首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Global climate change is causing the majority of large lakes on the Tibetan Plateau to expand. While these rising lake levels and their causes have been investigated by hydrologists and glaciologists, their impacts on local pastoral communities have mostly been ignored. Our interviews with pastoralists in central Tibet reveal their observations and beliefs about Lake Serling’s expansion, as well as how its effects are interacting with current rangeland management policies. Interviewees reported that the most negative effects on their livelihoods have been reduced livestock populations and productivity due to the inundation of high-quality pastures by saline lake water. However, pastoralists’ collective efforts based on traditional values and norms of sharing, assistance, and reciprocity have helped them cope with these climate change impacts. These local, traditional coping strategies are particularly worthy of attention now, given that the transformation of traditional pastoralism is a goal of current government development initiatives.  相似文献   

2.
Ecological impacts of deer overbrowsing often lead resource managers to recommend deer control through hunting, which may be strongly opposed by local residents. Adaptive impact management argues that understanding wildlife impacts of concern to the public can improve wildlife management. However, research on public wildlife acceptance capacity for deer, and on support for hunting, has emphasized concerns about household impacts and deer well-being, general environmental beliefs and attitudes, and beliefs about consequences of hunting, but not public concerns about deer ecological impacts. Our survey of neighbors of urban wetlands shows that beliefs about deer ecological impacts are statistically significant predictors of deer acceptance capacity and of support for hunting, controlling for other factors. Including ecological-impact beliefs adds substantially to the explained variance in deer acceptance capacity, and slightly to the explained variance in support for hunting.  相似文献   

3.
Abstract

Increasing wolf populations are a concern for wildlife managers in the Midwestern U.S. Understanding the psychological mechanisms that contribute to public perceptions of risk will enable development of strategies that seek to mitigate these risks, and suggest where outreach efforts may facilitate acceptance of wolves. We examined the psychological factors that influence Illinois residents’ perceived risks from wolves. We hypothesized that individuals’ perceived risks from wolves were a function of their attitudes toward wolves, negative affect toward wolves, and basic beliefs about wildlife. Data were obtained from a survey of the Illinois public (n?=?784). Negative affect and attitudes toward wolves were direct predictors of perceived risks. Basic beliefs predicted attitudes and negative affect toward wolves. Negative affect predicted attitudes. Basic beliefs had direct and indirect effects on perceived risks.  相似文献   

4.
湖泊是陆地水资源的重要组成部分,也是局地气候和全球环境变化的敏感指示器之一。湖泊面积增加和水位的变化直接反映了流域内水量平衡变化过程,对区域和全球的气候变化的反映较为敏感。利用线性趋势法对青海湖流域长时间序列气象、水文资料以及流域水热条件和植被生长状况进行分析研究,利用皮尔逊相关系数法计算了各因素与湖水位的相关关系,旨在定量评估区域气象、水文、植被等要素的变化对和湖泊水位变化过程的贡献,开展细致的青海湖水位变化特征的影响因子探讨与分析。结果表明:该流域气候呈现显著的暖湿化趋势,其中流域年降水量总体上呈现弱的增加态势,气候倾向率为10.8 mm·(10 a)-1;流域年平均气温呈显著的升高趋势(P <0.01)。流域年可能蒸散率和年实际蒸散波动较大,年实际蒸散虽有波动但增加趋势非常明显(P <0.01)。流域净第一性生产力(P)平均值为2.86 t DM·hm-2·a-1,呈现显著的增加趋势(P <0.01)。从1961年开始湖水位呈现逐年波动下降的趋势,到2004年水位最低(P<0.01);2004—2015年的近10 a连续上升,上升速率达14.4 m·(10 a)-1P <0.01)。流域气温升高、降水量增加,流域气候呈显著的暖湿化特征,入湖河流径流量也呈现出弱的增加态势;气候暖湿化特征导致流域生物温度增加,植被生长状况得到改善,[WTBX]NPP[WTBZ]显著增加。年降水量增多,河流径流量增大,湖水位抬升;前一年的降水量、≥0 ℃积温、温度、径流量、NPP和蒸发量对湖水位的影响更大;NDVINPP的增加反映流域植被生长状况得到好转,从而增加了流域植被水土保持和水源涵养能力,对湖水位产生间接的影响。降水量、≥0 ℃积温、温度、径流量和NPP对青海湖水位起到正反馈效应,而蒸发量对湖水位主要起负反馈效应,年降水量和年径流量是湖水位变化的最直接的影响因子。  相似文献   

5.
While political ideology is a consistent predictor of public environmental views in the United States, religious affiliation may also be an important correlate of environmental attitudes, especially in regions with a majority denomination. Using data from a 2014 survey in five communities across Utah, Idaho, and Wyoming (n = 906) experiencing renewable energy development, we investigate the influence of religious affiliation on environmental beliefs, views about climate change, and support for renewable energy. We are particularly interested in the influence of Mormonism, an understudied area of research. We find Mormonism, Protestantism, and Catholicism all significantly and negatively related to general pro-environment beliefs. However, this relationship doesn’t hold as consistently for views about global warming or renewable energy development. We also find income, gender, length of residence, and political orientation to be important predictors of environmental attitudes, and that general environmental beliefs are only weakly related to views about renewable energy.  相似文献   

6.
Sediments of Lake Van, Turkey, preserve one of the most complete records of continental climate change in the Near East since the Middle Pleistocene. We used seismic reflection profiles to infer past changes in lake level and discuss potential causes related to changes in climate, volcanism, and regional tectonics since the formation of the lake ca. 600 ka ago. Lake Van’s water level ranged by as much as 600 m during the past ~600 ka. Five major lowstands occurred, at ~600, ~365–340, ~290–230, ~150–130 and ~30–14 ka. During Stage A, between about 600 and 230 ka, lake level changed dramatically, by hundreds of meters, but phases of low and high stands were separated by long time intervals. Changes in the lake level were more frequent during the past ~230 ka, but less dramatic, on the order of a few tens of meters. We identified period B1 as a time of stepwise transgressions between ~230 and 150 ka, followed by a short regression between ca. 150 and 130 ka. Lake level rose stepwise during period B2, until ~30 ka. During the past ~30 ka, a regression and a final transgression occurred, each lasting about 15 ka. The major lowstand periods in Lake Van occurred during glacial periods, suggesting climatic control on water level changes (i.e. greatly reduced precipitation led to lower lake levels). Although climate forcing was the dominant cause for dramatic water level changes in Lake Van, volcanic and tectonic forcing factors may have contributed as well. For instance, the number of distinct tephra layers, some several meters thick, increases dramatically in the uppermost ~100 m of the sediment record (i.e. the past ~230 ka), an interval that coincides largely with low-magnitude lake level fluctuations. Tectonic activity, highlighted by extensional and/or compressional faults across the basin margins, probably also affected the lake level of Lake Van in the past.  相似文献   

7.
Public concerns about water issues are key considerations in responding to changing hydrologic conditions. Literature is mixed on the social profiles associated with resource-related risks. Using data from a household survey, we compare concerns about water shortage, climate change impacts on water supply, poor water quality, and flooding. We assess the combined influence of social and locational factors on each concern and variations across three valleys in northern Utah. Generalized linear mixed modeling is used, given the ordinal nature of most variables. Water shortage was the greatest concern, and female, older, nonwhite, and recreationally active respondents were generally more concerned about water issues than their counterparts. Education, income, and religious identity presented more complicated relationships with water concerns, with significant interaction effects with valley geography. This study has implications for improving public involvement in risk management and engendering support for future water policy and planning strategies to address these risks.  相似文献   

8.
Lack of long-term studies on drought in the boreal region of northwest Ontario limits our ability to assess the vulnerability of this region to climate change. We investigated changes in diatoms, scaled chrysophytes, and sedimentary pigments in two near-shore cores from Gall Lake to infer limnological and water-level changes over the last two millennia. The two coring locations, at modern water depths of 7.5 and 11.5 m, were selected to contrast inferences for past lake level based on distance from the modern water-depth boundary between predominantly benthic and planktonic diatom assemblages in surface sediments (6.0 m). Diatom-inferred depth inferences were more variable in the core from 7.5-m water depth, consistent with the hypothesis that the greatest changes occurred at water depths closest to the benthic:planktonic boundary. Both sites revealed a pronounced drought from ~AD 950 to 1300, synchronous with the medieval climate anomaly (MCA). This finding suggests a northeast expansion of the arid MCA into northwest Ontario, extending the known spatial extent of this megadrought. Scaled chrysophytes and sedimentary pigments suggest a recent increase in thermal stratification. Our findings indicate this region is more susceptible to changes in moisture than was previously suspected based on the instrumental record for the past century.  相似文献   

9.
We provide a position paper, using a brief literature review and some new modelling results for a subset of succulent plant species, which explores why Namaqualand plant diversity might be particularly vulnerable to anthropogenic climate change despite presumed species resilience under arid conditions, and therefore a globally important test-bed for adaptive conservation strategies. The Pleistocene climate-related evolutionary history of this region in particular may predispose Namaqualand (and Succulent Karoo) plant endemics to projected climate change impacts. Key Succulent Karoo plant lineages originated during cool Pleistocene times, and projected air temperatures under anthropogenic climate change are likely to exceed these significantly. Projected rainfall patterns are less certain, and projections of the future prevalence of coastal fog are lacking, but if either of these water inputs is reduced in concert with rising temperatures, this seems certain to threaten the persistence of, at least, narrow-endemic plant species. Simple modelling approaches show strong reduction in spatial extent of bioclimates typical of Namaqualand within the next five decades and that both generalist species with large geographic ranges, and narrow-range endemics may be susceptible to climate change induced loss of potential range. Persistence of endemics in micro-habitats that are buffered from extreme climate conditions cannot be discounted, though no attempts have been made to address this shortcoming of broader scale bioclimatic modelling. The few experimental data available on elevated temperature and drought tolerance suggest susceptibility of leaf succulent species, but high drought tolerance of non-succulent shrubs. Both species-level monitoring and further experimental work is essential to test and refine projections of climate change impacts on species persistence, and the implications for conservation.  相似文献   

10.
甘肃尕海湿地退化泥炭地恢复技术评价   总被引:1,自引:0,他引:1  
泥炭地是湿地的重要组成部分,也是中国最为重要的碳库之一。泥炭地具有涵养水源、净化水质、蓄洪防旱、调节气候和维护生物多样性等重要的生态功能,泥炭资源保护在应对气候变化中有着重要的意义。由于气候变化、沟蚀及修路等人为影响,尕海湿地的泥炭地出现退化现象。总结了甘肃尕海湿地退化泥炭地的恢复方案和技术措施,评价了退化泥炭地的恢复效果。  相似文献   

11.
This study provides a unique examination of Amish farmers’ awareness of water quality issues and their attitudes toward and use of agricultural conservation practices compared with small non-Amish farmers in Northeastern Indiana. There is minimal research about the conservation beliefs and behaviors of this growing and highly diverse ethnoreligious minority, who have faith-based technological restrictions and are often hesitant to work with community outsiders, especially the government. We find that, compared with non-Amish farmers, Amish farmers have limited awareness of the linkages between common agricultural practices and broader water quality problems and lower levels of adoption of conservation practices, with the exception of cover crops. This information is essential for conservation practitioners who need to work with a diverse range of agricultural producers to increase the uptake of conservation practices that address critical water quality concerns.  相似文献   

12.
西北干旱区水资源问题研究思考   总被引:29,自引:2,他引:27       下载免费PDF全文
 气候变化与水资源问题是各国政府部门、学术界和社会公众普遍关注的焦点,也是西北干旱区实现跨越式发展的重要瓶颈之一。在分析前人研究成果基础之上,指出制约西北干旱区社会经济发展和生态安全的关键因素和气候变化对西北干旱区水资源的影响;进而分析西北干旱区气候变化与水资源研究中的热点和难点问题;最后基于西北干旱区水资源研究的重要性和迫切性提出目前亟待解决的研究任务与核心内容,主要包括3个方面:(1)气候变化对西北干旱区水资源形成、转化及未来趋势的影响;(2)气候变化对西北干旱区水循环过程的影响;(3)气候变化对西北干旱区水资源安全的影响。  相似文献   

13.
Stable isotope measures in organic matter are frequently used as indicators of past climate change. Although such analyses can provide valuable information, there is considerable uncertainty associated with studies of organic-rich sediments, especially those from Arctic lakes and bogs. We studied stable isotopes of carbon and nitrogen, and magnetic properties in a sediment core from a small alkaline lake with a high sedimentation rate, Lake Nattmålsvatn, Norway. There is good correspondence among the different sediment variables during the late glacial, and they seemingly reflect major climate variations such as the Allerød Interstade and the Younger Dryas, as well as the transition into the current interglacial. During the early Holocene, however, these relationships are more complex and δ13C and δ15N values do not stabilize until ~7,500 cal year BP. A significant excursion in all variables occurs between 6,850 and 6,500 cal year BP and is interpreted to represent climate deterioration. Holocene δ13C values vary little and indicate that isotopically-depleted dissolved inorganic carbon (DIC) in the lake, possibly influenced by methanotrophy and high pCO2, dominated the lake’s carbon cycle. Holocene δ15N is similarly muted, likely due to the availability of abundant dissolved nitrogen. Bulk organic matter is probably dominated by phytoplankton remains produced beneath the ice cover in late spring and during ice breakup when isotopically-depleted DIC, pCO2 and ammonium availability were maximal. Thus, use of δ13C and δ15N as indicators of Holocene paleoclimate and paleoproductivity variation can be challenging in a lake such as Nattmålsvatn, where ice cover isolates the basin for large parts of the year, allowing dissolved respiratory gases to accumulate in the water column. In contrast, magnetic variables appear to better track climate variations. In particular, runoff-driven influx of minerogenic sediments shows high variability that can be attributed to regional changes in Holocene winter precipitation. The most striking shifts occur between 4,000 and 2,300 cal year BP.  相似文献   

14.
Political ideology and religion are considered important influences on attitudes about climate change, as many people rely on ideological and religious cues to help shape attitudes about this highly complex, uncertain, and politicized issue. While many scholars have studied the impacts of political orientation and religious affiliation independently, few have studied whether and how they interact in shaping concern about climate change. This article uses a large sample study to examine the impact of religious tradition on two indicators of concern about climate change within categories of political ideology. This study shows that religious affiliation moderates the impact of ideology, and that these interaction effects vary across religious traditions. Perhaps most significantly, this study reveals that religious affiliation is most influential on political liberals but has very little impact on conservatives. This holds significant implications for the way we understand the relationship between religion and environmental attitudes.  相似文献   

15.
Knowledge of paleoclimates and past climate change is important to put recent and future climate change in perspective. In the absence of well-developed methodology to reconstruct paleoprecipitation the majority of climate reconstructions focus on temperature, whereas precipitation is an equally important climate parameter. This paper explores the possibility of inferring paleoprecipitation from lake-level records by inverse hydrological modelling. Pollen spectra of a lacustrine sediment core were used to infer changes in past temperatures and lake levels during the past 14,000 years. A hydrological model that calculates lake levels using meteorological parameters and a digital terrain model were developed for the catchment area of Lake La Cocha. After calibration the model accurately simulated modern lake levels. A sensitivity analysis shows that the model results are most sensitive to temperature and precipitation. This hydrological model was subsequently used to estimate mean annual precipitation needed to reproduce the pollen-based reconstructed lake levels (inverse modelling). The lake currently discharges through the permanent Guamués River, with a modelled mean annual discharge of 3.6 m3 s?1. However, past lake levels and hydrological modelling results suggest that Lake La Cocha has been free of discharge during most of the Holocene, and after an intermittent phase only recently started discharging permanently. The uncertainty in the inferred precipitation during the discharge-free period is estimated at ~22 mm. Quasi stable lake levels seem to justify using equilibrium conditions when reconstructing precipitation. Early Holocene lake levels were ~10 m lower than modern values, implying that precipitation must have been 30–40 % less than today.  相似文献   

16.
Global climate warming which began in the second half of the twentieth century is continuing. It is associated with increased risks for ecological management, especially in permafrost areas comprising over 65% of Russia. Of special concern are dams constructed on permafrost. They are subject not only to climatic impacts, but also to additional hydrothermal loads from water reservoirs. This paper presents the concept of geocryological monitoring of dams and other water resource projects and substantiates its necessity in view of climatic change. It also presents methods, scope and implementation of geocryological monitoring at medium and small dams, considering the specific nature of Far Northern areas, as well as the complicated geotechnical, hydrogeological and permafrost conditions.  相似文献   

17.
气候变化对水文水资源影响的研究进展   总被引:20,自引:1,他引:19  
气候变化成为21 世纪世界最重大的环境问题之一,愈来愈引起国际社会和各国政府的重视和关注。研究 气候变化对水文水资源的影响,对于理解和解决可能引起的与工业、农业、城市发展等经济领域密切相关的水文水 资源系统的规划管理、开发利用、运行管理、环境保护、生态平衡等问题具有重要的理论意义和现实意义。本文主要 从研究方法、气候变化情景的生成技术、与水文模型接口技术和水文模拟技术等几个方面综合概述了气候变化对 水文水资源的影响,同时提出存在的问题与展望。  相似文献   

18.
Despite their sensitivity to climate variability, few of the abundant sinkhole lakes of Florida have been the subject of paleolimnological studies to discern patterns of change in aquatic communities and link them to climate drivers. However, deep sinkhole lakes can contain highly resolved paleolimnological records that can be used to track long-term climate variability and its interaction with effects of land-use change. In order to understand how limnological changes were regulated by regional climate variability and further modified by local land-use change in south Florida, we explored diatom assemblage variability over centennial and semi-decadal time scales in an ~11,000-yr and a ~150-yr sediment core extracted from a 21-m deep sinkhole lake, Lake Annie, on the protected property of Archbold Biological Station. We linked variance in diatom assemblage structure to changes in water total phosphorus, color, and pH using diatom-based transfer functions. Reconstructions suggest the sinkhole depression contained a small, acidic, oligotrophic pond ~11000–7000 cal yr BP that gradually deepened to form a humic lake by ~4000 cal yr BP, coinciding with the onset of modern precipitation regimes and the stabilization of sea-level indicated by corresponding palynological records. The lake then contained stable, acidophilous planktonic and benthic algal communities for several thousand years. In the early AD 1900s, that community shifted to one diagnostic of an even lower pH (~5.6), likely resulting from acid precipitation. Further transitions over the past 25 yr reflect recovery from acidification and intensified sensitivity to climate variability caused by enhanced watershed runoff from small drainage ditches dug during the mid-twentieth Century on the surrounding property.  相似文献   

19.
叶许春  吴娟  李相虎 《地理科学》2022,42(2):352-361
基于对鄱阳湖开放水文系统特点和影响因素的深入分析,通过构建一组联合的神经网络模型,定量辨识了包括湖盆地形变化、三峡工程作用、长江流域气候变化等因素对湖泊水位变化的影响分量、时空差异及其发展趋势,并对其作用机制进行了探讨。结果表明:相对于1980—1999年,2003—2014年鄱阳湖湖盆地形变化、三峡工程运行、长江流域气候变化和其他人类活动对湖泊水位降低的平均贡献率分别为50%、18%和32%。由于影响机制的不同,湖泊水位对这3个驱动因子的响应表现出明显的时空差异。冬、春季节湖泊水位降低主要由湖盆地形变化引起,而夏、秋季节的水位降低则主要归因于长江流域气候变化及其他人类活动的综合影响。湖盆地形变化对湖泊水位的影响在湖区都昌站附近最为突出,并且该影响仍呈长期增加趋势。三峡工程引起的湖泊水位变化在湖口处最大,向南部湖区逐渐减弱,其长期变化趋势日渐稳定。长江流域气候变化及其他人类活动的作用值得特别注意,该影响年际间波动较大,在某些年份里(如2006年、2011年)可成为湖泊水位降低的主导因素,但年际变化趋势不明显。  相似文献   

20.
气候变化与湿地   总被引:15,自引:7,他引:15  
概括介绍了湿地的重要性,详细论述气候变化对不同类型湿地的影响,以及湿地作为温室气体的库、汇和源在缓解气候变化方面所起的作用,并从湿地保护和合理利用的角度,提出缓解气候变化影响的对策,包括:开展湿地资源清查,收集全球各种类型湿地的数据和信息,建立更加完善的气候变化模型,以便将气候变化纳入保护和管理活动;保护、维持或恢复湿地生态系统是减缓全球气候变化的重要措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号