首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
TheK p-indices measured at Misallat station [ø = 29°45 N; = 30°54 E] during the period 1958–1989, have been compared with the data of two geomagnetic stations; one of them has similar longitude as Misallat and the second has almost similar latitude. The spectra of daily and hourly data of the three stations are compared together to define the latitude and longitude-effects on the detected periodicities. Daily periodicities ofK p-index activities at the values 32.7, 21.2, 12.9, 11.6 and 9.2 days have been obtained to be common in the spectra of the three stations. The existence of 5-days periodicity in these stations has also been detected.  相似文献   

2.
To locate two-dimensional positions of the solar decametric radio bursts a heliograph was developed on the basis of the UTR-2 radiotelescope (Khar'kov) operated in the range 10–26 MHz. The beamwidth of the heliograph rapid-scanning pencil-beam is 25 arc min at 25 MHz, and its field of view is about 3.5° (E-W) × 2.0° (N-S). The instrument yields rapidly forty records of the radio brightness of all (8 × 5) elementary parts (each 25 arc min in diameter) of the investigated sky area during every period of 1/4 s. Both coordinates of a burst center are measured with an accuracy 5 arc min. The bandwidth of the receiving system is 10 kHz. The heliograph operates in conjunction with a radiospectrograph connected to the output of a N-S arm of the UTR-2 array. The data observations with the UTR-2 correspond only to one linear polarized component.The ionospheric distortion of the test records of the radio source Cassiopeia-A that occurred sometimes is illustrated.First results of 25 MHz observations of the solar radio storm in August, 1976 with the heliograph are presented here. This storm is accompanied by the compact sunspot group travelling all over the optical disk. The type III and stria bursts were predominant during the storm. On the given day the scattering regions of their apparent centers were overlapped and the sizes of these regions were usually not more than 5 arc min. On some days there occurred additional burst sources displaced in position from the persistent storm region. It was found out that, as a rule, 25 MHz stria-bursts from the type IIIb chain coincided in position with the following type III burst at the same frequency. The difference of the daily averaged coordinates of both stria and type III bursts was considerably smaller than the mean diameter of their sources.The radial distance of the 25 MHz storm region from the solar center was calculated by using the three methods. The storm height was estimated as 1.8R from the rotation rate close to the central meridian of the storm center. Definite association of the spots with the storm near the limb allowed to determine the average value 2.1R for the height. The limb measurements give the mean height of 2.3R .The center-to-limb variation of the storm source height is a known fact in the meter-wavelength range. This is the evidence of the propagation effects in the solar corona being essential to interpret the results of the radio source location.  相似文献   

3.
Raju  K.P.  Singh  Jagdev  Srikanth  R.  Chou  Dean-Yi  Team  the Ton 《Solar physics》2001,199(1):1-11
We have obtained the temporal correlation function, Q(t), from time sequences of Caii K filtergrams and Dopplergrams from Antarctica, Taiwan Oscillation Network (TON) and Solar and Heliospheric Observatory (SOHO). Q(t) gives the time evolution of the pattern under examination, supergranulation in this case. It has been found that Q(t) shows oscillatory signals of both 5-min and long-term periods. The 5-min oscillations are suppressed by averaging the images over 10 min. An exponential decay curve which represents the lifetime trend of supergranules, is fitted to Q(t) and subtracted out. The Q(t) residuals thus obtained contain the oscillatory component and are then subjected to a periodogram analysis. Significant periodicities in the range of 1.4–10 hours have been noted. The causes of these oscillations are not fully known at present, but the instrumental and atmospheric factors can be ruled out, pointing to solar origin. Various possibilities are discussed. Some of the observed periodicities may be considered as probable candidates for long-term oscillations in the Sun, such as the elusive gravity modes.  相似文献   

4.
The development of three intense active centers during their appearance on the solar disk is examined using high resolution observations at 2.8 cm. Each region shows a very bright component with brightness temperature > 106 K and size smaller than 20.The development of the bright components have been investigated on different time scales. Intensity fluctuations on a time scale of minutes are within the instrumental accuracy while the evolution over periods of days shows a variation of the flux density up to 30–40% per day.The problem of the bright cores height is discussed. Heights within 10 × 103 and 40 × 103 km are found using their apparent displacement on the disk.  相似文献   

5.
6.
The recent measurements made by satellites of the aurorae in connection with solar phenomena have increased interest in auroral research. In the present investigation, we establish that, for the 20th solar cycle, the occurrence of visual discrete aurorae A, deduced from a complete set of data, is significantly related to the sunspot numbers R z, the number of flares F (of importance 1) the solar wind streams derived from solar coronal holes H, and the geomagnetic index A p.By employing the theory of residues it has been found that A correlates significantly well with the above indices. Accuracies of the order of 75–94% were found for geomagnetic latitudes in the range of 54 –63 N.The A-R zrelationship was investigated in particular for the period 1897–1951. For this period spectrum analysis of A annual values revealed the existence of 3–4 yr and 8–10 yr periodicities of significances 95% and 99%; respectively.Research Associate.  相似文献   

7.
The nature and evolution of north-south asymmetry in the heliospheric current sheet (HCS) has been investigated using solar and interplanetary magnetic field (IMF) observations for the past few solar cycles. The mean heliographic latitude of the HCS (averaged over the solar longitude) a 0 is found to be non-zero during many solar rotations indicating that the large-scale solar magnetic field is more ordered in a system where the origin is shifted away from the centre of the Sun. We have shown that the asymmetry in HCS manifests in different forms depending on the transition heliographic latitude of the reversal of dominant polarity of the IMF ( T) and the difference in the maximum latitudinal extension of the HCS in the two solar hemispheres (). The classification of the observed asymmetry during 1971–1985 and its effect on IMF observations near Earth has been studied. We have also inferred the sign of T during 1947–1971 using inferred IMF polarity data. The observed sign reversals of T suggest the importance of periodicities less than the solar cycle period to be associated with the evolution of asymmetry in HCS. Asymmetry in sunspot activity about the solar equator does not seem to relate consistently well with the asymmetry in HCS about the heliographic equator.  相似文献   

8.
Vibrational transition probabilities namely Franck-Condon factors and r-centroids have been evaluated using an approximate analytical method for theC-X system of V0. Morse potential energy curves forX 4 andC 4 states of V0 have been constructed using the latest spectroscopic data. The value of r-centroids for the band have been found to increase linearly with the corresponding wavelength. We show results for new transition and ten new bands in the umbral spectrum of the Sun.  相似文献   

9.
G. Thejappa 《Solar physics》1991,132(1):173-193
A self-consistent theoretical model for storm continuum and bursts is presented. We propose that the Langmuir waves are emitted spontaneously by an anisotropic loss-cone distribution of electrons trapped in the magnetic field above active regions. These high-frequency electrostatic waves are assumed to coalesce with lower-hybrid waves excited either by the trapped protons or by weak shocks, making the observed brightness temperature equal to the effective temperature of the Langmuir waves.It is shown that whenever the collisional damping ( c ) is more than the negative damping (- A ) due to the anisotropic distribution, there is a steady emission of Langmuir waves responsible for the storm continuum. The type I bursts are generated randomly whenever the collisional damping ( c ) is balanced by the negative damping (- A ) at the threshold density of the trapped particles, since it causes the effective temperature of Langmuir waves to rise steeply. The number density of the particles responsible for the storm radiation is estimated. The randomness of type I bursts, brightness temperature, bandwidth and transition from type I to type III storm are self-consistently explained.On leave from Indian Institute of Astrophysics, Bangalore 560034, India.  相似文献   

10.
The ratio of the line intensity to that of the nearby continuum for an emission line, has been derived from objective prism spectra taken, at the Norman Lockyer Observatory, over the period, 1914 to 1959, for six stars ( Cassiopeia, and Persei, HD 20336, 25 Orionis, Piscium). This has been combined with information already in the literature, to study the long-period behaviour of the stars. Long-term variations have been looked for, and it is found that, with the exception of one of the stars which is a spectroscopic binary, the variations tend to occur in outbursts which may last for 10 to 20 years, and which may show signs of semi-regular periodicities during the outburst.It is suggested, that while no stable long-term periodicities have been found, the outbursts may recur after long intervals, and that this possibility is demonstrated by one of these stars ( Cassiopeia). It is also suggested that the semi-regular variations that occur during some of the outbursts may be ralated to an intrinsic cycle connected with the surface of the star, and possibly akin to the solar sunspot cycle. Top: Far-encounter picture (No. 73) of Mars, taken by the Mariner 7 spacecraft on 4 August 1969 from a distance of 471 750 km from the planet.Bottom: Near-encounter picture (No. 21) of Mars, taken by Mariner 6 on 30 July 1969 at the time of its closest approach to the surface of the planet. The size of the field is approximately 690×890 km on the Martian surface This photograph recorded more than 100 individual craters, the largest of which is about 260 km in diameter.Reproduced by courtesy of the Jet Propulsion Laboratory, California Institute of Technology.  相似文献   

11.
An analysis has been carried out on the 32 years of 10 cm solar flux data, published by Covington, to test for evidence of the periodicities found by others using different techniques. Two features with periods of about 25 and 31 days appear to persist throughout the data, but there is no evidence for the 12.6 days periodicity claimed by Dicke and Goldenberg from solar ellipticity measurements, nor for the 12.07 day periodicity claimed by Knight et al. from an analysis of sunspot numbers. A 750 day periodicity is evident during 1970–75; this may correspond to the feature deduced by Sakurai from the sunspot numbers (and claimed to correlate with the neutrino flux); this feature can change in amplitude at other times. The other major feature has a period of about 1100 days, but disappears completely during 1970–75. The above periods are all synodic.On leave of absence at Sterrewacht, Leiden, The Netherlands during 1979/80.  相似文献   

12.
Using Greenwich data on sunspot groups during 1874–1976, we have studied the temporal variations in the differential rotation parametersA andB by determining their values during moving time intervals of lengths 1–5 yr successively displaced by 1 yr. FFT analysis of the temporal variations ofB (orB/A) shows periodicities 18.3 ± 3 yr, 8.5 ± 1 yr, 3.9 ± 0.5 yr, 3.1 ± 0.2 yr, and 2.6 ± 0.2 yr at levels 2. This analysis also shows five more periodicities at levels 1–2. The maximum entropy method is used to set narrower limits on the values of these periods. The reality of the existence of all these periodicities ofB (orB/A ) except the one at 2.8 yr is confirmed by analyzing the simulated time series ofB andB/A with values ofA andB randomly distributed within the limits of their respective uncertainties. Four of the prominent periods ofB agree, within their uncertainties, with the known periods in the the large-scale photospheric magnetic field. The deviations from the average differential rotation are larger near the sunspot minima. On longer time scales, the variations in the amount of sunspot activity per unit time are well correlated to the variations in the amplitudes of the torsional oscillation represented by the 22-yr periodicity inB. All the periods inB found here are in good agreement with the synodic periods of two or more consecutive planets. The possibility of planetary configurations providing perturbations needed for the Sun's MHD torsional oscillations is speculated upon and briefly discussed.  相似文献   

13.
Several indices of solar activity are subjected to a high pass filter and power spectral analysis to verify the existance of shorter periodicities in solar activity. Though all these indices show the presence of short periodicities, above 95% confidence level, the common indices like sunspot number, fail to show these periodicities when a stringest statistical test is applied based on a percentage of the 2/v distribution that is appropriately higher than the 95% point (Mitchell et al., 1966). The basic parameters given by Kopecký (1967), however, reveal the presence of 5.6- and 3.5-yr periodicities even when this stringent statistical test is applied.  相似文献   

14.
We report multifrequency observations of storm continuum and other radio bursts. Based on their positional study and their correlation with other coronal and photospheric features, we deduce that the storm source is located in the magnetic field lines lying above a single bipolar active region. Energetic electrons trapped in the magnetic structures above the spots must be responsible for the storm radiation. We show that spontaneous emission of Langmuir waves by anisotropic distributions can explain both storm continuum and bursts self-consistently. Whenever the collisional damping ( c ) is more than the growth (- A ), there is a steady emission responsible for the continuum, and whenever c = - A (which may be satisfied randomly) there is a sudden jump in T b giving rise to bursts. The number density of energetic particles required to explain the storm continuum at 73.8, 50, and 30.9 MHz frequencies is estimated to lie in the limits n b /n e 10–10–10–9 in the context of the present observations. The brightness spectrum of the storm continuum is computed and compared with observations.On leave from Indian Institute of Astrophysics, Bangalore 560034, India.  相似文献   

15.
We applied fast Fourier transform techniques and Morlet wavelet transform on the time series data of coronal index, solar flare index, and galactic cosmic ray, for the period 1986–2008, in order to investigate the long- and mid-term periodicities including the Rieger (\({\sim }130\) to \({\sim }190\) days), quasi-period (\({\sim }200\) to \({\sim }374\) days), and quasi-biennial periodicities (\({\sim }1.20\) to \({\sim }3.27\) years) during the combined solar cycles 22–23. We emphasize the fact that a lesser number of periodicities are found in the range of low frequencies, while the higher frequencies show a greater number of periodicities. The rotation rates at the base of convection zone have periods for coronal index of \({\sim }1.43\) years and for solar flare index of \({\sim }1.41\) year, and galactic cosmic ray, \({\sim }1.35\) year, during combined solar cycles 22–23. In relation to these two solar parameters (coronal index and solar flare index), for the solar cycles 22–23, we found that galactic cosmic ray modulation at mid cut-off rigidity (\(\hbox {Rc} = 2.43\hbox {GV}\)) is anti-correlated with time-lag of few months.  相似文献   

16.
A complete data set of globally distributed shallow (h , 60 Km) earthquakes have been used for first time to test the possible existence of periodicities in the seismic energy release. Only main shocks of magnitude,M 7.0 were considered, which occurred in the whole Earth during 1898–1985. These magnitudes are converted in seismic energy, which is released during the occurrence of earthquakes, through Bath's formula. The detection of such kind of periodicities is important in seismology, because these patterns may lead to the prediction of large earthquakes. Statistical techniques, such as Maximum Entropy (ME), and two Fourier approaches, the Fast Fourier Transform (FFT) and Power Spectrum (PS) of truncated subrecords of the whole time series have been applied to examine the possible existence of such periodicities in seismic energy release. Furthermore, the even-spacing technique is used to validate our results and a type-curve has been constructed for the data set.The results exhibit a network of periodicities with predominant periods at 3(±0.5), 4.5, 6.5, 8–9, 14–20, and 31–34 years. Some periods were occasionally interrupted. The latter implies that our time-series is not stationary, in that, the spectral peaks drift when the data are viewed through different time windows. The fact that the signal is weak and embedded in less accurate older data could contribute to this effect. The question of stability/validity of the apparently cyclic behaviour of the annual global seismic energy release, is one which requires further investigation.  相似文献   

17.
E. Wiehr 《Solar physics》1970,15(1):148-157
Measurements of the circular polarization V in different lines show that the deduced magnetic field strength and flux are systematically influenced by variations of the line absorption coefficient from photosphere to spot and faculae.Disbalances between preceding and following flux seem to be due mainly to such variations rather than to real physical conditions in active regions.The spatial distribution of the normal component of the magnetic field in an active region near the disc center have been observed during two days using the temperature insensitive line Fe 6302.5. The initial field structure seems to become more and more bipolar. The increase of the flux exceeds that of the area thus suggesting the appearance of new magnetic fields. Backward extrapolation in time leads to a date of first appearance of the magnetic field which agrees with the appearance of first H anomalies.  相似文献   

18.
Soft solar X-rays (8 gl 12 Å) were observed from OSO-III. An analysis of the X-ray enhancements associated with 165 solar flares revealed that there is a tendency for a weak soft X-ray enhancement to precede the cm- burst and H flare. The peak soft X-ray flux follows the cm- peak by about 4 min, on the average. Additionally, it was found that flare-rich active centers tend to produce flares which are stronger X-ray and cm- emitters than are flares which take place in flare-poor active centers.  相似文献   

19.
R. T. Stewart 《Solar physics》1971,109(1):139-147
Synoptic plots of solar radio noise storms in the interval 1973 to 1984 are described. The dividing line between opposite noise storm polarities appears to be a good representation of the heliospheric current sheet out to displacements in latitude of ± 50° from the solar equator. This result is surprising, because noise storms are closely associated with closed magnetic field regions near sunspots. The possibility that noise storm polarity is determined by mode coupling high in the corona, where field lines are open, can be ruled out by the available evidence. This leads us to conclude that it is the clustering in longitude of active region complexes which determines the sector structure of the interplanetary magnetic field.  相似文献   

20.
A log-periodic array, 3 km long in the E-W direction is in operation at the Clark Lake Radio Observatory. The solar brightness distribution is swept once per second in the 65-20 MHz frequency range. The analysis of the interferometer records allows the determination of one dimensional solar burst positions, to an accuracy of 0.1 R at 60 MHz and 0.3 R at 30 MHz, approximately.Six long duration noise storms have been observed over an eight month period, extending from January to September, 1971. The storms are described and their relation to chromospheric active regions and flares is discussed. Decametric storms are found to be related to complexes of interacting active regions. The interaction is studied in terms of the number of simultaneous flares observed to occur in the various active regions. On the average, twice as many simultaneous flares are observed than would be expected if flares occurred at random. An analysis of coronal magnetic field maps computed from longitudinal photospheric fields shows magnetic arcades and some divergent field lines at the site of storm regions. Decimeter and meter wavelength sources are found to be associated with all decameter storms. At decimeter wavelengths double or multiple sources are often seen above individual active regions forming part of the chromospheric complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号