose the path of the South Pacific Water from the continuation of the New Guinea Coastal Current entering the region of interest up to the Lifamatola Passage, and to assess the role of the pressure head in driving the ITF and in determining its total transport. Previous studies found that this model reasonably represents the general long-term flow (seasons) through this region. The INSTANT transports were compared to the results of this regional model over multiple timescales. Overall trends are somewhat represented but changes on timescales shorter than seasonal (three months) and longer than annual were not considered in our model. Normal velocities through each passage during every season are plotted. Daily volume transports and transport-weighted temperature and salinity are plotted and seasonal averages are tabulated. 相似文献
10.
Within the framework of ESCOMPTE, the influence of local wind systems like land–sea/mountain–valley winds on the distribution of air pollutants in the southern part of the Rhône valley and the coastal regions of southern France was investigated. In addition, the influence of the mistral on the long-range transport and vertical mixing of such substances on July 1, 2001 was analyzed. The results of the measurements of this mistral situation show high concentrations of O3 and NO2 in the layer just above the PBL at the southern exit of the Rhône valley near Avignon. By measurements from airborne and ground-based platforms and numerical simulations with the “Local Model” (LM) of the German Weather Service (DWD), it is shown that the mistral develops according to the theory conceived by Pettré [J. Atmos. Sci. 39 (1982) 542–554]. The synoptic-scale northerly flow through the Rhône valley is accelerated up to a Froude number (Fr) of 2.1, while the valley widens. Then, near the Mediterranean coast, a hydraulic jump occurs and Fr drops down to values below 1.0. High ozone concentrations of 112 ppb measured above the mistral layer disappear due to enhanced mixing after the flow has passed the hydraulic jump. There is some evidence that the ozone-rich air originates from the source region of greater Paris or upwind. The results confirm that regional wind systems associated with transport of trace gases in the high-grade industrialized Rhône valley can be successfully predicted using data of operational weather forecast models. 相似文献
11.
E.J. Metzger H.E. Hurlburt X. Xu Jay F. Shriver A.L. Gordon J. Sprintall R.D. Susanto H.M. van Aken 《Dynamics of Atmospheres and Oceans》2010
A 1/12° global version of the HYbrid Coordinate Ocean Model (HYCOM) using 3-hourly atmospheric forcing is analyzed and directly compared against observations from the International Nusantara STratification ANd Transport (INSTANT) program that provides the first long-term (2004–2006) comprehensive view of the Indonesian Throughflow (ITF) inflow/outflow and establishes an important benchmark for inter-basin exchange, including the net throughflow transport. The simulated total ITF transport (−13.4 Sv) is similar to the observational estimate (−15.0 Sv) and correctly distributed among the three outflow passages (Lombok Strait, Ombai Strait and Timor Passage). Makassar Strait carries ∼75% of the observed total ITF inflow and while the temporal variability of the simulated transport has high correlation with the observations, the simulated mean volume transport is ∼37% too low. This points to an incorrect partitioning between the western and eastern inflow routes in the model and is the largest shortcoming of this simulation. HYCOM simulates the very deep (>1250 m) overflow at Lifamatola Passage (−2.0 Sv simulated vs. −2.5 Sv observed) and indicates overflow contributions originating from the North (South) Equatorial Current in boreal winter–spring (summer–autumn). A new finding of INSTANT is the mean eastward flow from the Indian Ocean toward the interior Indonesian Seas on the north side of Ombai Strait. This flow is not robustly simulated at 1/12° resolution, but is found in a 1/25° version of global HYCOM using climatological forcing, indicating the importance of horizontal resolution. However, the 1/25° model also indicates that the mean eastward flow retroflects, turning back into the main southwestward Ombai Strait outflow, and in the mean does not enter the interior seas to become part of the water mass transformation process. The 1/12° global HYCOM is also used to fill in the gaps not measured as part of the INSTANT observational network. It indicates the wide and shallow Java and Arafura Seas carry −0.8 Sv of inflow and that the three major outflow passages capture nearly all the total Pacific to Indian Ocean throughflow. 相似文献
12.
西北太平洋热带气旋气候变化的若干研究进展 总被引:2,自引:11,他引:2
热带气旋气候变化研究不仅是当前国际热带气旋气候界的热点科学问题,而且也是具有现实意义的社会问题,各国气象学者和科学家们对此进行了广泛的研究。虽然热带气旋活动与气候变化之间的关系及其相应的内在物理机制至今还处在探究之中,但是近20多年来热带气旋气候学的研究还是取得了显著的进展。本文主要针对濒临中国的西北太平洋海域,回顾了热带气旋活动季节内、年际、年代际变化及其全球变暖背景下的变化趋势的气候学研究。此外,文中也对西北太平洋热带气旋气候学的研究进行了展望,并提出了该领域中一些亟待解决的科学问题。 相似文献
13.
Abstract A simple energetic argument (Simpson and Hunter, 1974) shows that the boundary between well‐mixed and stratified areas of a shallow sea in summer should correspond to a critical value of BH/U3 , where B is the buoyancy JEUX due to solar heating, H the mean water depth and U the amplitude of the tidal current. We demonstrate the importance of this parameter in a simple model of vertical mixing, and discuss the role of many other factors affecting stratification. Examination of hydrographic data from the Bay of Fundy and Gulf of Maine, together with estimates of tidal dissipation (proportional to U 3) from Greenberg's (1978) numerical model, shows a transition from well‐mixed to stratified conditions, in July and August, for H/U3 = 70 m‐2s3. This corresponds to a mixing efficiency of only 0.26%. Predictions are made of the changes in extent of well‐mixed areas that would be caused by tidal power development. Some stratification, due to both solar heating and freshwater input, is possible in previously mixed areas which would be the headponds for two schemes. Outside the barriers the changes are less dramatic, although the merging of mixed areas over Georges Bank and Nantucket Shoals is predicted. 相似文献
14.
15.
16.
J. S. Chowdary H. S. Chaudhari C. Gnanaseelan Anant Parekh A. Suryachandra Rao P. Sreenivas S. Pokhrel P. Singh 《Climate Dynamics》2014,42(7-8):1925-1947
This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a season after summer). This study strongly supports the need of simulating the correct onset and decay phases of El Niño/La Niña for capturing the realistic ENSO teleconnections. These results have strong implications for the forecasting of Indian summer monsoon as this model is currently being adopted as an operational model in India. 相似文献
17.
The bio-physical feedback process between the marine ecosystem and the tropical climate system is investigated using both an ocean circulation model and a fully-coupled ocean–atmosphere circulation model, which interact with a biogeochemical model. We found that the presence of chlorophyll can have significant impact on the characteristics of the El Niño-Southern Oscillation (ENSO), including its amplitude and asymmetry, as well as on the mean state. That is, chlorophyll generally increases mean sea surface temperature (SST) due to the direct biological heating. However, SST in the eastern equatorial Pacific decreases due to the stronger indirect dynamical response to the biological effects outweighing the direct thermal response. It is demonstrated that this biologically-induced SST cooling is intensified and conveyed to other tropical-ocean basins when atmosphere–ocean coupling is taken into account. It is also found that the presence of chlorophyll affects the magnitude of ENSO by two different mechanisms; one is an amplifying effect by the mean chlorophyll, which is associated with shoaling of the mean thermocline depth, and the other is a damping effect derived from the interactively-varying chlorophyll coupled with the physical model. The atmosphere–ocean coupling reduces the biologically-induced ENSO amplifying effect through the weakening of atmospheric feedback. Lastly, there is also a biological impact on ENSO which enhances the positive skewness. This skewness change is presumably caused by the phase dependency of thermocline feedback which affects the ENSO magnitude. 相似文献
18.
The importance of precessional signals in the tropical climate 总被引:6,自引:2,他引:6
Past research on the climate response to orbital forcing has emphasized the glacial-interglacial variations in global ice volume, global-mean temperature, and the global hydrologic cycle. This emphasis may be inappropriate in the tropics, where the response to precessional forcing is likely to be somewhat independent of the glacial-interglacial variations, particularly in variables relating to the hydrologic cycle. To illustrate this point, we use an atmospheric general circulation model coupled to a slab ocean model, performing experiments that quantify the tropical climates response to (1) opposite phases of precessional forcing, and (2) Last Glacial Maximum boundary conditions. While the glacially-forced tropical temperature changes are typically more than an order of magnitude larger than those arising from precessional forcing, the hydrologic signals stemming from the two forcings are comparable in magnitude. The mechanisms behind these signals are investigated and shown to be quite distinct for the precessional and glacial forcing. Because of strong dynamical linkages in the tropics, the model results illustrate the impossibility of predicting the local hydrologic response to external forcing without understanding the response at much larger spatial scales. Examples from the paleoclimate record are presented as additional evidence for the importance of precessional signals in past variations of the tropical climate. 相似文献
19.
VerticalStructureofBetaGyresandItsEffectonTropicalCycloneMotionTianYongxiang(田永祥)andLuoZhexian(罗哲贤)(NamingInstituteofMeteorol... 相似文献
20.
西北太平洋热带气旋频数的气候变化及其与环境要素间的联系 总被引:3,自引:4,他引:3
使用Emanuel和Nolan完善的潜在生成指数(GPI)的计算方法,利用美国联合台风警报中心提供的热带气旋(TC)资料和欧洲中期数值天气预报中心提供的全球ERA-40再分析资料,比较了1970-2001年西北太平洋海域的TC生成频数和GPI的气候特征,分析了包含于GPI中的环境要素对西北太平洋TC频数年代际变化空间分布的影响.结果表明:GPI能近似地表述西北太平洋TC频数的季节变化和空间分布.各环境要素对TC、较弱类TC和较强类TC生成频数的影响有显著差异,相对湿度随着TC强度的增强而减弱,风速垂直切变则相反.西北太平洋TC频数年代际变化空间分布的正异常主要分布于130°E以东,(15°N,140°E)附近最大的正异常频数中心主要受绝对涡度和相对湿度正异常变化的影响;负的风速垂直切变和正的相对湿度异常变化引起了(10~15°N,160°E)附近的TC频数正异常. 相似文献