首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GIS and Remote Sensing have proved to be an indispensible tool in morphometric analysis. The identification of morphometric properties based on a geographic information system (GIS) was carried out in two watersheds in the Thrissur district of Kerala, India. These watersheds are parts of Western Ghats, which is an ecologically sensitive area. Quantitative geomorphometric analysis was carried out for the Chimmini and Mupily watersheds independently by estimating their (a) linear aspects like stream number, stream order, stream length, mean stream length, stream length ratio, bifurcation ratio, length of overland flow, drainage pattern (b) aerial aspects like circulatory ratio, elongation ratio, drainage density and (c) relief aspects like basin relief, relief ratio, relative relief and ruggedness number. The drainage areas of Chimmini and Mupily watersheds are 140 and 122 km2 respectively and show patterns of dendritic to sub-dendritic drainage. The Chimmini watershed was classified as a sixth order drainage basin, whereas Mupily watershed was classified as a fifth order basin. The stream order of the basin was predominantly controlled by physiographic and structural conditions. The increase in the stream length ratio from lower to higher order suggests that the study area has reached a mature geomorphic stage. The development of stream segments is affected by rainfall and local lithology of the watersheds. The slope of both watersheds varied from 0° to 50° and 0° to 42° respectively and the slope variation is chiefly controlled by the local geology and erosion cycles. Moreover, these studies are useful for planning rain water harvesting and watershed management.  相似文献   

2.
Groundwater potential zone mapping has become easier with the inputs from Remote Sensing (RS) & Geographical Information System (GIS) techniques. Various thematic maps like geology, geomorphology, drainage density, slope, landuse/landcover etc can be easily generated through RS & GIS. The present study is aimed at generating groundwater potential map of Koshalya-Jhajhara (K-J) watershed by using integrated approach of RS & GIS. Various thematic layers have been generated and assigned weightages and ranks. These layers have been integrated in GIS software for generating Groundwater Potential Zone (GPZ) map of K-J watershed. The area falls into five categories of groundwater potential zones i.e. very good, good, moderate, poor and very Poor depending on the likelihood of availability of ground water. On the basis of this study it is found that only 5.83 km2 and 4.91 km2 area is under very good and good category of groundwater availability respectively. An area of 24.48 km2 is found under moderate category whereas dominant portion of K-J watershed i.e. 61.83 km2 and 37.87 km2 area falls under poor and very poor category of availability of groundwater respectively.  相似文献   

3.
An attempt to carry out morphometric, statistical, and hazard analyses using ASTER data and GIS technique of Wadi El-Mathula watershed, Central Eastern Desert, Egypt. Morphometric analysis with application of GIS technique is essential to delineate drainage networks; basin geometry, drainage texture, and relief characteristics, through detect forty morphometric parameters of the study watershed and its sub-basins. Extract new drainage network map with DEM, sub-basin boundaries, stream orders, drainage networks, slope, drainage density, flow direction maps with more details is very necessary to analyze different morphometric and hydrologic applications for the study basin. Statistical analysis of morphometric parameters was done through cluster analysis, regression equations, and correlation coefficient matrix. Clusters analyses detect three independents variables which are stream number, basin area, and stream length have a very low linkage distance of 0.001 (at very high similarity of 99.95%) in a cluster with the basin width. Main channel length and basin perimeter (at very high similarity of 99.83%) are in a cluster with basin length. Using the regression equations and graphical correlation matrix indicates the mathematical relationships and helps to predict the behavior between any two variables. Hazard analysis and hazard degree assessment for each sub-basin were performed. The hazardous factors were detected and concluded that most of sub-basins are classified as moderately to highly hazardous. Finally, we recommended that the flood possibilities should be taken in consideration during future development of these areas.  相似文献   

4.
A morphometric analysis was carried out to describe the topography and drainage characteristics of Papanasam and Manimuthar watersheds. These watersheds are part of Western Ghats, which is an ecologically sensitive region. The drainage areas of Papanasam and Manimuthar watersheds are 163 and 211 km2, respectively and they show patterns of dendritic to sub-dendritic drainage. The slope of both watersheds varied from 0° to 59° and 0° to 55°, respectively. Moreover, the slope variation is chiefly controlled by the local geology and erosion cycles. Each watershed was classified as a fifth-order drainage basin. The stream order of the basin was predominantly controlled by physiographic and structural conditions. The increase in stream length ratio from lower to higher order suggests that the study area has reached a mature geomorphic stage. The development of stream segments is affected by rainfall and local lithology of the watersheds.  相似文献   

5.
The integration of Remote Sensing (RS) and Geographic Information Systems (GIS) constitutes a powerful tool for the evaluation of watershed morphometric parameters. The benefits of this integration include saving time and effort as well as improving the accuracy of the analysis. Moreover, this technique is appropriate for describing the watershed and its streams. In this study, a detailed morphometric analysis of the Wadi Baish catchment area has been performed using the Shuttle Radar Topography Mission (SRTM). The performed morphometric analysis includes linear, areal, and relief aspects. The results of the morphometric analysis reveal that the catchment can be described as of eighth stream order and consists of an area of 4741.07 km2. Additionally, the basin is characterized by a relatively high mean value of bifurcation (4.012), indicative of the scarcity of permeable rocks with high slope in the area. This value of bifurcation ratio is consistent with the high drainage density value of 2.064 km/km2 and confirms the impermeability of the subsurface material and mountainous relief. The hypsometric integral of the catchment is 47.4%, and the erosion integral of the catchment is 52.6%, both were indications of a mature catchment area.  相似文献   

6.
A morphometric evaluation of Tamiraparani subbasin was carried out to determine the drainage characteristics using GIS model technique. Extraction of the subbasin and stream network model has been developed to quantify the drainage parameters in the study area. The input parameters required to run this model are: a pour point, a minimum upstream area in hectares, and a digital elevation model. After execution, the model provides a drainage basin with Strahler’s classified stream network supported by thematic layers like aspect, slope, relief, and drainage density. The developed model reveals that the drainage area of this subbasin is 2,055 km2 and shows subdendritic to dendritic drainage pattern. The basin includes seventh order stream and mostly dominated by lower stream order. The slope of the study area varies from 0° in the east to 61° towards west. The presence of Western Ghats is the chief controlling factor for slope variation. Moreover, the slope variation is controlled by the local lithology and erosion cycles. The bifurcation ratio indicates that the geological structures have little influence on the drainage networks and the drainage density reveals that the nature of subsurface strata is permeable.  相似文献   

7.
In this present study, Remote Sensing (RS) and Geographical Information System (GIS) techniques were used to update drainage and surface water bodies and to evaluate linear, relief and aerial morphometric parameters of the two sub-watersheds viz. Jilugumilli and Regulapadu in the northern part of West Godavari District, Andhra Pradesh. The area of Jilugumilli and Regulapadu watersheds spread over about 110 & 80 sq. km respectively. The morphometric analysis of the drainage networks of Regulapadu and Jilugumilli sub-watersheds exhibit sub-dendritic and sub parallel drainage pattern. The variation in stream length ratio changes due to change in slope and topography. It was inferred from the study that the streams are in a mature stage in Regulapadu and Jilugumilli watersheds, which indicated the geomorphic development. The variations in bifurcation ratio values among the sub-watersheds are described with respect to topography and geometric development. The stream frequencies for both sub-watersheds exhibit positive correlation with the drainage density, indicating increase in stream population with respect to increase in drainage density. The Jilugumilli watershed has a coarse drainage texture and Regulapadu sub-watershed is a fine drainage texture in nature. In the present study an attempt has been made to analyse the morphometric analysis of two sub-watersheds under different physiographic conditions. Morphometric analysis is one of the essential analyses required for development and management of watershed.  相似文献   

8.
The study area is a one of the sub-basin of Vaigai River basin in the Theni and Madurai districts, Western Ghats of Tamil Nadu. The Vaigai sub-basin extends approximately over 849 km2 and it has been sub-divided into 48 watersheds. It lies between 09°30′00″ and 10°00′00″N latitudes and 77°15′10″ and 77°45′00″ E longitudes in the western part of Tamil Nadu, India. It originates at an altitude of 1661m in the Western Ghats of Tamil Nadu in Theni district. The drainage pattern of these watersheds are delineated using geo-coded Indian remote sensing satellite (IRS) ID, linear image self-scanning (LISS) III of geo-coded false colour composites (FCC), generated from the bands 2, 3 and 4 on 1:50,000 scale in the present study. The Survey of India (SOI) toposheets 58G/5, 58 G/6, 58G/9 and 58G/10 on a scale of 1:50,000 scale was used as a base for the delineation of watershed. In the present study, the satellite remote sensing data has been used for updation of drainages and the updated drainages have been used for morphometric analysis. The morphometric parameters were divided in three categories: basic parameters, derived parameters and shape parameters. The data in the first category includes area, perimeter, basin length, stream order, stream length, maximum and minimum heights and slope. Those of the second category are bifurcation ratio, stream length ratio, RHO coefficient, stream frequency, drainage density, and drainage texture, constant of channel maintenance, basin relief and relief ratio. The shape parameters are elongation ratio, circularity index and form factor. The morphometric parameters are computed using ESRI’s ArcGIS package. Drainage density ranges from 1.10 to 4.88 km/km2 suggesting very coarse to fine drainage texture. Drainage frequency varies from 1.45 to 14.70 which is low to very high. The bifurcation ratio ranges from 0.55 to 4.37. The low values of bifurcation ratios and very low values of drainage densities indicate that the drainage has not been affected by structural disturbances and also that the area is covered under dense vegetation cover. Elongation ratio ranges from 0.11 to 0.57. Drainage texture has the minimum of 1.63 and maximum of 11.44 suggesting that the drainage texture is coarse to fine. It is concluded that remote sensing and GIS have been proved to be efficient tools in drainage delineation and updation. In the present study these updated drainages have been used for the morphometric analysis.  相似文献   

9.
Flash flood forecasting of catchment systems is one of the challenges especially in the arid ungauged basins. This study is attempted to estimate the relationship between rainfall and runoff and also to provide flash flood hazard warnings for ungauged basins based on the hydrological characteristics using geographic information system (GIS). Morphometric characteristics of drainage basins provide a means for describing the hydrological behavior of a basin. The study examined the morphometric parameters of Wadi Rabigh with emphasis on its implication for hydrologic processes through the integration analysis between morphometric parameters and GIS techniques. Data for this study were obtained from ASTER data for digital elevation model (DEM) with 30-m resolution, topographic map (1:50,000), and geological maps (1,250,000) which were subject to field confirmation. About 36 morphometric parameters were measured and calculated, and interlinked to produce nine effective parameters for the evaluation of the flash flood hazard degree of the study area. Based on nine effective morphometric parameters that directly influence on the hydrologic behavior of the Wadi through time of concentration, the flash flood hazard of the Rabigh basin and its subbasins was identified and classified into three groups (High, medium, and low hazard degree). The present work proved that the physiographic features of drainage basin contribute to the possibility of a flash flood hazard evaluation for any particular drainage area. The study provides details on the flash flood prone subbasins and the mitigation measures. This study also helps to plan rainwater harvesting and watershed management in the flash flood alert zones. Based on two historical data events of rainfall and the corresponding maximum flow rate, morphometric parameters and Stormwater Management and Design Aid software (SMADA 6), it could be to generate the hydrograph of Wadi Rabigh basin. As a result of the model applied to Wadi Rabigh basin, a rainfall event of a total of 22 mm with a duration of 5 h at the station nearby the study area, which has an exceedance probability of 50 % and return period around 2 years, produces a discharge volume of 15.2?×?106 m3 at the delta, outlet of the basin, as 12.5 mm of the rainfall infiltrates (recharge).  相似文献   

10.
The drainage basin of the Kalyani river, a tributary of Gomati river has been mapped and delineated using Survey of India toposheets (1:50,000 scale) and remote sensing satellite data. The digitization, slope map preparation and statistical calculations have been carried out with the help of geographical information system (Arc GIS 10). Kalyani a fifth order river exhibits meandering behavior having 2.45 sinuosity index (SI). The Kalyani river basin has about 1235 km2area with NW-SE sloping trend. The total number of first, second, third, and fourth order streams are 373, 71, 12 and 2 respectively, showing dominance of first order streams in the basin. The mean bifurcation ratio (Rb) of the entire basin is 4.8, which indicates that the drainage is not much influenced by geological structures and exhibits dendritic drainage pattern. Relief ratio (Rr) indicates low to medium surface run-off, and low stream power for erosion. The analysis of river bank height ‘r’ (escarpment) and longitudinal profile of the river closely reveals neotectonic activity at some locations in the basin. To prepare a comprehensive watershed development and management plan, it is important to understand the topography and drainage characteristics of the region.  相似文献   

11.
Morphometric analysis of a watershed of South India using SRTM data and GIS   总被引:3,自引:0,他引:3  
An attempt has been made to study drainage morphometry and its influence on hydrology of Wailapalli watershed, South India. For detailed study we used Shuttle Radar Topographic Mission (SRTM) data for preparing Digital Elevation Model (DEM), aspect grid and slope maps, Geographical information system (GIS) was used in evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the elongated shape of the basin is mainly due to the guiding effect of thrusting and faulting. The lower order streams are mostly dominating the basin. The development of stream segments in the basin area is more or less affected by rainfall. The mean Rb of the entire basin is 3.89 which indicate that the drainage pattern is not much influenced by geological structures. Relief ratio indicates that the discharge capability of these watersheds is very high and the groundwater potential is meager. These studies are very useful for planning rainwater harvesting and watershed management.  相似文献   

12.
An attempt has been made to study drainage morphometry and its influence on hydrology of Peddavanka watershed, South India. Drainage networks for the sub-basins were derived from topographical map (1:50,000) and Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) data used for preparing elevation, slope and aspects maps. Geographical information system (GIS) was used in evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that SRTM DEM and GIS-based approach in evaluation of drainage morphometric parameters and their influence on hydrological characteristics at watershed level is more appropriate than the conventional methods. The mean Bifurcation ratio (R b) of the entire basin is 3.88 which indicate that the drainage pattern is not much influenced by geological structures. VIII sub-basin have high elongation ratio (R e), basin relief (B h), Ruggedness number (Rn) and time of concentration (T c). It indicates that the erosion and peak discharges are high in these basins. Therefore, the construction of the check dams and earth dams will help in reducing peak discharge on the main channel. These studies are very useful for implementing rainwater harvesting and watershed management.  相似文献   

13.
A morphometric analysis was done to determine the drainage characteristics of Lules River basin using land-sat imageries and topographical maps. This catchment was divided into seven sub-basins for the analysis: Liquimayo, Hoyada, Ciénaga, De Las Tablas, Siambón, Potrerillo and San Javier. Yungas ecoregion covers almost all the watershed. The drainage patterns of the sub-basins are dendritic and parallel. The basin includes seventh order stream and lower streams order mostly dominate the basin. The development of stream segments is affected by slope and local relief. The mean bifurcation ratio indicates that the drainage pattern is not much influenced by geological structures. The shape parameters also reveal the elongation of the basin and sub-basins.  相似文献   

14.
Watershed development and management plans are more important for harnessing surface water and groundwater resources in arid and semi-arid regions. To prepare a comprehensive watershed development plan, it becomes necessary to understand the topography, erosion status and drainage patterns of the region. This study was undertaken to determine the drainage characteristics of Pageru River basin using topographical maps on a scale of 1:50,000. The total area of the Pageru River basin is 480 km2. It was divided into X sub-basins for analysis. The drainage patterns of the basin are dendritic and include a sixth order stream. The quantitative analysis of various aspects of a river basin drainage network characteristics reveals complex morphometric attributes. The streams of lower orders mostly dominate the basin. The development of stream segments in the basin area is more or less affected by rainfall. The elongated shape of the basin is mainly due to the guiding effect of thrusting and faulting. The erosional processes of fluvial origin have been predominately influenced by the subsurface lithology of the basin.  相似文献   

15.
Flash floods are considered as catastrophic phenomena possessing major hazardous threat to the coastal cities, towns, villages and infrastructures. This study deals with the evaluation of flash flood hazard in the ungauged Wadi Al Lith basin depending on detailed morphometric characteristics of Al Lith basin and its sub-basins. For the detailed study, ASTER data were used for preparing digital elevation model (DEM), and geographical information system (GIS) was used in the evaluation of linear, areal and relief aspects of morphometric parameters. The major parameters such as watershed boundary, flow accumulation, flow direction, flow length and stream ordering are prepared using the ArcHydro Tool. Surface Tool in ArcGIS-10 software, and ASTER (DEM) was used to create different thematic maps such as DEM, contour, slope aspect and hill shade maps. Twenty-five morphometric parameters were measured, calculated and interlinked to produce nine effective parameters for evaluation of the flash flood hazard degree of the study area. Based on nine morphometric parameters which affect the hydrologic behaviour of the Wadi, by influence on time of concentration which has a direct influence on flooding prone area. The flash flood hazard of the Al Lith basin and its sub-basins was identified and classified into three groups (high, medium and low hazard degree). The study provides details on the flash flood-prone area (Wadi Al Lith) and the mitigation measures. This study also helps to plan rainwater harvesting and watershed management in the flash flood alert zones.  相似文献   

16.
The recent development of digital representation has stimulated the development of automatic extraction of topographic and hydrologic information from digital elevation model input, using geographic information system (GIS) and hydrologic models that integrate multiple databases within a minimal time. The objective of this investigation is to compare the drainage extracted from Shuttle Radar Topography Mission (SRTM) data with the drainage digitized from topographic data (1:50,000) and also to draw attention to the functions of an add-on tool in ArcGIS 9.2 (Arc Hydro v.2) of Kuttiyadi River basin. The analysis reveals that the watershed extracted from the SRTM digital elevation model (DEM) (90 m resolution) is having an area of 668 km2 and that from toposheet is 676 km2. The river mouth in the drainage network from the SRTM DEM is found to be shifted to the northern side from where it actually exists. The drainage network from SRTM DEM at stream threshold 15 (0.0002 % of maximum flow accumulation) is delivering best results than the other threshold value in comparison with the drainage pattern derived from toposheets. The study reveals the importance, reliability, and quaintness of drainage network and watershed derived from the SRTM using the Arc Hydro Tool, an extension for Environmental Systems Research Institute ArcGIS. The advantage of the Arc Hydro Tool is that it would help a novice with little GIS knowledge to run the model to obtain watershed and drainage network.  相似文献   

17.
The Asna river basin is located in Hingoli and Nanded districts of Marathwada region of Maharashtra. A geomorphometric analysis is an important method for the investigation and management of natural resources of watershed. The geomorphometric analysis of Asna river basin classifies three sub-basins that have been delineated using GIS and remote sensing through measurements of linear, aerial, and relief aspects. The Asna river basin comprises an area of 1187 km2 with seventh-order drainage pattern. As per Strahler classification, the upper part of the basin shows dendritic to sub-dendritic and the lower part exhibits parallel to sub-parallel drainage pattern. The total numbers of stream segments are 2422 and length of streams is 2187.92 km. The bifurcation value ranges from 1.26 to 5.58 indicating that there are no structural disturbances. The form factor value (0.49) indicates that the shape of the basin is moderately circular. The high values of drainage density, stream frequency, and low infiltration number indicate the high runoff due to impermeable lithology. The slope of the basin varies from 1 to 32.2%, terrain elevation ranges from 333 to 551 m, and overall relief of the basin is 218 m amsl. River sub-basin prioritization has an immense importance in natural resource management, especially in semi-arid regions. The present study is an attempt to prioritize the sub-basins of Asna river based on geomorphometric parameters. The weightage is assigned to different morphometric parameters of sub-basins based on erosion potential. The Asna river sub-basins have been classified into three categories as high, medium, and low on the basis of priorities for soil and water conservation. It is confirmed that sub-basin I is characterized as highly vulnerable to erosion and has high sedimentation load; sub-basin II has low priority, i.e., very low erodibility; and sub-basin III is of moderate type. The morphometric analysis and prioritization methods can be applied to hydrological studies in surface as well as subsurface water, climatic studies, rainwater harvesting, groundwater recharging sites, and watershed management.  相似文献   

18.
Riedel  Jon L.  Sarrantonio  Sharon M. 《Natural Hazards》2021,106(3):2519-2544

We examine the magnitude, frequency, and precipitation threshold of the extreme flood hazard on 37 low-order streams in the lower Stehekin River Valley on the arid eastern slope of the North Cascades. Key morphometric variables identify the magnitude of the hazard by differentiating debris flood from debris flow systems. Thirty-two debris flow systems are fed by basins?<?6 km2 and deposited debris cones with slopes?>?10°. Five debris flood systems have larger drainage areas and debris fans with slopes 7–10°. The debris flood systems have Melton ruggedness ratios from 0.42–0.64 compared to 0.78–3.80 for debris flow basins. We record stratigraphy at seven sites where soil surfaces buried by successive debris flows limit the age of events spanning 6000 years. Eighteen radiocarbon ages from the soils are the basis for estimates of a 200 to1500-year range in recurrence interval for larger debris flows and a 450?±?50-year average. Smaller events occur approximately every 100 years. Fifteen debris flows occurred in nine drainage systems in the last 15 years, including multiple flows on three streams. Summer storms in 2010 and 2013 with peak rainfall intensities of 7–9 mm/h sustained for 8–11 h triggered all but one flow; the fall 2015 event on Canyon Creek occurred after 170 mm of rain in 78 h. A direct link between fires and debris flows is unclear because several recent debris flows occurred in basins that did not burn or burned at low intensity, and basins that burned at high intensity did not carry debris flows. All but one of the recent flows and fires occurred on the valley’s southwest-facing wall. We conclude that fires and debris flows are linked by aspect at the landscape scale, where the sunny valley wall has flashy runoff due to sparse vegetation from frequent fires.

  相似文献   

19.
Quaternary terraces and pediments along Ralston Creek and Clear Creek, near Golden, Colorado, are associated with Verdos, Slocum, Louviers, and Broadway Alluviums. Terrace deposits can be locally correlated on the basis of elevation and relict paleosols. The terrace sediments probably represent aggradation by braided streams flowing from glaciated drainage basins. Engineering hydraulic calculation procedures suggest that flood flows were 2–3 m deep on steep gradients (0.008–0.01). Discharges were as great as 1400 m3/sec, nearly an order of magnitude greater than modern flood discharges. The most useful paleohydraulic calculation techniques were found to be the dimensionless shear approach applied to stream competence and bedload function theory applied to stream capacity.  相似文献   

20.
This work focuses on the exploitation of very high-resolution (VHR) satellite imagery coupled with multi-criteria analysis (MCA) to produce flood hazard maps. The methodology was tested over a portion of the Yialias river watershed basin (Nicosia, Cyprus). The MCA methodology was performed selecting five flood-conditioning factors: slope, distance to channels, drainage texture, geology and land cover. Among MCA methods, the analytic hierarchy process technique was chosen to derive the weight of each criterion in the computation of the flood hazard index (FHI). The required information layers were obtained by processing a VHR GeoEye-1 image and a digital elevation model. The satellite image was classified using an object-based technique to extract land use/cover data, while GIS geoprocessing of the DEM provided slope, stream network and drainage texture data. Using the FHI, the study area was finally classified into seven hazard categories ranging from very low to very high in order to generate an easily readable map. The hazard seems to be severe, in particular, in some urban areas, where extensive anthropogenic interventions can be observed. This work confirms the benefits of using remote sensing data coupled with MCA approach to provide fast and cost-effective information concerning the hazard assessment, especially when reliable data are not available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号