首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
An Urban Surface Exchange Parameterisation for Mesoscale Models   总被引:9,自引:11,他引:9  
A scheme to represent the impact of urban buildings on airflow in mesoscale atmospheric models is presented. In the scheme, the buildings are not explicitly resolved, but their effects on the grid-averaged variables are parameterised. An urban quarter is characterised by a horizontal building size, a street canyon width and a building density as a function of height. The module computes the impact of the horizontal (roof and canyon floor) and vertical (walls) surfaces on the wind speed, temperature and turbulent kinetic energy. The computation of the shortwave and longwave radiation, needed to compute the temperature of the urban surfaces, takes into account the shadowing and radiation trapping effects induced by the urban canyons. The computation of the turbulent length scales in the TKE equation is also modified to take into account the presence of the buildings.The parameterisation is introduced into a mesoscale model and tested in a bidimensional case of a city over flat terrain. The new parameterisation is shown to be able to reproduce the most important features observed in urban areas better than the traditional approach which is based only on the modification of the roughness length, thereby retaining the Monin–Obukhov similarity theory. The new surface exchange parameterisation is furthermore shown to have a strong impact on the dispersion characteristics of air pollutants in urban areas.  相似文献   

2.
应用城市冠层模式研究建筑物形态对城市边界层的影响   总被引:5,自引:1,他引:4  
文中将城市冠层模式耦合到南京大学城市尺度边界层模式中,通过模拟对比发现,耦合模式对城市地区气温模拟结果更接近于观测值,尤其是对城市地区夜间气温模拟的改进.运用改进耦合模式通过多个敏感性试验的模拟,从城市面积扩张、建筑物高度增加、建筑物分布密度变化等角度研究城市建筑物三维几何形态变化对城市边界层及城市气象环境的影响,试验结果表明:(1)城市面积扩张使得城市下垫面的热通量增大,热力湍流活动增强,动量通量输送增强,城市湍能增大,湍流扩散系数变大,城市气温升高,且对不同时刻城市区域大气层结稳定度均有不同程度的影响.(2)建筑物高度增加增大了城市下垫面的粗糙度和零平面位移.同时也增大了城市街渠高宽比.城市建筑物越高,白天城市地区地表热通量越小,城市上空大气温度越低,平均风速减小,湍能减小;夜间由于高大建筑物释放储热比低矮建筑物要多,其热力湍流相对活跃,地表热通量增大,使得城市区域气温较高.(3)建筑物密度增大,会减小城市下垫面的粗糙度同时增强街渠对辐射的影响.建筑物密度增大在白天会减小地表热通量和动量通量,使城市气温降低,平均风速增大,城市湍流活动能力减弱;夜间城市释放较多储热使得气温较高.  相似文献   

3.
Turbulent mixing induces variability in concentration that is important in many applications, such as reactive plumes, risk assessments or odour impact analyses (when the effects can have time scales on the order of a second). In urban canopies, the variability may be modified by the presence of buildings. Our purpose is to study concentration fluctuation variance in built-up areas using an Eulerian approach. We performed numerical simulations with the computational fluid dynamics model Mercure_Saturne, which is a three-dimensional model adapted to atmospheric flow and pollutant dispersion. We use a k − ϵ turbulence closure and predict the concentration variance with a transport equation model. The model performance is evaluated with the near-full scale experiment MUST (Mock Urban Setting Test), a field experiment conducted in Utah’s West Desert Test Center. The modelled root-mean-square of the concentration fluctuations is compared to measurements for 20 of the MUST trials. The model shows good agreement with the measurements, with the fraction of predictions within a factor of two of observations of 60.1%, with better results for horizontal lines of detectors than for the detectors on vertical masts (with fractions of predictions within a factor of two of observations of respectively 66.4% and 52.6%). The influence of different parameters on the fluctuation variance is also studied and we show the importance of taking into account the stability of the stratification when modelling the turbulent kinetic energy.  相似文献   

4.
To assist emergency management planning and prevention in case of hazardous chemical release into the atmosphere,especially in densely built-up regions with large populations,a multi-scale urban atmospheric dispersion model was established.Three numerical dispersion experiments,at horizontal resolutions of 10 m,50 m and 3000 m,were performed to estimate the adverse effects of toxic chemical release in densely built-up areas.The multi-scale atmospheric dispersion model is composed of the Weather Forecasting and Research (WRF) model,the Open Source Field Operation and Manipulation software package,and a Lagrangian dispersion model.Quantification of the adverse health effects of these chemical release events are given by referring to the U.S.Environmental Protection Agency's Acute Exposure Guideline Levels.The wind fields of the urban-scale case,with 3 km horizontal resolution,were simulated by the Beijing Rapid Update Cycle system,which were utilized by the WRF model.The sub-domain-scale cases took advantage of the computational fluid dynamics method to explicitly consider the effects of buildings.It was found that the multi-scale atmospheric dispersion model is capable of simulating the flow pattern and concentration distribution on different scales,ranging from several meters to kilometers,and can therefore be used to improve the planning of prevention and response programs.  相似文献   

5.
北京冬季城市边界层结构形成机制的初步数值研究   总被引:7,自引:1,他引:6  
利用耦合了城市冠层参数化方案的MM5模式对2001年冬季北京地区一次典型的城市边界层过程进行成功模拟的基础上,对北京城市化作用、周边地形以及城市化进程发展对城市边界层结构的影响等问题进行了一系列的数值模拟试验。城市化作用的因子分离试验发现,城市化的总体作用即城市下垫面结构对大气热力及动力的综合影响导致了北京冬季城市边界层结构主要特征的形成。此外,揭示了城市结构的不同影响因子———动力因子、热力因子和热动力因子间的相互作用在北京冬季城市边界层结构形成和演变过程中的不同作用。在夜间,城市结构的动力因子对于城市边界层主要特征如市区悬浮逆温、近地层中小的风速及较强的湍流动能等的形成起着主导作用;在白天,城市结构的热力因子则成为影响市区混合层强度以及湍流运动特征等边界层结构的主导因素;热、动力因子间的相互作用对城市边界层结构的形成和演变也有着重要作用,但其影响特征比较复杂。北京周边地形作用的敏感性试验的结果表明,北京周边的特殊地形条件对城市边界层热力结构特征如悬浮逆温层及城市热岛等的结构及分布特征的形成也有着明显的影响,使其具有特殊的局地化特征,同时,它也是北京地区近地层主要气流特征的强迫源。不同城市化程度的敏感性试验结果揭示,随着北京城市建筑高度和密度的增加,市区风速将减小、湍流动能将加强,夜间城市悬浮逆温层底的高度会有所提高,城市热岛的强度也将加强,并可能在白天出现比较明显的城市热岛效应。  相似文献   

6.
Eddy-covariance observations above the densely built-up Centre of Nanjing were made from December 2011 to August 2012. Separate eddy-covariance systems installed at two levels on a 36-m tower located on a rooftop were operated simultaneously, and observations grouped into two sectors (A, B) according to the prevalent wind directions. For sector A, where the nearby buildings are all below the lower measurement level, the sensible heat and momentum fluxes are generally greater at the upper level. For sector B, where several high-rise buildings are located upwind, the sensible heat and momentum fluxes at the upper level are close to those at the lower level. The analysis shows that the turbulent eddy characteristics differ between the two wind sectors, leading to a different behaviour of turbulent exchange between the two levels. A hypothesis is proposed that addresses the vertical variation of turbulent fluxes in the urban roughness sublayer (RSL). For sector A, the buildings block the flow, change the trajectory of scalars, and distort the footprint of scalar fluxes; this ‘blocking effect’ is believed to lead to a smaller sensible heat flux above the canopy layer. Such an effect should decrease with height in the RSL, explaining the increase of the observed turbulent heat flux with height. In addition, the presence of non-uniform building heights adversely affects turbulence organization around the canopy top, and likely elevates the inflection point of the mean flow to a higher elevation close to the upper measurement level, where larger shear results in a larger momentum flux. For sector B, wake effects from the nearby high-rise buildings strongly reduce turbulence organization at higher elevations, leading to similar sensible heat and momentum fluxes at both measurement levels.  相似文献   

7.
Field observations of area-averagedturbulence characteristics were conducted in a densely built-up residential neighbourhood in Tokyo, Japan. In addition to eddy-correlation (EC) sensors a scintillometer was used for the first time in a city. Significant results include: (1) Scintillometer-derived sensible heat fluxes, QH, obtained at a height 3.5 times the building height agree well with those using the EC technique; (2) source areas for the scintillometer fluxes are larger than for the EC sensors, so that at low heights over inhomogeneous terrain scintillometry offers advantages; (3) new similarity relationships for dissipation rates are proposed for urban areas; (4) a new technique that uses simultaneous scintillation measurements at two heights to directly estimate area-averaged zero-plane displacement height, zd, is proposed. zd estimated in this way depends slightly on atmospheric stability (lower zd under more unstable conditions).  相似文献   

8.
In spite of recent progress in the prognostic numerical simulation of the atmospheric boundary layer, the explicit simulation of turbulent flows in actual complex terrain is generally still very complicated and time consuming for many environmental applications. In an attempt to develop simpler and more efficient application oriented techniques, although less refined, we propose a multi-step procedure for simulating wind fields. Once obtained the necessary meteorological input, the mass-consistent modelling technique is used to perform high-resolution mean wind flow simulations taking into account recent developments in the atmospheric boundary-layer theory. Besides, a procedure based on a generalisation of the local logarithmic law-of-the-wall over complex terrain is used to estimate the effective parameters characterising the simulated wind profiles. Turbulence intensities and spectral properties are then calculated through the estimated effective parameters, in particular through the effective friction velocity parameter. Finally, time series of the instantaneous velocity field are simulated by the Monte Carlo technique. Two applications of the proposed approach are discussed briefly: the first one is related to a coastal area in southern Italy (the Messina Straits), where the construction of the world’s longest central span bridge is being planned; the second one corresponds to the flow in a mountainous area in northern Italy (the Albenga Airport).  相似文献   

9.
A detailed analysis has been carried out of the temporal and spatial structure of mean winds and turbulence in the neutrally-stable planetary boundary layer over typically rural terrain. The data were obtained from a horizontal array of tower-mounted propeller anemometers (z = 11 m) during a five-hour period for which the mean wind direction was virtually perpendicular to the main span of the array. Various turbulence characteristics have been obtained for all three components of velocity and have been compared with idealized models for such a flow and with some of the other available atmospheric results.Considerable tower-to-tower and block-to-block variability has been observed in many of the measured results, particularly in those for the horizontal-component integral scales. Surface shear stress, roughness length and turbulence intensities were in good agreement with expected values for such a site. Power spectra for all components displayed significantly more energy at middle and lower frequencies than that observed by Kaimal et al. (1972) over flat, relatively featureless terrain. This is felt to be a result of the generally rougher gross features of the terrain in the present case and has led to the development of a modified version of the Kaimal-spectral model which fits the observed data better than either the original Kaimal model or the von Kármán model. It is suggested that it may in future be possible to represent power spectra over a wide range of terrain types by using such a modified spectral model.Integral scales of turbulence were calculated by three different techniques and in most cases displayed a strong dependence on the technique used. Averaged values of scale showed reasonable agreement with most of the available atmospheric data and with the values suggested by ESDU (1975). The anticipated elongation of turbulent eddies in the longitudinal direction was confirmed for all three velocity components, although it was found to be not as large as some other observations.  相似文献   

10.
The statistics of momentum exchange in the urban roughness sublayer are investigated. The analysis focuses on the characteristics of the dimensionless friction velocity, \({u_{*}}/U\) , which is defined as the square root of the drag coefficient. The turbulence observations were made at a height of 47 m above the ground on the 325-m meteorological tower, which is located in a very inhomogeneous urban area in Beijing. Under neutral conditions, the dependence of the drag coefficient on wind speed varies with wind direction. When the airflow is from the area of densely built-up buildings, the drag coefficient does not vary with wind speed, while when the airflow is from the area covered by vegetation, the drag coefficient appears to decrease with increasing wind speed. Also, the drag coefficient does not vary monotonically with the atmospheric stability. Both increasing stability and increasing instability lead to the decrease of the drag coefficient, implying that the roughness length and zero-plane displacement may vary in urban areas.  相似文献   

11.
Large sudden wind-direction shifts and submeso variability under nocturnal conditions are examined using a micrometeorological network of stations in north-western Victoria, Australia. The network was located in an area with mostly homogeneous and flat terrain. We have investigated the main characteristics of the horizontal propagation of events causing the wind-direction shift and not addressed in previous studies. The submeso motions at the study site exhibit behaviour typical of flat terrain, such as the lower relative mesovelocity scale and smaller cross-wind variances than that for complex terrain. The distribution of wind-direction shifts shows that there is a small but persistent preference for counter-clockwise rotation, occurring for 55% of the time. Large wind-direction shifts tend to be associated with a sharp decrease in air temperature (74% of the time), which is associated with rising motion of cold air, followed by an increase in turbulent mixing. The horizontal propagation of events was analyzed using the cross-correlation function method. There is no preferred mean wind direction associated with the events nor is there any relationship between the mean wind and propagation directions. The latter indicates that the events are most likely not local flow perturbations advected by the mean flow but are rather features of generally unknown origin. This needs to be taken into account when developing parametrizations of the stable boundary layer in numerical models.  相似文献   

12.
The spatial variability of both turbulent flow statistics in the roughness sublayer (RSL) and temperature profiles within and above the canopy layer (CL) were investigated experimentally in a densely built-up residential area in Tokyo, Japan. Using five towers with measuring devices, each tower isolated from the others by at least 200 m, we collected high-frequency measurements of velocity and temperature at a height z=1.8 z H, where z H, the mean building height in the area, is 7.3 m. Also, temperature profiles were measured from z=0.4 to 1.8 z H. The ‘areal mean’ geometric parameters that were obtained for the areas within 200 m of each tower were fairly homogeneous among the tower sites. The main results are as follows: (1) The spatial variability of all RSL turbulent statistics, except the sensible heat flux, was comparable to that reported in a pine forest. Also, the variability decreased with increasing friction velocity. (2) The spatial variability of the RSL sensible heat flux was larger than that reported in a pine forest. Also, the variability depended on the time of the day and became larger in the morning. The difference among the sites was well related to the areal fraction of vegetation. (3) The spatial variability of the CL temperature profile depended on the time of the day and became larger in the morning. Nevertheless, the spatial standard deviation of CL temperature was always below 0.7 K. (4) It is suggested that the “warming-up” process in the morning when heat storage is dominant increases the spatial variation of RSL sensible heat flux and CL temperature according to the local properties around each tower and the variation decreases once there is further convective mixing in the midday  相似文献   

13.
This paper describes an adjoint method for data assimilation intoupstream boundary conditions of numerical modelsusing optimal control theory. Mathematical formalisms are given along with the numerical implementation of the schemein a column model of the atmospheric boundary layer. The optimized mean and turbulence profiles are used as an upstream solutionin a model of turbulent flow in complex terrain. To contrast thiswith other methods, two solutions for flow over an isolatedhill are calculated, one with an optimized upstream solution andone with a simple surface-layer formulation for the upstream solution.These two solutions are compared to observations and analytical theory. The adjoint optimization method is shown to producesolutions of flow in complex terrain that are substantively differentat the two solutions, with the optimized solution giving more accurate results.  相似文献   

14.
城市建筑动力学效应对对流边界层影响的敏感性试验   总被引:3,自引:1,他引:2  
本文将大涡模拟应用于城市对流边界层(CBL)湍流结构和流场特征的研究,在大涡模式中,拖曳系数取与建筑物高度及建筑物高度标准差有关的表达式以考虑次网格建筑物对风速和湍流动能(TKE)的面积平均影响.模拟结果表明,由于城市建筑物对气流的拖曳作用,使建筑物冠层及整个CBL内风速大幅度减小,城市冠层内部风速减小尤为明显,在夹卷层内,风速有一明显的跃变.在边界层中部对流运动已经发展成为较强的热泡,城市建筑物的动力学效应使热泡的水平尺度增大,CBL内平均上升气流速度和下沉气流速度减小,同时使CBL中上升气流所占比例比平坦地面增大.城市建筑物使CBL低层热通量、动量通量、速度方差和位温方差明显增大,但对近地层高度以上的湍流量影响不大.  相似文献   

15.
The airflow and dispersion of a pollutant in a complex urban area of Beijing, China, were numerically examined by coupling a Computational Fluid Dynamics (CFD) model with a mesoscale weather model. The models used were Open Source Field Operation and Manipulation (OpenFOAM) software package and Weather Research and Forecasting (WRF) model. OpenFOAM was firstly validated against wind-tunnel experiment data. Then, the WRF model was integrated for 42 h starting from 0800 LST 08 September 2009, and the coupled model was used to compute the flow fields at 1000 LST and 1400 LST 09 September 2009. During the WRF-simulated period, a high pressure system was dominant over the Beijing area. The WRF-simulated local circulations were characterized by mountain valley winds, which matched well with observations. Results from the coupled model simulation demonstrated that the airflows around actual buildings were quite different from the ambient wind on the boundary provided by the WRF model, and the pollutant dispersion pattern was complicated under the influence of buildings. A higher concentration level of the pollutant near the surface was found in both the step-down and step-up notches, but the reason for this higher level in each configurations was different: in the former, it was caused by weaker vertical flow, while in the latter it was caused by a downward-shifted vortex. Overall, the results of this study suggest that the coupled WRF-OpenFOAM model is an important tool that can be used for studying and predicting urban flow and dispersions in densely built-up areas.  相似文献   

16.
Local advection of momentum,heat, and moisture in micrometeorology   总被引:1,自引:0,他引:1  
The local advection of momentum, heat and moisture in micrometeorology due to a horizontal inhomogeneity in surface conditions is numerically investigated by a higher-order turbulence closure model which includes equations for the mean quantities, turbulent fluxes, and the viscous dissipation rate. The application of the two-dimensional model in this paper deals with the simulation of the flow from an extensive smooth dry area to a grassy wet terrain. The mean wind speed, temperature, and humidity distributions in the resulting internal boundary layer downstream of the surface discontinuity are determined such that the energy and moisture balances at the Earth's surface are satisfied.Numerical calculations of the mean temperature and humidity profiles are compared with available observed ones. The results include the advective effects on turbulent flux distributions, surface energy balance, evaporation rate, and Bowen ratio. The sensitivity of the predicted mean profiles and turbulent flux distributions to the surface relative humidity, thermal stratification, and the roughness change is discussed.NRC-NAS Resident Research Associate at AFCRL.  相似文献   

17.
We experimentally investigate the effect of a typical building covering: the gable roof, on the flow and air exchange in urban canyons. In general, the morphology of the urban canopy is very varied and complex, depending on a large number of factors, such as building arrangement, or the morphology of the terrain. Therefore we focus on a simple, prototypal shape, the two-dimensional canyon, with the aim of elucidating some fundamental phenomena driving the street-canyon ventilation. Experiments are performed in a water channel, over an array of identical prismatic obstacles representing an idealized urban canopy. The aspect ratio, i.e. canyon-width to building-height ratio, ranges from 1 to 6. Gable roof buildings with 1:1 pitch are compared with flat roofed buildings. Velocity is measured using a particle-image-velocimetry technique with flow dynamics discussed in terms of mean flow and second- and third-order statistical moments of the velocity. The ventilation is interpreted by means of a simple well-mixed box model and the outflow rate and mean residence time are computed. Results show that gable roofs tend to delay the transition from the skimming-flow to the wake-interference regime and promote the development of a deeper and more turbulent roughness layer. The presence of a gable roof significantly increases the momentum flux, especially for high packing density. The air exchange is improved compared to the flat roof buildings, and the beneficial effect is more significant for narrow canyons. Accordingly, for unit aspect ratio gable roofs reduce the mean residence time by a factor of 0.37 compared to flat roofs, whereas the decrease is only by a factor of 0.9 at the largest aspect ratio. Data analysis indicates that, for flat roof buildings, the mean residence time increases by 30% when the aspect ratio is decreased from 6 to 2, whereas this parameter is only weakly dependent on aspect ratio in the case of gable roofs.  相似文献   

18.
韩敬  潘哲  周慧敏  张宁  周玉奇  陈燕 《气象科学》2024,44(3):572-582
本文选取南京市新街口商业区和白下路居民区作为典型研究区域,利用大涡模式(Parallelized Large Eddy Simulation Model,PALM)模拟不同入流风速和风向对流场的影响。结果表明,不同入流风速条件下归一化风廓线基本一致,风廓线总体上主要受到功能区自身建筑物形态的影响,在中性层结下城市冠层内平均风速随高度的变化接近于指数分布。而本文计算得到的指数风廓线衰减系数的范围为0.55~0.81,高于目前城市冠层模式中的默认值,说明目前的城市冠层模式对建筑物密集区域的风速衰减可能存在低估。风速衰减系数主要受迎风面面积的影响,随迎风面积指数的增加而增大。迎风面积指数随入流风向发生改变,在本文研究的商业区和居民区中,行人高度风速随入流风向的改变最大下降幅度可分别达8%和10%。行人高度风速一般在与入流风向平行的街道和开阔的空地上较大,在建筑物密集分布的区域风速较低,由于强烈的狭管效应部分区域的风速可以超过入流风速。不同城市结构中入流风向的影响也不同,在十字路口、对称和非对称街谷以及多排建筑物中局地风场随入流风向存在各种变化。  相似文献   

19.
Summary Eddy correlation techniques to determine the turbulent fluxes of heat, moisture and momentum in the near-surface atmospheric layer rely on the Monin-Obukhov similarity theory, which requires stationarity and horizontal homogeneity. Experiments at specially selected sites over land and particularly over sea are used to develop this concept. Recent experiments, deliberately conducted in non-ideal conditions, show an underestimation of turbulent fluxes. Results from the field experiments FIFE, KUREX, TARTEX and SADE, point to a relationship between the underestimation of turbulent fluxes and terrain inhomogeneity. In order to systematically correct for this effect a scheme is suggested which uses fetch lengths of different types of surface in the sites surrounding the environment. In addition, horizontal differences in atmospheric stability above different surfaces are included in the correction scheme. This scheme might be useful for the design of validation experiments in non-homogeneous terrain. Received April 9, 1997 Revised July 16, 1997  相似文献   

20.
冯健武  刘辉志  邹捍  李爱国 《高原气象》2007,26(6):1244-1253
利用2006年5~6月和2007年5~6月中国科学院HEST大气科学实验在珠峰绒布寺河谷野外观测期间获得的观测资料,分析了珠峰地区河谷近地层风向、风速、温度、湿度和CO2的日变化特征,讨论了珠峰北坡冰川风和山谷风的特点以及高原地表辐射、地表反照率和近地层湍流通量的变化特征.结果表明:在复杂地形和特殊下垫面影响下,珠峰绒布河谷地区近地面层各个气象要素和湍流通量日变化特征显著,并且明显存在冰川风和山谷风复合的局地环流,冰川风对该地区地气间物质能量交换起着重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号