首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five expeditions (1965–1970) across parts of the Aleutian Abyssal Plain and adjacent areas in the Gulf of Alaska, and results of the Deep Sea Drilling Project, provide new information for the geologic history of the region which forms restrictive limits on models of plate tectonics. In general: (1) the Eocene-Oligocene, turbidite Aleutian Abyssal Plain was deposited from channelized turbidity currents from the north or northeast; (2) the plain is bounded on the south by the northern ridges of the Surveyor Fracture Zone, and is isolated from the Tufts Abyssal Plain; (3) turbidites were deposited from many buried channels and smaller surficial channels, but mainly from four great channels: Seamap, Sagittarius, Aquarius, and Taurus.The channels are depositional features; accumulation of sediments causes the channels to lie, topographically, along low ridges, with channels above distal portions of their levees. Western levees are higher and broader than eastern levees. Levee heights decrease from 30–100 m in the north to 15–25 m in the south.Rates of deposition and thicknesses of pelagic sediments in the northwest are 3 to 4 times greater than in the southeast. The data indicate the pelagics were deposited near the margin of the Pacific, at or near present locations. Thus, little or no northward plate motion is indicated.Turbidite thicknesses decrease from about 400–800 m in the north to about 200 m in the south. Turbidite thicknesses in the east-central plain are greater than in the Alaskan Abyssal Plain (formed since the Miocene), the northern Tufts Abyssal Plain, or the Sohm Abyssal Plain in the North Atlantic.Faulting and flexure of the oceanic crust seaward of the Aleutian Trench have strongly affected the channels. Seamap Channel has its high point midway along its course. The other three major channels are uplifted and faulted in the north.Required volumes of off-scraped sediments, undisturbed turbidites in the Aleutian Trench floor, and paleoclimatology also argue for little northward plate movement.The total evidence indicates that the turbidite Aleutian Abyssal Plain was formed in the Eocene-Oliogocene at, or near, its present position, and that the sediment source was probably Alaska. Cretaceous flysch of the Alaska Peninsula continental terrace was a possible source.The evidence does not require, but does not exclude, plate tectonics hypotheses. The evidence apparently excludes those continuous spreading models which cannot explain deposition of an Eocene-Oligocene turbidite plain over the magnetic bight, or which require an active, subducting, paleogene Aleutian Trench. Plate movements to the north over small distances cannot be excluded. The evidence is consistent with concepts of discontinuous sea-floor spreading with episodic subduction, or discontinuous, relative plate motion in this area. Two models are outlined which are consistent with the regional evidence: (1) a model with discontinuous relative plate motion and episodic subduction (a variation of one published by Hayes and Pitman, 1970); or (2) a no-plate-motion, or very-little-motion, model with long periods of inter-plate inactivity without subduction.  相似文献   

2.
A petrographic reconnaissance survey of 23 Pleistocene deep-sea sand layers from the Hatteras Abyssal Plain and adjacent deep-sea environments was undertaken in an attempt to delineate the provenance of the Hatteras Abyssal Plain sands. Data from 18 widely spaced piston cores reveal that subarkosic sands on the Hatteras Abyssal Plain derive from widely separated, characteristically different source areas. When the diverse character of the Hatteras Abyssal Plain sands is compared to that of the Hatteras Fan and adjacent continental margin, differences in composition suggest a portion of the coarse fraction derives north of Cape Hatteras via Wilmington Canyon System or the Sohm Abyssal Plain. The presence of certain diagnostic grain assemblages (schistose metaquartz, schistose, basic, and meta-volcanic rock fragments), not found in adjacent continental margin sands, indicates the glaciated areas that feed the Hudson Canyon/Fan and Sohm Abyssal Plain are a principal source. The data substantiate that premise of previous studies, that channelization and overflow of turbidity currents through the Sohm Abyssal Gap has played a major role in sedimentation on the Hatteras Abyssal Plain.Aside from the obvious Pleistocene contributions from the adjacent Hatteras Fan, which fed southerly flowing littoral drift material into the deep ocean, a more southerly continental shelf source is also indicated. The occurrence of certain carbonate grain types (ooids and peloid-algal biomicrites) is generally restricted to the continental shelf south of Hatteras Canyon system. The presence of these diagnostic grain types on the Abyssal Plain suggests a two-step process involving northerly transport via the Gulf Stream into canyon tributaries offshore Cape Hatteras during lower sea levels and eventual redistribution by density currents into the deep ocean. This process appears to have been responsible for the emplacement of carbonate-rich sands on the Hatteras Abyssal Plain.  相似文献   

3.
The geologic history of the eastern Indian Ocean between northwest Australia and the Java Trench is known to involve two separate events of rifting and sea-floor spreading. Late Jurassic spreading in the Argo Abyssal Plain off northwest Australia was followed by Early Cretaceous spreading in the Cuvier and Perth Abyssal Plains off west Australia. However, the evolution and interaction of these events has not been clear. Mesozoic sea-floor spreading anomalies have been identified throughout the Argo Abyssal Plain that define a rifting event and subsequent northward spreading on the northwestern Australian margin at 155 m.y.b.p. Magnetic anomalies northwest of the Argo Abyssal Plain indicate a ridge jump to the south at about 130 m.y.b.p. that is approximately synchronous with east-west rifting along the southwestern Australian margin. The Joey Rise in the Argo Plain was probably formed by volcanism at the intersection of this new rift and the spreading ridge to the north. The southern and northern spreading systems were connected through the Exmouth Plateau which was stretched and faulted as spreading progressed. The RRR triple junction was formed at the intersection of the two spreading systems and appears to have migrated west along the northern edge of the Gascoyne Abyssal Plain. Spreading off northwest Australia cannot be easily related to simultaneous spreading in the west central Pacific via any simple tectonic scheme.  相似文献   

4.
In previous publications, the relationship between the Sirte Abyssal Plain as foreland and the Mediterranean Ridge as accretionary complex was considered to be simple: the foreland is undeformed, the accretionary complex consumes the foreland, the Messinian evaporites control the internal structure of the growing complex. The compilation of our own and published data results in a more complex tectonic pattern and a new geodynamic interpretation. The Sirte Abyssal Plain is imprinted by extensional tectonics which originated independently from and prior to the approaching process of accretion. The structural setting of the pre-Messinian and Messinian Sirte Abyssal Plain is responsible for the highly variable thickness of Messinian evaporites. The foreland setting in the Sirte Abyssal Plain also controls the internal structure of the Mediterranean Ridge, at least between the deformation front and Bannock Basin, following sediment deformation within the accretionary wedge with a dominating inherited SW-NE orientation. The taper angle of the post-Messinian Mediterranean Ridge is unusually small compared with other accretionary wedges. In the studied area, within a distance of about 45 km from the deformation front, there is no appreciable dip in the décollement. Therefore, the slope of the outer 45 km of the Mediterranean Ridge is considered to be caused only by gravitational spreading of Messinian evaporites deposited on the slope of pre-Messinian accretionary wedge. As a consequence, the Mediterranean Ridge underlying such slope is interpreted to belong to the foreland. The allochthonous evaporites overlie autochthonous evaporites of the Sirte Abyssal Plain. The NE-dipping décollement (and thus of the true tectonically driven deformation front) is expected to initiate at about the present position of Bannock Basin. The Sirte Abyssal Plain, the adjacent Cyrene Seamount and neighbouring seafloor relief on the African continental margin are considered to be the product of tectonic segmentation of the continental crust.  相似文献   

5.
The 0.5- to 2-km thick Quaternary Laurentian Fan is built over Tertiary and Mesozoic sediments that rest on oceanic crust. Two 400-km long fan valleys, with asymmetric levees up to 700-m high, lead to an equally long, sandy, lobate basin plain (northern Sohm Abyssal Plain). The muddy distal Sohm Abyssal Plain is a further 400-km long. The sediment supplied to the fan is glacial in origin, and in part results from seismically triggered slumping on the upper continental slope. Sandy turbidity currents, such as the 1929 Grand Banks earthquake event, probably erode the fan-valley floors; but thick muddy turbidity currents build up the high levees. Margin setting represents fan and/or source area  相似文献   

6.
In order to understand the structure and evolution of the Mediterranean Ridge accretionary complex, it is necessary to understand the structure and history of its foreland. The Ionian Abyssal Plain is one of the varying types of foreland. The state of knowledge for that is presented. Its contour and detailed relief are described for the first time. Based on published and hitherto unpublished seismic data, information on the thickness of the Plio-Quaternary and on the Messinian evaporites are presented. Of particular interest are data concerning the pre-Messinian reflectors. They indicate a pattern of tilted blocks and horst-like features created in pre-Messinian time by tensional tectonics. Varying subsidence continued, however, during Messinian time and controlled the thickness of evaporites. At some places (e.g. Victor Hensen Seahill) vertical tectonics seem to be still active. The main tectonic structures of the Ionian Abyssal Plain are not related to the process of the present accretion and subduction at the Africa/Eurasia plate boundary but are pre-existing and should influence the internal structure of the Mediterranean Ridge which is still growing at the expense of the foreland. As a consequence of our structural evidence, we favour the following interpretation: the Ionian Abyssal Plain is not a remainder of the Jurassic Tethyan ocean but originated by extensive attenuation of continental crust.  相似文献   

7.
The results from a time series study (1989–2005) at a depth of 4850 m on the Porcupine Abyssal Plain, NE Atlantic, are presented, showing radical changes in the density of large invertebrates (megafauna) over time. Major changes occurred in a number of different taxa between 1996 and 1999 and then again in 2002. One species of holothurian, Amperima rosea, was particularly important, increasing in density by over three orders of magnitude. There were no significant changes in total megafaunal biomass during the same period. Peaks in density were correlated to reductions in mean body size, indicating that the increases were related to large-scale recruitment events. The changes occurred over a wide area of the Porcupine Abyssal Plain. Comparisons made with changes in the density of protozoan and metazoan meiofauna, and with macrofauna, showed that major changes in community structure occurred in all size fractions of the benthic community at the same time. This suggests that the faunal changes were driven by environmental factors rather than being stochastic population imbalances of one or two species. Large-scale changes in the flux of organic matter to the abyssal seafloor have been noted in the time series, particularly in 2001, and may be related to the sudden mass occurrence of A. rosea the following year. Time-varying environmental factors are important in influencing the occurrence of megafauna on the abyssal seafloor.  相似文献   

8.
9.
Examination of 38 sediment cores, bottom photographs, 7,000 km of 3.5 kHz reflection profiles and other seismic data from the southern part of the Nares Abyssal Plain suggests that complex sedimentary patterns and high sedimentation rates can be largely attributed to effects of a deep boundary current flowing eastward along the north flank of the Greater Antilles Outer Ridge. It is concluded that the areal dispersal pattern of turbidites on the plain results mainly from Quaternary climatically-induced fluctuations of the boundary current intensity.  相似文献   

10.
The megabenthic ecology of the cold water (<0 °C) area of the Faroe–Shetland Channel was investigated using an off-bottom towed camera platform WASP (wide angle seabed photography). A series of 10 photographic transects, approximately evenly spaced along the channel axis, were studied. Photographic transects allowed quantitative benthic diversity data to be obtained from this understudied yet commercially important area for oil and gas exploration. The sedimentary characteristics of the seabed changed dramatically from a region of ice-rafted boulders and gravel in the southwest to fine sediments more typical of the deep sea to the northeast. Despite the relatively low species richness of the megabenthos, variation in faunal composition with depth was apparent. Two distinct “communities” were identified, one in the south of the channel and the other in the north. Epibenthic megafaunal communities in the south were dominated by suspension and filter feeders and in the north by deposit feeders. Diversity and standing stock of megabenthos decreased to the northeast of the channel. Lebensspuren number and areal cover increased northwards in the Channel. The increase in bioturbation and deposit feeder abundance was concurrent with an increase in fine sediment quantity.  相似文献   

11.
The 0.5- to 2-km thick Quaternary Laurentian Fan is built over Tertiary and Mesozoic sediments that rest on oceanic crust. Two 400-km long fan valleys, with asymmetric levees up to 700-m high, lead to an equally long, sandy, lobate basin plain (northern Sohm Abyssal Plain). The muddy distal Sohm Abyssal Plain is a further 400-km long. The sediment supplied to the fan is glacial in origin, and in part results from seismically triggered slumping on the upper continental slope. Sandy turbidity currents, such as the 1929 Grand Banks earthquake event, probably erode the fan-valley floors; but thick muddy turbidity currents build up the high levees.  相似文献   

12.
The 400 km long Valencia Channel occupies the axis of the Valencia Trough in the Northwestern Mediterranean. Four different types of seismic reflection profiles were used to analyze the morphology and structure of the Valencia Channel with regard to the role played by both margins, Balearic and Iberian, of the Valencia Trough. From a detailed morphoseismic analysis of the Valencia Channel, its upper, middle, and lower courses can be characterized as follows: (1) in the upper course, tributaries are short and only slightly incised, with recent mass-transport deposits occurring on the adjacent continental slopes; (2) in the middle course, the channel deepens, and tributary valleys merge into it; and (3) the lower course begins after a sudden change in the direction of the channel, has a meandering path, is flanked by levees, and is fed by some valleys.During the Pliocene and Quaternary, at least four erosional and filling phases are observed in seismic profiles of the lower course of the Valencia Channel. The varying intensity of mass-transport processes and associated retrogressive slumping, which are related with fluctuations in sediment supply and relative sea-level changes, have played a major role in the formation, maintenance and deepening of the Valencia Channel. In addition to these sedimentary processes, a basement tectonic control and some morphostructural features affect the direction of the Valencia Channel locally.  相似文献   

13.
The Porcupine Abyssal Plain (NE Atlantic) time-series has shown large, wide-scale, changes in the composition of the benthic community at 4800 m depth (48°50′N, 16°30′W). The abundance of holothurians has increased significantly since 1996 and one species in particular, Amperima rosea, has increased in abundance by three orders of magnitude. Environmental forcing in the form of phytodetrital food supply to the benthos is believed to be driving these changes. Chlorophyll and carotenoid pigments were determined from the gut sediments of seven species of abyssal holothurian, sampled from the Porcupine Abyssal Plain during Autumn 2000 and Spring 2002. These two samples fell either side of the main phytoplankton bloom in the NE Atlantic, providing an opportunity for seasonal comparisons. Significant inter-species differences in pigment profiles were observed among the seven species. Seasonal differences were noted among four species sampled in both time periods. All seven species were collected from the same geographical area and depth. As algal pigments cannot be synthesised by the holothurians, they provide good biomarkers for the composition of the phytodetritus. Differences in pigments from gut sediment profiles are indicative of selective feeding among the holothurians. A. rosea had a gut profile dominated by the pigments zeaxanthin, chlorophyll a/echineone and β-carotene; these pigments were all present in significantly smaller quantities in the other species. The high quantities of these pigments are indicative of a diet rich in cyanobacteria. The gut sediments of A. rosea also lacked many chloropigments characteristic of other phytoplankton groups, which were observed in the guts of other holothurian species. Ovarian tissue for the five species taken in the pre-spring bloom 2002 sample were examined. All species showed similar carotenoid profiles, dominated by zeaxanthin, echinenone and β-carotene, all of which are important compounds for reproductive success in echinoderms. The differences in gut pigment profiles highlight the potential for several species of deposit-feeding holothurians to partition the same phytodetrital food source, possibly providing a mechanism for maintaining the high diversity of deposit feeders at abyssal depths. The dominance of reproductively important carotenoids in the guts and gonads of A. rosea may highlight the ability of this species to rapidly utilise any change in the composition of the phytodetrital flux and translate that advantage into a successful reproductive and recruitment event. The results are discussed in relation to work on bathyal holothurians and the potential for food-driven regime shifts in both the abyssal and bathyal Northeast Atlantic.  相似文献   

14.
Facies analysis was carried out on 21 selected cores from the Bannock area in order to investigate the relationships between sedimentation and tectonism. Bannock Basin is a large, > 3500 m (uncorrected) deep subcircular depression near the deformation front of the Mediterranean Ridge facing the Sirte Abyssal Plain. The basin is divided into several sub-basins aligned along a rim-syncline surrounding a central elevated area (salt dome?). High-density brines and anoxic sediments occupy the deepest part of the depressions.

The facies distribution is controlled by the bottom configuration in that pelagic facies typically occur on plateaus and domes, debris-flow deposits in base-of-slope settings, and turbidites in basinal settings. The facies distribution may therefore be used to reconstruct the evolution of the various parts of the rim-syncline.

Erosional gaps may be related to tectonism or may be features created by the passage of major turbiditic events.

The results of our study of the facies associations, and of the rates of sediment accumulation, indicate that the collapse of the eastern part of the rim-syncline pre-dates the collapse of the western part. The western basins are deeper and larger than the eastern ones and (unlike the latter) are aligned at the foot of a strike-slip fault with a vertical offset of at least 700 m.  相似文献   


15.
A standard inverse problem in underwater acoustics is the reconstruction of the ocean subbottom structure (e.g., the density and sound speed profiles) from an aperture- and bandlimited knowledge of the reflection coefficient. In this paper we describe an inverse solution method due to Candel et al. [12] which is based on the scattering of acoustic plane waves by a one-dimensional inhomogeneous medium. As a consequence of applying the forward scattering approximation to a local wave representation of the acoustic field, they obtain an expression for the reflection coefficient in the form of a nonlinear Fourier transform of the logarithmic derivative of the local admittance. Inversion of this integral transform enables the recovery of the admittance profile via the numerical integration of two first-order differential equations which require as reflection data a single impulse response of the medium. Separate recovery of both the density and sound speed profiles requires two impulse responses for two different grazing angles. In this case, four differential equations need to be integrated instead of two. To illustrate the capability of the method, we present numerical reconstructions which are based on synthetic reflection data for a geoacoustic model that represents the acoustic properties of the surficial sediments for a site in the Hatteras Abyssal Plain.  相似文献   

16.
A detailed survey of a 1°-square of sea floor 100 miles northeast of the Azores has revealed the presence of scarps over 30 km long striking generally 120°, transverse to the regional topographic and magnetic lineations. They are not associated with a major fracture zone. Sedimentation in the area appears to have been by a mixture of pelagic and turbidity-current processes, with a Miocene increase in sedimentation rate probably indicating the subaerial emergence of the Azores Archipelago. Magnetic anomalies were identified along a number of profiles between the survey area and the Mid-Atlantic Ridge crest, and indicate a short period of increased spreading rate from about 12-3 m.y. ago.  相似文献   

17.
Investigation of lithogenic particles collected by sediment traps in open-ocean stations revealed that the sediment flux increased linearly with depth in the water column. This rate of increase decreased with distance of the station from the continent; it was largest at the Panama Basin station and almost negligible at the E. Hawaii Abyssal Plain station. At the Panama Basin station, smectite flux increased with depth. We suggest that smectite resuspended from bottom sediments of the continental slope west of the sediment-trap station is advected by easterly deep currents, and the suspended particles are then possibly entrapped by large settling particles. On the other hand, the flux of hemipelagic clay particles, kaolinite and chlorite, was nearly constant at all depths; this can be explained by incorporation of these particles in fecal pellets which then settle from the surface water. At the Demerara Abyssal Basin Station, flux of illite and chlorite particles increased with depth and the flux of smectite was constant. A sudden increase of the flux of illite and chlorite was observed near the bottom traps at the Söhm Abyssal Plain station. The flux of quartz and feldspar was 10 to 15% of the clay flux.  相似文献   

18.
 Unconformities and lapout structures in seismic profiles from the Balearic abyssal plain northeast of Menorca are apparently related to salt dome movements. Six sequence boundaries, observed around different salt structures, could be correlated throughout the area surveyed. The synchronous episodic movements are interpreted to be related to glacial/interglacial sea level fluctuations. During periods of low stand, more material is eroded from the continental shelf than during high stand, and it is deposited in the deep sea, in turn loading the Miocene salts and activating diapirism. DSDP site 372 and site survey seismic lines were used to define the Pliocene–Pleistocene boundary and to date the sequence boundaries.  相似文献   

19.
本文根据多个航次声学多晋勒海流剖面议(ADCP)的资料并结合历史文献说明:确有黑潮分支经过巴士海峡进入南海东北部。其流向多为NW向,但强度有比较明显的时间变化。该分支进入南海后可能进一步分为两支:台湾西海岸附近的N向流和南海东北部的W向流;后者的强度也有明显的时间变化。测流结果还表明:南海东北部W向流的南侧可能存在着一个涡状结构,而其北面向岸一侧,则有偏E方向的流动。  相似文献   

20.
A sampling survey in the Ligurian Sea and north of the Balearic Islands (Mediterranean Sea) brought back samples containing the following elements: (1) lithified Quaternary crust and deep-lying corals; (2) Early Pliocene marls corresponding to reflector level M in some cases; (3) red sediments tentatively assimilated with the Messinian continental equivalent; (4) rocks coming from the basement; (5) volcanic rocks.For the first time, basalts with olivine were discovered in the Algero-Provencal Abyssal Plain.A volcano 500 m high was sampled by dredging north of Minorca.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号