首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How to quantitatively evaluate the maturity of crude oils is still an open question. Mango discovered a remarkable compositional invariance of four isoheptane ratios in crude oils, and proposed a steady-state catalytic model for the origin of light hydrocarbons. According to this model, 2,4/2,3 dimethylpentane ratio is a pure temperature parameter. Bement, Mango et al. established the functional equation between the two parameters-light hydrocarbon temperature and burial temperature and applied it to the calculation of hydrocarbon-generating temperature, which provided a new choice for the study of oil maturity. In this paper, the Mango's parameters for hydrocarbons from the Tazhong area were calculated, the average K1 value is 1.06, which is in good consistency with the Mango's proposal that the K1 value is relatively stable. Calculated with the functional formula of hydrocarbon-generating temperature, the hydrocarbon-generating temperatures are with the range of 120-129℃, and the converted vitrinite reflectance (Ro) varies from 0.88% to 0.90%. This is well consistent with the maturity characteristics of neohopanes. The results have verified the reliability of this method.  相似文献   

2.
Light hydrocarbons, especially C7 isoalkanes, cyclopentanes, cyclohexanes and n-heptane in 540 oils from the Tarim Basin were studied systematically. The results suggested the K1 values [ (2-MH+ 2,3-DMP)/(3-MH + 2,4-DMP) ] of crude oils vary from a lowest value of 0.78, to a highest value of 1.54, but the K1 values of the majority of oil samples (80%) range from 0.90 to 1.20. However, the absolute contents of ( 2-methylhexane + 2,3-dimethylpentane) and ( 3-methylhexane + 2,4-dimethylpentane) in the total light hydrocarbons ( C4-C7 ) show a similar variation trend. The variation of K1 values of crude oils can suggest a typical sedimentary environment for source rocks. Therefore, according to the compositional characteristics of C7 light hydrocarbons in light of the steady-state catalytic hypothesis, nonmarine oils from the Yingmaili area and marine oils from the Tazhong uplift in the Tarim Basin were genetically classified.  相似文献   

3.
<正>The Silurian stratum in the Tazhong uplift is an important horizon for exploration because it preserves some features of the hydrocarbons produced from multi-stage tectonic evolution.For this reason,the study of the origin of the Silurian oils and their formation characteristics constitutes a major part in revealing the mechanisms for the composite hydrocarbon accumulation zone in the Tazhong area.Geochemical investigations indicate that the physical properties of the Silurian oils in Tazhong vary with belts and blocks,i.e.,heavy oils are distributed in the TZ47-15 well-block in the North Slope while normal and light oils in the No.Ⅰfault belt and the TZ16 well-block,which means that the oil properties are controlled by structural patterns.Most biomarkers in the Silurian oils are similar to that of the Mid-Upper Ordovician source rocks,suggesting a good genetic relationship. However,the compound specific isotope of n-alkanes in the oils and the chemical components of the hydrocarbons in fluid inclusions indicate that these oils are mixed oils derived from both the Mid-Upper Ordovician and the Cambrian-Lower Ordovician source rocks.Most Silurian oils have a record of secondary alterations like earlier biodegradation,including the occurrence of "UCM" humps in the total ion current(TIC) chromatogram of saturated and aromatic hydrocarbons and 25-norhopane in saturated hydrocarbons of the crude oils,and regular changes in the abundances of light and heavy components from the structural low to the structural high.The fact that the Silurian oils are enriched in chain alkanes,e.g.,n-alkanes and 25-norhopane,suggests that they were mixed oils of the earlier degraded oils with the later normal oils.It is suggested that the Silurian oils experienced at least three episodes of petroleum charging according to the composition and distribution as well as the maturity of reservoir crude oils and the oils in fluid inclusions.The migration and accumulation models of these oils in the TZ47-15 well-blocks,the No.Ⅰfault belt and the TZ16 well-block are different from but related to each other.The investigation of the origin of the mixed oils and the hydrocarbon migration and accumulation mechanisms in different charging periods is of great significance to petroleum exploration in this area.  相似文献   

4.
Different types of crude oils have different light hydrocarbon compositional and geochemical characteristics. Based on the light hydrocarbon data from two kinds of oils, i.e., coal-generated oils and marine oils in China, light hydrocarbons in marine oils in the Tazhong area are generally relatively enriched in n-heptane, and coal-generated oils from the Turpan Basin are enriched in methylcyclohexane. The K1 values, reported by Mango (1987), range from 0.97 to 1.19 in marine oils, basically consistent with what was reported by Mango on light hydrocarbons in terms of the majority of the crude oil data. But the K1 values of coal-generated oils are particularly high (1.35-1.66) and far greater than those of marine oils; heptane values in marine oils, ranging from 32.3% to 45.4%, and isoheptane values, ranging from 1.9 to 3.7, are respectively higher than those of coal-generated oils, indicating that the oils are in the high-maturity stage. In addition, expulsion temperatures of coal-generated oils from the Turpan Basin are obviously lower than those of marine oils from the Tazhong area.  相似文献   

5.
Leping coal (including barkinite-rich coal) is a unique kind of coal,which is widely distrbuted in the Late Permian Longan Formation,South China,In this paper,ROck-Eval,Py-GC and simulation experiment via an open-system were used to study the hydrocarbon-generating potential,hydrocarbon composition.and hydrocarbon-generating model of barkiniterich coals from the shuicheng coal field of Guizhou Province,Southwest China.The results show that barkinite-rich coals have high hydrocarbon-generating potential,with S1 S2 being 211-311mg/g,and can produce large amounts of hydrocorbon at the high-maturity stage,mostly within the temperature range of 420-450℃(corresponding to VR0 1.1-1.5%);barkinite-rich coal is one of the better oil sources and light hydrocarbon and wet gas are the major hydrocarbon components,which account for 45% and 33% of the total hydrocarbons.respectively.These characteristics are of importance for exploring oil and gas resources in the Late permian Longtan Formation coals,southwest China.  相似文献   

6.
Based on quantitative GC-MS analysis of 40 crude oil samples collected from the south area of western Qaidam Basin,one of the largest saline lacustrine basins in China,the geochemical characteristics of aromatic hydrocarbons in oils were studied systematically in this paper.Among those constitutes,naphthalene(43% 59%),phenanthrene(12% 21%) and taromatic-sterane series(6% 28%) were the main ones of aromatic hydrocarbons.The ratio of aromatic hydrocarbon maturity parameter vs.saturated hydrocarbon maturity parameter C 29 20S/(20S+20R) shows that some aromatic hydrocarbon maturity parameters are not suitable for low-mature oils,including MPI,MNR,DNR,etc.Meanwhile,maturity parameters for dibenzothiophene and taromatic-sterane series are more appropriate for low maturity saline lacustrine crude oils.Based on the ratio of 4,6-DMDBT/1,4-DMDBT,the R c values are within the range of 0.59% 0.72%.However,the abundance of dibenzothiophene(DBT) is low,and the dibenzofuran(DBF) content is even lower,suggesting that the crude oils were formed in a saline lacustrine anaerobic environment.The high abundance of C 26 triaromatic steroid also indicates that the source material is brackish water-saline water with strong reducibility.  相似文献   

7.
The objective of this study is to demonstrate the basic characteristics of Bacillus SP3 and evaluate its effect on different crude oils. Strain SP3 is a motile, gram-positive, spore-producing rod that was isolated from a reservoir of the Shengli oil field in East China. The cells of strain SP3 grew at high temperatures up to 58℃ at the pH range of 5.5–8.5. Strain SP3 grew facultatively and could use different organic substrates, and produce some metabolites such as 4-hydroxy-4-methyl-2-pentanone, methyl-2-nitrogen benzene and 1, 2-benzenedicarboxylic acid bis ester. Laboratory studies have demonstrated that the strain converted and degraded different components and changed the physical and chemical properties of crude oils. Strain SP3 degraded crude oil and the growth of bacteria on crude oil resulted in loss of aromatic hydrocarbons, resins and asphaltenes. The bioconversion of crude oils would lead to an enrichment in lighter hydrocarbons and an overall redistribution of saturate hydrocarbons. The interactions of microorganisms with crude oils are variable, depending on the microbial species and the chemical compositions of crude oils.  相似文献   

8.
In this paper a thermogravimetry-differential thermal analysis method coupled with chromatography (TG-DTA-GC) has been adopted to simulate the generation of gaseous hydrocarbons from different hydrocarbon source rocks such as coals, mudstones, and carbonate rocks with different maturities. The temperature programming for thermal simulation experiment is 20℃/min from ambient temperature to 700℃. As viewed from the quantities and composition of generated gaseous hydrocarbons at different temperatures, it is shown that low-mature coal has experienced the strongest exothermic reaction and the highest loss of weight in which the first exothermic peak is relatively low. Low-mature coal samples have stronger capability of generating gaseous hydrocarbons than high-mature samples. The amounts and composition of gaseous hydrocarbons generated are closely related not only to the abundance of organic carbon in source rocks, but also to the type of kerogen in the source rocks, and their thermal maturity. In the present highly mature and over-mature rock samples organic carbon, probably, has already been exhausted, so the production of gaseous hydrocarbons in large amounts is impossible. The contents of heavy components in gaseous hydrocarbons from the source rocks containing type- Ⅰ and - Ⅱ kerogens are generally high ; those of light components such as methane and ethane in gaseous hydrocarbons from the source rocks with Ⅲ-type kerogens are high as well. In the course of thermal simulation of carbonate rock samples, large amounts of gaseous hydrocarbons were produced in a high temperature range.  相似文献   

9.
Forty-six crude oil samples were selected from the Ordovician in the northwestern part of the Tahe oilfield for detailed molecular geochemical and isotopic analysis, including group compositions, carbonhydrogen isotopes and gas chroma-tograms of saturated hydrocarbons, as well as the characteristics of terpane, sterane and other biomarkers, indicating that crude oils are of the same origin from different districts in the Tahe oilfield and were derived from the same source kitchen (or oil source formation), i.e., mainly stemming from marine hydrocarbons. Detailed studies of oil physical properties of 25-honpane revealed that such oils have heavy or thick oil qualities due to biodegradation. Comprehensive assessment in terms of five maturity parameters shows that the oils from the Ordovician with Ro values varying from 0.80% to 1.59% are widely distributed in the northwest of the Tahe oilfield.  相似文献   

10.
The Jiyang Sag and the Liaohe Basin are the two important areas where immature oil resources are distributed in China. From these two areas immature-low mature to mature oil samples were collected for carbon isotopic analysis. The extracts of source rocks are dominant in the Jiyang Sag while crude oils are dominant in the Liaohe Basin. The maturity index, Ro, for source rocks varies from 0.25%(immature) to 0.65% (mature). Studies have shown that within this range of Ro values the extracts of source rocks and crude oils, as well as their fraction components, have experienced observable carbon isotope fractionation. The carbon isotopic values tend to increase with burial depth, the oils become from immature-low mature to mature, and the rules of evolution of oils show a three-stage evolution pattern, i. e. ,light→heavy→light→heavy oils. Such variation trend seems to be related to the occurrence of two hydrocarbon-generating processes and the main hydrocarbon-forming materials being correspondingly non-hydrocarbons and possessing MAB characteristics, lower thermodynamic effects and other factors. In the process towards the mature stage, with increasing thermodynamic effects, the thermal degradation of kerogens into oil has become the leading factor, and correspondingly the bond-breaking ratio of ^12C-^13C also increases,making the relatively ^12C-rich materials at the low mature stage evolve again towards ^13C enrichment.  相似文献   

11.
Well Zheng-1 is located in the combined area of the central uplift and the north Tianshan piedmont depression in the Junggar Basin. Two oil-bearing beds are recognized at 4788–4797 m of the Lower Cretaceous Tugulu Formation (K1tg) and 4808.5–4812.5 m of the Lower Jurassic Sangonghe Formation (J1s). The geochemical characteristics of family composition, carbon isotopic composition, saturated hydrocarbons, sterane and terpane biomarkers and carotane of two crude oils are described in this paper. The results show that the geochemical characteristics of the two crude oils are basically similar to each other, indicating they were all derived mainly from the high mature, brine, algae-rich lake facies sediments. Oil-source correlation revealed that crude oils of the two beds were derived mainly from the source rocks of Permian and mixed by the oil derived from the source rocks of Jurassic and Triassic. This is consistent with the geological background with several sets of source rocks in the area studied.  相似文献   

12.
Molecular stable carbon isotope technique was employed to study well-sourced crude oils collected from a single drilling well and from the entire Lunnan oilfield, Tarim Basin, NW China. The stable carbon isotopic composition of n-alkanes from crude oils showed that Ordovi-clan-derived oils are enriched in ^13C and Triassic-derived oils are depleted in ^13C. This is consistent with the distribution and evolution trend of stable carbon isotope ratios in crude oils/organic matter from all over the world in geological history (Stahl, 1977; Andrusevich et al. ,1998). An extensive survey of literature indicates that, except for thermal maturity, organic matter input and depositional environment, paleoenvironmental background is another key factor that affects the stable carbon isotopic composition of Ordovician- and Triassic-derived crude oils. The results showed that gas chromatographic-isotope ratio mass spectrometry ( GC-C-IRMS), combining with biogeoehemical evolution of organic matter in geological history, may be a powerful tool in refining oil/oil, oil/source correlations in multi-age, multi-source petroliferous basins like Tarim.  相似文献   

13.
Application of Biomarkers to Quantitative Source Assessment of Oil Pools   总被引:2,自引:1,他引:1  
Recent detailed organic geochemical and geological investigation indicate that oils of the Bamianhe oilfield, Bohai Bay Basin, East China are the mixture of less mature oils and normal oils derived from the ES4 mudstones and shales with a wide range of thermal maturity from immature to middle-maturity, and most of the oils were proved to be sourced from the depocenter of the Niuzhuang Sag immediately adjacent to the Bamianhe oilfield. Two approaches to quantify the amount of immature oils mixed through quantitative biomarkers were established. One is a relatively simple way only through organic geochemical analysis while the other is to be combined with basin modeling. Selecting biomarkers as proxies is the crucial point in both of them. The results show that the less mature oils mixed in the Bamianhe oilfield is less than 10% and 18% respectively based on the two approaches, which coincide with the results of oil-source rock correlation.  相似文献   

14.
<正>The oil source of the Tarim Basin has been controversial over a long time.This study characterizes the crude oil and investigates the oil sources in the Lunnan region,Tarim Basin by adopting compound specific isotopes of n-alkanes and biomarkers approaches.Although the crude oil has a good correlation with the Middle-Upper Ordovician(O_(2+3)) source rocks and a poor correlation with the Cambrian-Lower Ordovician((?)-O_1) based on biomarkers,theδ~(13)C data of n-alkanes of the Lunnan oils show an intermediate value between(?)-O_1 and O_(2+3) genetic affinity oils,which suggests that the Lunnan oils are actually of an extensively mixed source.A quantification of oil mixing was performed and the results show that the contribution of the Cambrian-Lower Ordovician source rocks ranges from 11%to 70%(averaging 36%),slightly less than that of the Tazhong uplift.It is suggested that the inconsistency between the biomarkers andδ~(13)C in determining the oil sources in the Lunnan Region results from multiple petroleum charge episodes with different chemical components in one or more episode(s) and different sources.The widespread marine mixed-source oil in the basin indicates that significant petroleum potential in deep horizons is possible.To unravel hydrocarbons accumulation mechanisms for the Lunnan oils is crucial to further petroleum exploration and exploitation in the region.  相似文献   

15.
松辽盆地白垩纪孢粉颜色指数与有机质成熟度   总被引:3,自引:0,他引:3  
赵传本 《地球化学》1981,(3):301-307
The relatiouship between posen colour and the degree of maturity of organic material is discussed with regard to petroleum formation and evolution as typified by Daqing oil field in Cretaceous system, central Songliao basin, Northeast China. Colour variation of pollen is considered as a function of sedimentary environment and metamorphism. Pollen colour is divided into seven grades and the degree of metamorphism is studied in terms of this colour index. Results show that the pollen colonr index of the strata at depth of 1000-3000m (stratigraphieally from the first section of Liangjiang formation to the upper Quantou formation) ranges from 2.5 to 5, corresponding to an ancient temperature of 60--140℃. This is the most.optimum strata for oil-generation. Strata beneath the lower Quantou formation under 3000 m with colour index in excess of 5 and ancient temperature of over 140℃ should be favorable for gas accumulation. For strata at shallower depth than 100O m, stratigraphically above the second section of Liengjiang formation, which is characterized by a colour index of 1--1.5 and a temperature of lower than 600℃, the maturity degree is lower than that necessary for oil-generation.  相似文献   

16.
The Quseir Formation consists mainly of dark gray mudstones with a high organic matter content and excellent hydrocarbon-generating potential. The main objectives of this study are to highlight the dominant structural elements in the Komombo Basin, Egypt, and evaluate the geochemical characteristics of the Quseir Formation. Depth maps and a 3D structural model indicate two normal fault trends NW–SE and ENE–WSW. The NW–SE trend is the dominant one that created the primary half-graben system. The depth to the top of the Quseir Formation gradually decreases from the eastern and central parts towards the corners of the basin. The thickness of the Quseir Formation ranges from about 300 to 1000 ft. The 3D facies model shows that the shale has a large probability distribution in the study area, compared with the sandstone and siltstone. The source rock potential varies between good in the western part to very good in the eastern part of the basin. The organic-rich interval is dominated by gas-prone kerogen type III based on TOC and Rock-Eval. The pyrolysis data vitrinite reflectance (%Ro) (0.5–0.74%) and Tmax values (406–454C°) suggest a maturity level that ranges from immature to early maturity stage for hydrocarbon generation.  相似文献   

17.
Petroleum geologists have debated whether the hydrocarbons from Jurassic coal measures are derived from the coals, carbonaceous mudstones or coal-measure mudstones in the Turpan Basin. Based on the geochemistry analysis of the 20 crude oils and 40 source rocks from the Turpan Basin, some data have been obtained as follows: carbon preference index and methylphenanthrene index of the Jurassic oils are 1.16–1.45 and 0.28–0.80, and the ααα C29 sterane 20S/(20S+20R) and C29 sterane ββ/(ββ+αα) are 0.44–0.51 and 0.4–0.54 respectively, which show the normal maturity of oils; the vitrinite reflectance of the source rocks from the Xishanyao to Badaowan Formations range from 0.47% to 0.97%, which indicate immature to mature thermal evolutionary stage and sufficient conditions for generating mass mature oil. The effect of hydrocarbon expulsion should be considered when studying the source of coal-derived oil by using Biomarkers. Biomarkers in the Jurassic oils from the basin are similar to those in the coals and carbonaceous mudstones, with a strong predominant content of pristane, relatively high ratio of C15/C16 sesquiterpenoids (>1), a relatively high content of low carbon number tricyclic terpanes and C24 tetracyclic terpane, little gammacerane and C29 Ts detected, an absolute predominant content of C29 sterane and a relatively high content of diasterane. However, the opposite characteristics are shown in mudstones, with an approximately equal content of pristane and phytane, relatively low ratio of C15/C16 sesquiterpenoids (<1), a relatively high content of high carbon number tricyclic terpanes and a low content of C24 tetracyclic terpane, peaks of gammacerane and C29 Ts detected obviously and an increasing C27 sterane content. All of these characteristics identify the coals and carbonaceous mudstones as the possible major oil source rocks in this area, and they were formed in the stronger oxidizing environment with shallower water than mudstones.  相似文献   

18.
According to the assemblage characteristics of saturated hydrocarbon biomarkers in crude oils and their geochemical implications, this study has proposed, for the first time, the criteria for the genetic classification of crude oils in the Tazhong area of the Tarim Basin, China. Crude oils from the area studied are classified as three genetic types: type-Ⅰ is characterized by the low contents of C29 norhopane, extremely abundant contents of gammacerane, low contents of rearranged sterane and relatively high contents of regular C28 sterane; the geochemical properties of type-Ⅱ crude oils are opposite to those of type-Ⅰ crude oils; the parameters for type-Ⅲ crude oils are intermediate between type-Ⅰ and type-Ⅱ. Results of oil correlation indicated that type-Ⅰ crude oils were derived from Cambrian-Lower Ordovician hydrocarbon source rocks, type-Ⅱ curde oils originated from Middle-Upper Ordovician hydrocarbon source rocks and type-Ⅲ crude oils are of mixed origin.  相似文献   

19.
According to the assemblage characteristics of saturated hydrocarbon biomarkers in crude oils and their geochemical implications, this study has proposed, for the first time, the criteria for the genetic classification of crude oils in the Tazhong area of the Tarim Basin, China. Crude oils from the area studied are classified as three genetic types: type-Ⅰ is characterized by the low contents of C29 norhopane, extremely abundant contents of gammacerane, low contents of rearranged sterane and relatively high contents of regular C28 sterane; the geochemical properties of type-Ⅱ crude oils are opposite to those of type-Ⅰ crude oils; the parameters for type-Ⅲ crude oils are intermediate between type-Ⅰ and type-Ⅱ. Results of oil correlation indicated that type-Ⅰ crude oils were derived from Cambrian-Lower Ordovician hydrocarbon source rocks, type-Ⅱ curde oils originated from Middle-Upper Ordovician hydrocarbon source rocks and type-Ⅲ crude oils are of mixed origin.  相似文献   

20.
The geochemical characteristics of crude oils and reservoir core extracts from the Kuche petroleum system are described and studied systematically by means of various geochemical techniques and methods to acquire molecular information. The results suggest crude oils from the petroleum system can be divided into two groups: marine oils and non-marine oils. The former represents the dominant oils found in the area. Tar mats were firstly discovered and determined accurately in terrestrial oil and gas reservoirs, with Lower Tertiary sandstone reservoirs in the Yaha oilfield of the Tarim Basin. However, based on the ratio of 20S/(20S 20R)C29 sterane as a maturity parameter, lacustrine oils filled into the Tertiary reservoirs in the direction toward the western part of the petroleum system. In contrast, according to the fact that methylcyclohexane indices of eastern oils are greater than those of western oils, the location in which coalgenerated oils filled into the Tertiary reservoirs lies in the eastern part of the petroleum system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号