首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
R. L. Moore 《Solar physics》1973,30(2):403-419
From a review of the observed properties of umbral flashes and running penumbral waves it is proposed that the source of these periodic phenomena is the oscillatory convection which Danielson and Savage (1968) and Savage (1969) ave shown is likely to occur in the superadiabatic subphotospheric layers of sunspot umbras. Periods and growth rates are computed for oscillatory modes arising in a simple two-layer model umbra. The results suggest that umbral flashes result from disturbances produced by oscillatory convection occurring in the upper subphotospheric layer of the umbra where the superadiabatic temperature gradient is much enhanced over that in lower layers, while running penumbral waves are due to oscillations in a layer just below this upper layer.  相似文献   

2.
A high resolution spectrum of a sunspot umbra is used for identification of rotational lines due to (0, 0) band of the A 2Π–X 2Σ+ system and (0, 0), (1, 1), and (2, 2) bands of the B 2Σ+X 2Σ+ system of the molecule SrF. The published sunspot umbral spectrum obtained with Fourier Transform Spectrometer and solar telescope of National Solar Observatory/National Optical Astronomy Observatory at Kitt Peak was used for the study. The new identification of more than 200 SrF lines in the umbral spectrum confirms that this molecule accounts for the majority of lines in the spectral range 15050 to 15360 cm−1 and 17240 to 17300 cm−1. Equivalent widths have been measured for well-resolved lines of these bands and the effective rotational temperatures have been estimated for which the presence is confirmed.  相似文献   

3.
Time-sequenced H filtergrams and narrow-band blue filtergrams (0 = 4308 Å, = 10 Å) of umbral dots in a decaying sunspot were studied. The results are: (a) Photospheric umbral dots have lifetimes of about 40 min. (b) Two types of proper motion were found for photospheric umbral dots. Umbral dots born in the umbra or in the light bridge show virtually no proper motion. On the other hand, umbral dots of penumbral origin move inward to the umbra with speeds of about 0.4 km s –1. (c) Chromospheric umbral dots, which have dimensions of 0.6 × 1.2 in the mean, were more numerously found than photospheric umbral dots. (d) Photospheric umbral dots were observed to be associated with chromospheric umbral dots. Thus umbral dots are not phenomena confined to photospheric levels but also extend to chromospheric levels. (e) Some of the chromospheric umbral dots are unrelated to the photospheric umbral dots. They may be excited by the infalling matter from the umbral corona.Contribution from the Kwasan and Hida Observatories, University of Kyoto, No. 266.  相似文献   

4.
Measurements of maximum magnetic flux, minimum intensity, and size are presented for 12 967 sunspot umbrae detected on the National Aeronautics and Space Administration/National Solar Observatory (NASA/NSO) spectromagnetograms between 1993 and 2004 to study umbral structure and strength during the solar cycle. The umbrae are selected using an automated thresholding technique. Measured umbral intensities are first corrected for center-to-limb intensity dependence. Log-normal fits to the observed size distribution confirm that the size-spectrum shape does not vary with time. The intensity – magnetic-flux relationship is found to be steady over the solar cycle. The dependence of umbral size on the magnetic flux and minimum intensity are also independent of the cycle phase and give linear and quadratic relations, respectively. While the large sample size does show a low-amplitude oscillation in the mean minimum intensity and maximum magnetic flux correlated with the solar cycle, this can be explained in terms of variations in the mean umbral size. These size variations, however, are small and do not substantiate a meaningful change in the size spectrum of the umbrae generated by the Sun. Thus, in contrast to previous reports, the observations suggest the equilibrium structure, as manifested by the invariant size-magnetic field relationship, as well as the mean size (i.e., strength) of sunspot umbrae do not significantly depend on the solar-cycle phase.  相似文献   

5.
6.
Equivalent width calculations for some electronic and vibration-rotation transitions of the molecules PO, PH, MgH+f, and CN have been carried out for a few umbral, photospheric, and facular model atmospheres. It appears that a few weak lines of these molecules might show up in the umbral spectrum. Le Blanc bands of CN are too weak for detection in the solar spectrum.  相似文献   

7.
Horizontal proper motions of penumbral structure and umbral dots have been measured from a 17-min-long time series of sunspot images by numerical techniques. In the penumbra, inflows are seen to occur predominantly in the inner region, with an average velocity of 290 m s–1. Penumbral outflows take place mostly in the outer part, where they reach velocities as high as 1.5 km s–1, with an average velocity of 500 m s–1. In the umbra, proper motions of 28 bright dots have been measured with an accuracy better than 50 m s–1. The mean velocity of the umbral dots is 210 m s–1. Most of the umbral dots display the well-known inward motion away from the peripheral umbra.  相似文献   

8.
D. J. Mullan 《Solar physics》1981,70(2):381-393
Thomas (1978) has shown that, if Alfvén waves exist in a sunspot umbra, they are normally reflected so strongly by the temperature minimum as to be essentially undetectable in the upper solar atmosphere. However, it is known that in many proton flares, chromospheric emission overlies the umbra of a sunspot, indicating that the transition region (TR) between chromosphere and corona in the umbral flux tube has moved down to lower altitudes. As a result of this lowering, umbral Alfvén waves have readier access to the corona: the coronal leakage depends exponentially on the altitude of the TR. We find that the Alfvén wave flux which leaks out of the umbra into the corona can exceed 107 ergs cm-2 s-1. A flux of this magnitude is expected to dissipate rapidly in the corona, thereby contributing to a positive feedback loop which ensures prolonged (1 hr) leakage of the umbral Alfvén waves into the corona. We propose that these Alfvén waves may contribute significantly to prolonged energization of proton flares in which umbral coverage occurs.  相似文献   

9.
We have studied running penumbral waves, umbral oscillations, umbral flashes and their interrelations from H observations of a large isolated sunspot. Using a subtraction image processing technique we removed the sharp intensity gradient between the umbra and the penumbra and enhanced the low contrast, fine features. We observed running penumbral waves which started in umbral elements with a size of a few arcseconds, covered the umbra and subsequently propagated through the penumbra. The period of the waves was 190 s and the mean propagation velocity was about 15 km s–1. We detected intense brightenings, located between umbral elements from where waves started, which had the characteristics of umbral flashes. There are indications that umbral flashes are related to the propagation of the waves through the umbra and their coupling. The subtraction images also show considerable fine structure in the chromospheric umbra, with size between 0.3 and 0.8.  相似文献   

10.
Umbral fine structures have been observed at 8500 Å using a new CCD detector. Four frames with diffraction-limited seeing were obtained. Between 68 and 91 umbral dots with a brightness contrast greater than 2% were found in each frame, although no dots were found in the darkest part of the umbra. The intrinsic flux of the umbral dots varies widely, indicating that their intrinsic brightness does as well. The mean dot lifetime is estimated as 15 min, although some dots were observed to live more than 2 h. Some of the umbral dots are flowing into the umbra at speeds up to 0.5 km s-1. These dots have higher than average contrast and are associated with penumbral grains.  相似文献   

11.
We performed two-dimensional spectroscopic observations of the preceding sunspot of NOAA 10905 located off disk center (S8 E36, μ≈0.81) by using the Interferometric BI-dimensional Spectrometer (IBIS) operated at the Dunn Solar Telescope (DST) of the National Solar Observatory, New Mexico. The magnetically insensitive Fe I line at 709.04 nm was scanned in wavelength repetitively at an interval of 37 s to calculate sequences of maps of the line-wing and line-core intensity, and the line-of-sight Doppler velocity at different line depths (3% to 80%). Visual inspection of movies based on speckle reconstructions computed from simultaneous broadband data and the local continuum intensity at 709.04 nm revealed an umbral dot (UD) intruding rapidly from the umbral boundary to the center of the umbra. The apparent motion of this object was particularly fast (1.3 km s−1) when compared to typical UDs. The lifetime and size of the UD was 8.7 min and 240 km, respectively. The rapid UD was visible even in the line-core intensity map of Fe I 709.04 nm and was accompanied by a persistent blueshift of about 0.06 km s−1.  相似文献   

12.
F. Kneer 《Solar physics》1973,28(2):361-367
Photographic spectra of the umbra of a sunspot (1971, August 24, Rome No. 6205) around 6150 Å show fine bright threads which were identified as the spectra of a lightbridge, of the bright end of a penumbral filament and of umbral dots, respectively. It was found, in agreement with the results of other authors, that the magnetic field in bright structures is considerably weaker than in dark umbral material. Analysis of line profiles of Fe ii 6149.2 Å in umbral dots indicates (a) a fieldstrength reduced by a factor 2 compared to the surroundings, (b) an outflow with v3.0 km s–1 relative to the penumbra and (c) possibly photospheric temperatures in umbral dots.Mitteilungen aus dem Fraunhofer Institut Nr. 115.  相似文献   

13.
The published sunspot spectrum obtained with National Solar Observatory/Kitt Peak laboratory’s high signal to noise ratio telescope and high resolution Fourier Transform Spectrometer were used for the study. A search was made for the prominent lines of the (0, 0) and (1, 1) A2Δ − X2Π for Silicon hydride isotopomers which lie between 23500 cm−1 and 24500 cm−1. The presence of lines from the (0, 0) and (1, 1) A2Δ − X2Π transition of SiH molecule coincided with the sunspot umbral lines suggest that Silicon hydride appears to be a non-negligible component of sunspot umbrae. However, the presence of A2Δ − X2Π (0, 0) and (1, 1) bands of SiD was found to be doubtful because of the lack of number of well identified lines in sunspot umbral spectra. Equivalent widths have been measured for well-resolved lines and, thereby, the rotational temperatures have been estimated for the band systems for which the presence is confirmed.  相似文献   

14.
We studied the evolution and dynamic processes in the chromosphere above a sunspot umbra. A relatively rarely occurring phenomenon of bright long-lasting emission observed in the umbra of a unipolar sunspot of the AR 9570 group on August 11, 2001 was investigated. It was found that during the course of the observation, emission was spreading, gradually occupying nearly the entire sunspot umbra. Based on the analysis of the observations from other observatories, we arrived at the conclusion that the bright emission was a sympathetic flare that occurred in the sunspot umbra. It was assumed that there occurred an interaction with a neighboring, rapidly evolving group that exhibited subflares on the day of observation. In the same umbra, there was taking place an oscillatory process of the type of umbral flash (observations from August 11 and 12, 2001). The characteristics of the oscillatory process in the presence of the flare were studied. As the bright emission propagated in the sunspot umbra, brightness fluctuations ceased to be seen in the umbral flashes against the background of this brighter emission. The character of velocity variations did not change substantially, although the oscillation amplitude did decrease.  相似文献   

15.
Umbral oscillations in sunspots are identified as a resonant response of the umbral atmosphere to forcing by oscillatory convection in the subphotosphere. The full, linearized equations for magneto-atmospheric waves are solved numerically for a detailed model of the umbral atmosphere, for both forced and free oscillations. Resonant fast modes are found, the lowest mode having a period of 153 s, typical of umbral oscillations. A comparison is made with a similar analysis by Uchida and Sakurai (1975), who calculated resonant modes using an approximate (quasi-Alfvén) form of the wave equations. Whereas both analyses give an appropriate value for the period of oscillation, several new features of the motion follow from the full equations. The resonant modes are due to upward reflection in the subphotosphere (due to increasing sound speed) and downward reflection in the photosphere and low chromosphere (due to increasing Alfvén speed); downward reflection at the chromosphere-corona transition is unimportant for these modes.  相似文献   

16.
Schultz  R. B.  White  O. R. 《Solar physics》1974,35(2):309-316
We obtained simultaneous spectra with a spatial resolution of 1/2 and a temporal resolution of 15 s in H, Ca ii-K, Caii 8542 Å, and three Fei lines of the sunspot group responsible for the large flares of August, 1972 (McMath No. 11976). A time series taken 1972, August 3 in the Fei 6173 Å Zeeman sensitive line was analyzed for oscillations of field strength and the angle between the field and the line of sight, and for changes of the field associated with the Ca ii-K umbral flashes discovered by Beckers and Tallant (1969). The power spectra show no significant peaks, conflicting with the results of Mogilevskii et al. (1972) who reported oscillations in the longitudinal component of the field strength with periods of 56, 90, and 150 s. Changes in the field were not observed to be correlated with the occurrence of umbral flashes. These results place restrictions on magnetic modes of energy transport between the photospheric layers and the chromospheric layers where the umbral flashes are observed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

17.
The statistical properties of area and brightness of umbral dots, formed in a sunspot umbra observed on 18 June 2004, are studied using an improved method of image segmentation and feature tracking algorithm. Central (peripheral) umbral dots have a typical size around 0.16 (0.17) arcsec. The brightness distribution of umbral dots shows a multi-population distribution. The brightness of the central umbral dots does not exceed 0.6 I quiet. In most cases, the area of central (peripheral) umbral dots reaches its maximum 40 s (150 s) after their brightness maximum, respectively. The brightness of umbral dots does not show any directly proportional behavior with their lifetimes and areas. The temporal variations of some physical parameters of umbral dots are studied. It seems that these variations are not physical processes in an umbra and are correlated to the images quality (seeing variations). The lifetime distribution of umbral dots is an exponential function and central (peripheral) umbral dots have a typical half-life of about 300 s (180 s), respectively.  相似文献   

18.
New measurements of the radiative flux deficits of two large sunspots are presented, based on detailed isophotometric maps. Results are given separately for umbrae and penumbrae. The umbral and penumbral deficits are 4–5 × 1010 and 1–1.5 × 1010 erg cm–2 s–1 respectively, the larger figures ref to the larger spot. Over limited areas centered on the umbral cores the deficits for the two spots amount to 76 and 86% of the photospheric flux.  相似文献   

19.
Aluminium monoxide (AlO) is widely known for its astrophysical significance. An analysis of the prominent lines of the (2,3;3,2;3,4;4,5;4,3;5,6;6,7) bands of the B 2Σ+?X 2Σ+ transition with those of sunspot umbral spectral lines suggests that the AlO molecule appears to be a non-negligible component of sunspot umbrae. Results of a recent (2008) rotational analysis were used to carry out the study. The effective rotational temperature determined for the above lines in the sunspot umbral spectrum is found to be of the order of 2900 K. The radiative-transition parameters that include Franck–Condon (FC) factors, r-centroids, electronic-transition moment, Einstein coefficient, absorption–band oscillator strength, and radiative lifetime have been estimated for the experimentally known vibrational levels using the Rydberg–Klein–Rees (RKR) potential.  相似文献   

20.
We suppose the transport of energy in a sunspot (or pore) is described by a diffusion process. The thermal conductivities in the spot and its surroundings are assumed to be constant and isotropic, but with a reduced conductivity in the spot. The sunspot and the ambient medium are represented by semi-infinite strips of variable depth, with one common boundary. This interface is a plane inclined at an arbitrary angle with respect to the vertical in order to simulate the inclined magnetic field at the umbral/penumbral, penumbral/photospheric or pore/photospheric boundary.We show that the region with high conductivity below the interface produces a thermal disturbance in the surface layers of the umbra which manifests itself as a temperature enhancement at the umbral surface in a region near the boundary, resulting in a decreased temperature contrast across the surface. The thermal disturbance in the neighboring medium is confined to a very small region.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号