首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The equations for an electrically conducting fluid in cylindrical coordinates are linearized assuming that the inertial terms in the momentum equation can be ignored (small Rossby number), and that the ratio of the Elsasser number and magnetic Reynolds number is one. After these assumptions, the governing equations are linearized about an ambient solution which vanishes at the the equator. Upon assuming large Elsasser and magnetic Reynolds number, the solutions to the linearized equations are approximated by wave trains having very short wave length (relative to the core radius) but which vary slowly (on a scale of the core radius). The period of the waves is much longer than a day but much shorter than the period of the slow hydromagnetic oscillations. These waves are found to be trapped in a region about the equator and away from the axis of rotation. The waves break at a latitudinal wave region boundary, in the sense that the waves become exponentially large in a boundary layer, having as an exponent some positive power of the large azimuthal wave number. This behavior is amplified as the Elsasser number becomes smaller while still remaining relatively large. Waves in more Earth-like parameter regimes are discussed briefly.  相似文献   

2.
Abstract

The simplest model for geophysical flows is one layer of a constant density fluid with a free surface, where the fluid motions occur on a scale in which the Coriolis force is significant. In the linear shallow water limit, there are non-dispersive Kelvin waves, localized near a boundary or near the equator, and a large family of dispersive waves. We study weakly nonlinear and finite depth corrections to these waves, and derive a reduced system of equations governing the flow. For this system we find approximate solitary Kelvin waves, both for waves traveling along a boundary and along the equator. These waves induce jets perpendicular to their direction of propagation, which may have a role in mixing. We also derive an equivalent reduced system for the evolution of perturbations to a mean geostrophic flow.  相似文献   

3.
We consider an electrically conducting fluid confined to a thin rotating spherical shell in which the Elsasser and magnetic Reynolds numbers are assumed to be large while the Rossby number is assumed to vanish in an appropriate limit. This may be taken as a simple model for a possible stable layer at the top of the Earth's outer core. It may also be a model for the thin shells which are thought to be a source of the magnetic fields of some planets such as Mercury or Uranus. Linear hydromagnetic waves are studied using a multiple scale asymptotic scheme in which boundary layers and the associated boundary conditions determine the structure of the waves. These waves are assumed to be of the form of an asymptotic series expanded about an ambient magnetic field which vanishes on the equatorial plane and velocity and pressure fields which do not. They take the form of short wave, slowly varying wave trains. The results are compared to the author's previous work on such waves in cylindrical geometry in which the boundary conditions play no role. The approximation obtained is significantly different from that obtained in the previous work in that an essential singularity appears at the equator and nonequatorial wave regions appear.  相似文献   

4.
We study the interaction between energetic protons of the Earth’s radiation belts and quasi-electrostatic whistler mode waves. The nature of these waves is well known: whistler waves, which are excited in the magnetosphere due to cyclotron instability, enter the resonant regime of propagation and become quasielectrostatic, while their amplitude significantly increases. Far enough from the equator where proton gyrofrequency and transversal velocity increase the nonlinear interaction between these waves and energetic protons becomes possible. We show that plasma inhomogeneity may destroy cyclotron resonance between wave and proton on the time scale of the order of particle gyroperiod which in fact means the absence of cyclotron resonance; nevertheless, the interaction between waves and energetic particles remains nonlinear. In this case, particle dynamics in the phase space has the character of diffusion; however, the diffusion coefficients are determined by the averaged amplitude of the wave field, but not by its resonant harmonics. For real parameters of the waves and magnetospheric plasma, proton pitch-angle diffusion leading to their precipitation from the magnetosphere becomes essential.  相似文献   

5.
We consider an electrically conducting fluid in rotating cylindrical coordinates in which the Elsasser and magnetic Reynolds numbers are assumed to be large while the Rossby number is assumed to vanish in an appropriate limit. This may be taken as a simple model for the Earth's outer core. Fully nonlinear waves dominated by the nonlinear Lorentz forces are studied using the method of geometric optics (essentially WKB). These waves are assumed to be of the form of an asymptotic series expanded about ambient magnetic and velocity fields which vanish on the equatorial plane. They take the form of short wave, slowly varying wave trains. The first-order approximation is sinusoidal and basically the same as in the linear problem, with a dispersion relation modified by the appearance of mean terms. These mean terms, as well the undetermined amplitude functions, are found by suppressing secular terms in a “fast” variable in the second-order approximation. The interaction of the mean terms with the dispersion relation is the primary cause of behaviors which differ from the linear case. In particular, new singularities appear in the wave amplitude functions and an initial value problem results in a singularity in one of the mean terms which propagates through the fluid. The singularities corresponding to the linear ones are shown to develop when the corresponding waves propagate toward the equatorial plane.  相似文献   

6.
Using a simple time-lagged correlation technique, present study aims to identify the solar wind (SW) parameter, which is better associated with the ground magnetic field variations of shorter time duration near equator, during intense geomagnetic storms. It is found that out of all SW parameters, successively occurring enhancements in the SW dynamic pressure have substantial influence on the horizontal component of magnetic field at ground. Present analysis reveals a time lag of ~30–45 min between the SW pressure changes seen at L1 location and ground magnetic field variations, and hence providing a good approximation of an averaged propagation time during entire storm interval; the time lag varies with solar wind velocity. Separate study during day and nighttime suggests that the SW dynamic pressure enhancements recorded by the dayside outer magnetospheric satellite have impact on the ground horizontal magnetic field measurements near equator, irrespective of day or nighttime.  相似文献   

7.
Abstract

The ray method is used to study slow hydromagnetic waves in an incompressible, inviscid, perfectly conducting fluid of constant density in the presence of a constant toroidal magnetic field. The fluid is bounded below by a rigid sphere and above by a rigid spheroidal surface, and the mean fluid layer thickness is assumed to be small. Both the general time-dependent and time-harmonic (free oscillation) problems are studied and dispersion relations and conservation laws are derived. These results are applied to free oscillations with constant azimuthal wave number in a spherical shell and then compared to those of previous authors. Such oscillations propagate to the east and are trapped between circles of constant latitude. Wave propagation in axisymmetric shells is then studied with emphasis on the relationship between shell shape and direction of propagation, and it is found that such shells can sustain westward propagating modes wherever the shell thickness decreases sufficiently rapidly from a maximum at the poles to zero at the equator; no shells exist which can sustain westward propagation at the equator.  相似文献   

8.
烃类储集层是一种复合多相介质,在固体颗粒的空隙中含有气体或液体. 研究弹性波在该类地层中的传播规律对于油气勘探开发,特别对于全波列声波测井有重要意义. 为了提高孔隙弹性介质数值模拟的计算效率,本文采用改进显式交错网格有限差分算法取代常用的空间域四阶和时间域二阶的速度 - 应力有限差分算法,算法的空间域为八阶、时间域为二阶. 虽然计算的时间步长略小于空间域四阶的情形,但高阶有限差分算法可以选择较粗糙的网格,因此补偿了计算的低效;同时高阶交错网格有限差分算法的空间频散性比低阶算法小. 利用该算法计算了一个两层模型的波场,同时还模拟了等效弹性和孔隙弹性模型中波的传播. 结果表明慢波及其影响明显,尽管慢波衰减很快,但被某一界面反射后,转换形成的P波和S波仍以正常的方式传播,且比慢波衰减小.  相似文献   

9.
Most amplitude versus offset (AVO) analysis and inversion techniques are based on the Zoeppritz equations for plane‐wave reflection coefficients or their approximations. Real seismic surveys use localized sources that produce spherical waves, rather than plane waves. In the far‐field, the AVO response for a spherical wave reflected from a plane interface can be well approximated by a plane‐wave response. However this approximation breaks down in the vicinity of the critical angle. Conventional AVO analysis ignores this problem and always utilizes the plane‐wave response. This approach is sufficiently accurate as long as the angles of incidence are much smaller than the critical angle. Such moderate angles are more than sufficient for the standard estimation of the AVO intercept and gradient. However, when independent estimation of the formation density is required, it may be important to use large incidence angles close to the critical angle, where spherical wave effects become important. For the amplitude of a spherical wave reflected from a plane fluid‐fluid interface, an analytical approximation is known, which provides a correction to the plane‐wave reflection coefficients for all angles. For the amplitude of a spherical wave reflected from a solid/solid interface, we propose a formula that combines this analytical approximation with the linearized plane‐wave AVO equation. The proposed approximation shows reasonable agreement with numerical simulations for a range of frequencies. Using this solution, we constructed a two‐layer three‐parameter least‐squares inversion algorithm. Application of this algorithm to synthetic data for a single plane interface shows an improvement compared to the use of plane‐wave reflection coefficients.  相似文献   

10.
At large hypocentral distances, it is convenient to approximate the curved transient seismic wavefronts as planar to estimate rotational ground motions from the single-station recordings of translational ground motions. In this paper, we investigate whether and when this approximation, referred to as the ‘plane-wave’ approximation, can be considered adequate close to the source. For this, we consider a simplistic source model comprising a two-dimensional, kinematic shear dislocation SH line-source buried in a homogenous, elastic half-space and assume this to be an equivalent representation of a finite-sized fault. The ‘plane-wave’ rotational motion is then synthesized from the exact translational motion solution to the assumed model and compared with the exact rotational motion solution for this model. The comparison between the two sets of rotational amplitudes in frequency domain suggests that the plane-wave approximation may be adequate, when the wavelengths of the seismic waves are much smaller than the source depth. When this is not true, the plane-wave approximation is seen to underestimate the Fourier amplitudes close to the source by several orders, particularly when the fault planes are vertically oriented. A similar comparison in the time domain indicates that a severe underestimation may also occur when the source rise time is longer than the shear-wave arrival time at the epicenter. Significant discrepancies are also observed between the waveforms of the exact and plane-wave rotational motions.  相似文献   

11.
Abstract

The propagation of Alfvén waves along a uniform horizontal field in a highly conducting incompressible fluid, subject to the convective forces produced by a uniform vertical temperature gradient, is treated in a Boussinesq approximation. It is shown that there are exact solutions with large amplitude but restricted form. Their restricted form means that an arbitrary disturbing force produces other motions as well as Alfvén waves. An arbitrary initial disturbance of small amplitude produces waves whose state of polarization varies along the direction of propagation. For large amplitudes, however, any mixtures of polarization states causes scattering into new modes.  相似文献   

12.
王水 《地球物理学报》1982,25(6):483-491
本文讨论了赤道附近地球磁层中磁声重波沿重力场方向的传播特征。结果表明,当波动频率小于截止频率ωc时,磁声重波将在磁层中被反射。对于典型的磁层等离子体参数,ωc的极大值约为0.3秒-1。我们还讨论了磁声重波与地磁微脉动之间的关系,沿着重力场方向向下传播的磁声重波,可能直接引起赤道附近的Pc1磁脉动。  相似文献   

13.
用中国钻孔应变台网资料检验大震“前驱波”   总被引:2,自引:0,他引:2  
周龙寿  邱泽华  唐磊  阚宝祥 《地震》2009,29(3):67-78
利用中国钻孔应变台网的13个台站观测精度达10-10~10-8量级TJ式钻孔体应变仪观测资料,深入分析2004年12月23日澳大利亚麦阔里岛MS8.0和2004年12月26日印尼苏门答腊MS8.9大震前应变变化,对这两次地震“前驱波”进行了客观地检验。 用高通滤波消除了周期大于128 min的固体潮汐影响,用回归分析方法消除了气压干扰。 用小波变换方法将2~128 min信号分解到6个不同频段进行分析。 结果显示,该方法能提取出信号中微弱变化信息。 根据小波变换提取的类似“前驱波”基本特征,提出“超限率”分析方法检验小波分解的细节部分。 对所有细节部分的超限率时间序列的回归直线斜率进行统计,得出了平均值和标准差,分析了正负比。 这3项统计数据显示,大震前15 d之内不能普遍检测到“前驱波”。  相似文献   

14.
Songhao Shang 《水文研究》2012,26(22):3338-3343
Calculation of actual crop evapotranspiration under soil water stress conditions is crucial for hydrological modeling and irrigation water management. Results of actual evapotranspiration depend on the estimation of water stress coefficient from soil water storage in the root zone, which varies with numerical methods and time step used. During soil water depletion periods without irrigation or precipitation, the actual crop evapotranspiration can be calculated by an analytical method and various numerical methods. We compared the results from several commonly used numerical methods, including the explicit, implicit and modified Euler methods, the midpoint method, and the Heun's third‐order method, with results of the analytical method as the bench mark. Results indicate that relative errors of actual crop evapotranspiration calculated with numerical methods in one time step are independent of the initial soil water storage in the range of soil water stress. Absolute values of relative error decrease with the order of numerical methods. They also decrease with the number of time step, which can ensure the numerical stability of successive simulation of soil water balance. Considering the calculation complexity and calculation errors caused by numerical approximation for different time step and maximum crop evapotranspiration, the explicit Euler method is recommended for the time step of 1 day (d) or 2 d for maximum crop evapotranspiration less than 5 mm/d, the midpoint method or the modified Euler method for the time step of up to one week or 10 d for maximum crop evapotranspiration less than 5 mm/d, and the Heun's third‐order method for the time step of up to 15 d. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.

The effects of finite amplitude are examined in two-dimensional, standing, internal gravity waves in a rectangular container which rotates about a vertical axis at frequency f/ 2. Expressions are given for the velocity components, density fluctuations and isopycnal displacements to second order in the wave steepness in fluids with buoyancy frequency, N , of general form, and the effect of finite amplitude on wave frequency is given in an expansion to third order. The first order solutions, and the solutions to second order in the absence of rotation, are shown to conserve energy during a wave cycle. Analytical solutions are found to second order for the first two modes in a deep fluid with N proportional to sech( az ), where z is the upward vertical coordinate and a is scaling factor. In the absence of rotation, results for the first mode in the latter stratification are found to be consistent with those for interfacial waves. An analytical solution to fourth order in a fluid with constant N is given and used to examine the effects of rotation on the development of static instability or of conditions in which shear instability may occur. As in progressive internal waves, an effect of rotation is to enhance the possibility of shear instability for waves with frequencies close to f . The analysis points to a significant difference between the dynamics of standing waves in containers of limited size and progressive internal waves in an unlimited fluid; the effect of boundaries on standing waves may inhibit the onset of instability. A possible application of the analysis is to transverse oscillations in long, narrow, steep-sided lakes such as Loch Ness, Scotland.  相似文献   

16.
Validation of 3D synthetic seismograms based on the ray-Born approximation   总被引:1,自引:0,他引:1  
The first-order Born approximation is a weak scattering perturbation method which is a powerful tool. The combination of the Born approximation and the ray theory enables to extend the applicability of the ray theory in terms of the required smoothness of the model and ensures faster computations than with, e.g., the finite difference method. We are motivated to describe and explain the effects of the numerical discretization of the Born integral on the resulting seismograms. We focus on forward modelling and study the cases in which perturbation from the background model contains the interface. We restrict ourselves to isotropic models that contain two homogeneous layers. We compare the 2D and 3D ray-based Bornapproximation seismograms with the ray-theory seismograms. The Born seismograms are computed using a grid of finite extent. We anticipate that the computational grid should contain an appropriate number of gridpoints, otherwise the seismogram would be inaccurate. We also anticipate that the limited size of the computational grid can cause problems. We demonstrate numerically that an incorrect grid can produce significant errors in the amplitude of the wave, or it can shift the seismogram in time. Moreover, the grid boundaries work as interfaces, where spurious waves can be generated. We also attempt to explain these phenomena theoretically. We give and test the options of removing the spurious waves. We show that it is possible to compute the Born approximation in a sparser grid, if we use elastic parameters averaged from some dense grid.  相似文献   

17.
As theory dictates, for a series of horizontal layers, a pure, plane, horizontally polarized shear (SH) wave refracts and reflects only SH waves and does not undergo wave-type conversion as do incident P or Sv waves. This is one reason the shallow SH-wave refraction method is popular. SH-wave refraction method usually works well defining near-surface shear-wave velocities. Only first arrival information is used in the SH-wave refraction method. Most SH-wave data contain a strong component of Love-wave energy. Love waves are surface waves that are formed from the constructive interference of multiple reflections of SH waves in the shallow subsurface. Unlike Rayleigh waves, the dispersive nature of Love waves is independent of P-wave velocity. Love-wave phase velocities of a layered earth model are a function of frequency and three groups of earth properties: SH-wave velocity, density, and thickness of layers. In theory, a fewer parameters make the inversion of Love waves more stable and reduce the degree of nonuniqueness. Approximating SH-wave velocity using Love-wave inversion for near-surface applications may become more appealing than Rayleigh-wave inversion because it possesses the following three advantages. (1) Numerical modeling results suggest the independence of P-wave velocity makes Love-wave dispersion curves simpler than Rayleigh waves. A complication of “Mode kissing” is an undesired and frequently occurring phenomenon in Rayleigh-wave analysis that causes mode misidentification. This phenomenon is less common in dispersion images of Love-wave energy. (2) Real-world examples demonstrated that dispersion images of Love-wave energy have a higher signal-to-noise ratio and more focus than those generated from Rayleigh waves. This advantage is related to the long geophone spreads commonly used for SH-wave refraction surveys, images of Love-wave energy from longer offsets are much cleaner and sharper than for closer offsets, which makes picking phase velocities of Love waves easier and more accurate. (3) Real-world examples demonstrated that inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves. This is due to Love-wave’s independence of P-wave velocity, which results in fewer unknowns in the MALW method compared to inversion methods of Rayleigh waves. This characteristic not only makes Love-wave dispersion curves simpler but also reduces the degree of nonuniqueness leading to more stable inversion of Love-wave dispersion curves.  相似文献   

18.

Thermal instabilities in the form of oscillatory magnetoconvection representing diffusively modified Alfvén waves in an electrically-conducting Bénard fluid layer of rigid walls in the presence of a vertical magnetic field are investigated. Emphasis of the article is on the transition from a nearly undamped Alfvén wave to diffusively modified Alfvén waves, and on the effect of physically realisable magnetic field boundary conditions on magnetoconvection. It is found that the extra magnetic dissipation in the magnetic Hartmann boundary layers can enhance oscillatory magnetoconvection in the form of strongly modified Alfvén waves. Oscillatory magnetoconvection produced solely by the Alfvén wave mechanism can be the most unstable mode even in the presence of a strong viscous effect. This article also represents the first study on the effect of an electrically conducting wall on magnetoconvection which is associated with a nonlinear eigenvalue problem. We find that the electrically perfectly conducting condition does not yield a good approximation for magnetoconvection with an electrically highly conducting wall. The size of oscillation frequency with an electrically highly conducting wall can be more than a factor of 2 larger than that obtained using the perfectly conducting condition.  相似文献   

19.
Time integration methods that adapt in both the order of approximation and time step have been shown to provide efficient solutions to Richards' equation. In this work, we extend the same method of lines approach to solve a set of two-phase flow formulations and address some mass conservation issues from the previous work. We analyze these formulations and the nonlinear systems that result from applying the integration methods, placing particular emphasis on their index, range of applicability, and mass conservation characteristics. We conduct numerical experiments to study the behavior of the numerical models for three test problems. We demonstrate that higher order integration in time is more efficient than standard low-order methods for a variety of practical grids and integration tolerances, that the adaptive scheme successfully varies the step size in response to changing conditions, and that mass balance can be maintained efficiently using variable-order integration and an appropriately chosen numerical model formulation.  相似文献   

20.
The transverse response of underground cylindrical cavities to incident SV waves is investigated. Analytical solutions are derived for unlined cavities embedded within an elastic half‐space using Fourier–Bessel series and a convex approximation of the half‐space free surface. The computed displacements at the half‐space free surface and the tangential stresses on the cavity are compared with the results of previous investigations. The analytical solutions are extended to formulate approximate solutions for assessing hoop stresses within cavity liners impinged by low‐frequency waves having wavelengths much longer than the cavity diameter. The approximate solutions are compared to existing numerical solutions, and used to evaluate the dynamic response of a flexible buried pipe shaken by the 1994 Northridge earthquake. The proposed approximate model for cavity liners is useful for the seismic analysis of underground pipes and small‐diameter tunnels. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号