首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
This work uses an energy balance climate model (EBCM) with explicit infrared radiative transfer, parametrized tropospheric temperature and humidity profiles, and separate stratosphere, troposphere, and surface energy balances, to investigate claims that a downward redistribution of tropospheric water vapor in response to surface warming could serve as a strong negative feedback on climatic change. A series of sensitivity tests is carried out using: (1) a variety of relationships between total precipitable water in the troposphere and temperature; (2) feedbacks between surface temperature and the vertical distribution of tropospheric water vapor at low latitudes; and (3) feedback between surface temperature or meridional temperature gradient and lapse rate. Fixed relative humidity (RH) enhances the global mean surface temperature response to a CO2 doubling by only 50% compared to fixed absolute humidity, giving a response of 1.8 K. When water vapor is assumed to be redistributed downward between 30°S–30°N such that a 1 K surface warming reduces total precipitable water above 600 hPa by 10%, the global mean surface air temperature response is reduced to 1.2 K. Assuming a stronger downward redistribution in relation to surface temperature change has a rapidly diminishing marginal effect on global mean and tropical surface temperature response, while slightly increasing the warming at high latitudes due to the parametrized dependence of middle-to-high latitude lapse rate on the meridional temperature gradient. A modest downward water vapor redistribution, such that absolute humidity in the upper troposphere at subtropical latitudes is constant as total precipitable water increases, can reduce the tropical temperature sensitivity to less than 1 K, while increasing the equator-to-pole amplification of the surface air temperature response from a factor of about three to a factor of four. However, it is concluded that whatever changes in future GCM response might occur as a result of new parametrizations of subgrid-scale processes, they are exceedingly unlikely to produce a climate sensitivity to a CO2 doubling of less than 1 K even if there is a strong downward shift in the water vapor distribution as climate warms. Received: 23 February 1998 / Accepted: 1 November 1999  相似文献   

2.
The reversibility of the Atlantic meridional overturning circulation (AMOC) is investigated in multi-model experiments using global climate models (GCMs) where CO2 concentrations are increased by 1 or 2 % per annum to 2× or 4× preindustrial conditions. After a period of stabilisation the CO2 is decreased back to preindustrial conditions. In most experiments when the CO2 decreases, the AMOC recovers before becoming anomalously strong. This "overshoot" is up to an extra 18.2Sv or 104 % of its preindustrial strength, and the period with an anomalously strong AMOC can last for several hundred years. The magnitude of this overshoot is shown to be related to the build up of salinity in the subtropical Atlantic during the previous period of high CO2 levels. The magnitude of this build up is partly related to anthropogenic changes in the hydrological cycle. The mechanisms linking the subtropical salinity increase to the subsequent overshoot are analysed, supporting the relationship found. This understanding is used to explain differences seen in some models and scenarios. In one experiment there is no overshoot because there is little salinity build up, partly as a result of model differences in the hydrological cycle response to increased CO2 levels and partly because of a less aggressive scenario. Another experiment has a delayed overshoot, possibly as a result of a very weak AMOC in that GCM when CO2 is high. This study identifies aspects of overshoot behaviour that are robust across a multi-model and multi-scenario ensemble, and those that differ between experiments. These results could inform an assessment of the real-world AMOC response to decreasing CO2.  相似文献   

3.
In an earlier paper by one of the authors (Smith, 1968), a momentum integral method was developed to parameterize the gross constraint imposed by the surface boundary layer of a steady, axisymmetric, tropical cyclone on the meridional circulation within the vortex itself. Specifically, the method provides an effective means of estimating the radial variation of mean upflow/downflow induced by the boundary layer, compatible with a prescribed radial variation of azimuthal velocity just above the boundary layer,V gr. However, it relies on a judicious choice of vertical profiles of radial and azimuthal velocity components within the boundary layer. An especially suitable set of profiles is discussed herein; these are Ekman-like profiles in which turbulent mixing is characterized by a vertically constant eddy diffusivityK M , matched to a constant stress sublayer just above the sea surface. An attractive feature of the formulation is that a suitable value forK M as a function of radius, which is extremely difficult to extract from observational data, can be calculated when the state of the sea surface, described by a roughness lengthZ 0, is prescribed. Although observations ofZ 0 at high wind speeds are not yet available, the effect of radial variations in sea surface roughness can be assessed and it is shown that these affect the upflow to a significant degree.  相似文献   

4.
A Local Climate Model (LCM) is described that can provide a high-resolution (10 km) simulation of climate resulting from a doubling of atmospheric CO2 concentrations. A canonicalregression function is used to compute the monthly temperature (mean of daily-maximum-temperature) and precipitation for any point, given a set of predictor variables. Predictor variables represent the influence of terrain, sea-surface temperature (SST), windfields, CO2 concentration, and solar radiation on climate. The canonical-regression function is calibrated and validated using empirical windfield, SST, and climate data from stations in the western U.S. To illustrate an application of the LCM, the climate of northern and central California is simulated for a doubled CO2 (600 ppmv) and a control scenario (300 ppmv CO2). Windfields and SSTs used to compute predictor variables are taken from general circulation model simulations for these two scenarios. LCM solutions indicate that doubling CO2 will result in a 3 C° increase in January temperature, a 2 C° increase in July temperature, a 16 mm (37%) increase in January precipitation, and a 3 mm (46%) increase in July precipitation.  相似文献   

5.
In the prognostic stratiform cloud scheme used in the UK Meteorological Office Unified Model, mixed phase clouds are assumed to exist between 0 and –15 °C. Recent observations of such clouds, carried out using the C-130 aircraft of the Meteorological Research Flight, suggest that a smaller range of 0 to –9°C may be more appropriate. The sensitivity of cloud and radiation fields as simulated by a 5 × 7.5° latitude-longitude version of the Unified Model to such a reduction in the temperature range of mixed phase clouds is considered. Using a smaller temperature range systematic errors in the radiation budget of the model are reduced in mid-latitudes, bringing the model into closer agreement with ERBE data. The sensitivity of model albedo to an increase in the temperature range over which mixed phase clouds are assumed to exist, suggested by previous observational studies, is also considered together with the impact of removing the mixed phase part of the precipitation parametrization altogether.  相似文献   

6.
The more humid, warmer weather pattern predicted for the future is expected to increase the windthrow risk of trees through reduced tree anchorage due to a decrease in soil freezing between late autumn and early spring, i.e during the most windy months of the year. In this context, the present study aimed at calculating how a potential increase of up to 4°C in mean annual temperature might modify the duration of soil frost and the depth of frozen soil in forests and consequently increase the risk of windthrow. The risk was evaluated by combining the simulated critical windspeeds needed to uproot Scots pines (Pinus sylvestris L.) under unfrozen soil conditions with the possible change in the frequency of these winds during the unfrozen period. The evaluation of the impacts of elevated temperature on the frequency of these winds at times of unfrozen and frozen soil conditions was based on monthly wind speed statistics for the years 1961–1990 (Meteorological Yearbooks of Finland, 1961–1990). Frost simulations in a Scots pine stand growing on a moraine sandy soil (height 20 m, stand density 800 stems ha–1) showed that the duration of soil frost will decrease from 4–5 months to 2–3 months per year in southern Finland and from 5–6 months to 4–5 months in northern Finland given a temperature elevation of 4°C. In addition, it could decrease substantially more in the deeper soil layers (40–60 cm) than near the surface (0–20 cm), particularly in southern Finland. Consequently, tree anchorage may lose much of the additional support gained at present from the frozen soil in winter, making Scots pines more liable to windthrow during winter and spring storms. Critical wind-speed simulations showed mean winds of 11–15 m s–1 to be enough to uproot Scots pines under unfrozen soil conditions, i.e. especially slender trees with a high height to breast height diameter ratio (taper of 1:120 and 1:100). In the future, as many as 80% of these mean winds of 11–15 m s–1 would occur during months when the soil is unfrozen in southern Finland, whereas the corresponding proportion at present is about 55%. In northern Finland, the percentage is 40% today and is expected to be 50% in the future. Thus, as the strongest winds usually occur between late autumn and early spring, climate change could increase the loss of standing timber through windthrow, especially in southern Finland.  相似文献   

7.
A comparison of estimates of the root-mean-square error (RMSE) and potential predictability index (PPI) is carried out between experiments with observed and “persistent” anomalies of sea surface temperature (SST). The results obtained point to a possible significant bias of seasonal forecasting results in some regions when boundary conditions are introduced by a “persistence” procedure, particularly for summer T 850. Indirect evidence of the influence of extratropical SST anomalies points to their possible role in seasonal forecasts, which is more substantial in the summer season. Although the conclusions should rather be regarded as preliminary ones because of a limited size of the sample, it is nonetheless certain that the influence of boundary conditions governing the signal becomes more significant in summer because of a decrease in the instability of the internal atmospheric dynamics.  相似文献   

8.
Factors influencing the18O content of stratospheric H2O are reviewed in order to provide a theoretical framework for the interpretation of measurements of this quantity, which are now becoming available. Depletions in18O of 5–10% in stratospheric H2O are expected based on the known correlation between that of D and18O in tropospheric H2O and observed measurements of large (typically 50%) depletions of D in stratospheric H2O. H2O formed in the stratosphere as a result of oxidation of CH4 can be expected to reflect primarily the18O content of stratospheric O2, which is the same as that of tropospheric O2 (slightly enhanced with respect to standard mean ocean water). Thus, a reduction in the18O depletion is expected with increasing altitude, but not a large enhancement in18O in upper stratospheric H2O as found in recent far infrared measurements. The observed large enhancement of18O in stratospheric O3 is not expected to be reflected in stratospheric H2O. Necessary laboratory data for the improved quantification of these effects are reviewed.  相似文献   

9.
A photochemical box model is used to simulate seasonal variations in concentrations of sulfur compounds at latitude 40° S. It is assumed that the hydroxyl radical (OH) addition reaction to sulfur in the dimethyl sulfide (DMS) molecule is the predominant pathway for methanesulfonic acid (MSA) production, and that the rate constant increases as the air temperature decreases. Concentration of the nitrate radical (NO3) is a function of the DMS flux, because the reaction of DMS with NO3 is the most important loss mechanism of NO3. While the diurnally averaged concentration of OH in winter is a factor of about 8 smaller than in summer, due to the weak photolysis process, the diurnally averaged concentration of NO3 in winter is a factor of about 4–5 larger than in summer, due to the decrease of DMS flux. Therefore, at middle and high latitudes in winter, atmospheric DMS is mainly oxidized by the reaction with NO3. The calculated ratio of the MSA to SO2 production rates is smaller in winter than in summer, and the MSA to non-sea-salt sulfate (nssSO4 2-) molar ratio varies seasonally. This result agrees with data on the seasonal variation of the MSA/nssSO4 2- molar ratio obtained at middle and high latitudes. The calculations indicate that during winter the reaction of DMS with NO3 is likely to be a more important sink of NOx (NO+NO2) than the reaction of NO2 with OH, and to serve as a significant pathway of the HNO3 production. If dimethyl sulfoxide (DMSO) is produced through the OH addition reaction and is heterogeneously oxidized in aqueous solutions, half of the nssSO4 2- produced in summer may be through the oxidation process of DMSO. It is necessary to further investigate the oxidation products by the reaction of DMS with OH, and the possibility of the reaction of DMS with NO3 during winter.  相似文献   

10.
Abstract

A simple energetic argument (Simpson and Hunter, 1974) shows that the boundary between well‐mixed and stratified areas of a shallow sea in summer should correspond to a critical value of BH/U3 , where B is the buoyancy JEUX due to solar heating, H the mean water depth and U the amplitude of the tidal current. We demonstrate the importance of this parameter in a simple model of vertical mixing, and discuss the role of many other factors affecting stratification. Examination of hydrographic data from the Bay of Fundy and Gulf of Maine, together with estimates of tidal dissipation (proportional to U 3) from Greenberg's (1978) numerical model, shows a transition from well‐mixed to stratified conditions, in July and August, for H/U3 = 70 m‐2s3. This corresponds to a mixing efficiency of only 0.26%. Predictions are made of the changes in extent of well‐mixed areas that would be caused by tidal power development. Some stratification, due to both solar heating and freshwater input, is possible in previously mixed areas which would be the headponds for two schemes. Outside the barriers the changes are less dramatic, although the merging of mixed areas over Georges Bank and Nantucket Shoals is predicted.  相似文献   

11.
利用瓦里关大气本底站甲烷观测数据对美国Aqua卫星的AIRS观测结果进行对比分析,并分析研究了2003~2012年青藏高原对流层大气甲烷的时空分布特征,结果表明:1)AIRS观测结果与近地面观测资料变化趋势一致,存在显著的正相关关系,突变时间比较一致,可以用于青藏高原区域的甲烷浓度特征分析。2)青藏高原对流层甲烷浓度在空间分布上存在显著的西北—东南走向的低值带及其南北侧存在4个固定的高值中心,分别位于阿里、那曲、山南和玉树。3)青藏高原甲烷浓度呈现显著随高度而降低的趋势,年平均甲烷浓度分别为1.810ppm(1 ppm=10-6)、1.797 ppm和1.781 ppm。在对流层中层和中上层,甲烷浓度基本呈现低值带最低、南北侧均高的山谷型分布特征。在对流层层顶,以低值带为分界线,呈现明显的南高北低特征。4)青藏高原甲烷浓度随时间呈缓慢上升趋势,平均速度为0.0018 ppm/a,夏季上升最快,秋季上升最慢。5)青藏高原甲烷存在明显的单峰型季节变化特征,夏秋季高,冬春季低,与东部地区冬、夏双峰型特征不同,随着高度上升季节变化更为明显。  相似文献   

12.
A version of the two-flow radiative transfer model is presented as a simple method to study the relationship between substances in water and the backscattered radiation field. It is shown that under the assumption of a diffuse radiative input into a water body, the irradiance attenuation coefficient k can be regarded as an inherent property. A cuvette system is presented which allows one to measure and calculate the attenuation coefficient k, the absorption coefficient a and the backscattering coefficient Bb of various substances. The model can be used to check the applicability of a remote sensing technique for a specific research area and for specific parameters, and to estimate the expected accuracy, and the signal depth. The inversion of the model can be applied as a technique to estimate concentrations in water from the backscattered radiation. The critical assumption of a diffuse radiative input and transfer, which has to be made when using the model for natural conditions, is discussed.The research work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

13.
This study examines the processes controlling the diurnal variability of ozone (O3) in the marine boundary layer of the Kwajalein Atoll, Republic of the Marshall Islands (latitude 8° 43′ N, longitude 167° 44′ E), during July to September 1999. At the study site, situated in the equatorial Pacific Ocean, O3 mixing ratios remained low, with an overall average of 9–10 parts per billion on a volume basis (ppbv) and a standard deviation of 2.5 ppbv. In the absence of convective storms, daily O3 mixing ratios decreased after sunrise and reached minimum during the afternoon in response to photochemical reactions. The peak-to-peak amplitude of O3 diurnal variation was approximately 1–3 ppbv. During the daytime, O3 photolysis, hydroperoxyl radicals, hydroxyl radicals, and bromine atoms contributed to the destruction of O3, which explained the observed minimum O3 levels observed in the afternoon. The entrainment of O3-richer air from the free troposphere to the local marine boundary layer provided a recovery mechanism of surface O3 mixing ratio with a transport rate of 0.04 to 0.2 ppbv per hour during nighttime. In the presence of convection, downward transport of O3-richer tropospheric air increased surface O3 mixing ratios by 3–12 ppbv. The magnitude of O3 increase due to moist convection was lower than that observed over the continent (as high as 20–30 ppbv). Differences were ascribed to the higher O3 levels in the continental troposphere and weaker convection over the ocean. Present results suggest that moist convection plays a role in surface-level O3 dynamics in the tropical marine boundary layer.  相似文献   

14.
This paper discusses the effects of vegetation cover and soil parameters on the climate change projections of a regional climate model over the Arctic domain. Different setups of the land surface model of the regional climate model HIRHAM were realized to analyze differences in the atmospheric circulation caused by (1) the incorporation of freezing/thawing of soil moisture, (2) the consideration of top organic soil horizons typical for the Arctic and (3) a vegetation shift due to a changing climate. The largest direct thermal effect in 2 m air temperature was found for the vegetation shift, which ranged between −1.5 K and 3 K. The inclusion of a freeze/thaw scheme for soil moisture shows equally large sensitivities in spring over cool areas with high soil moisture content. Although the sensitivity signal in 2 m air temperature for the experiments differs in amplitude, all experiments show changes in mean sea level pressure (mslp) and geopotential height (z) throughout the troposphere of similar magnitude (mslp: −2 hPa to 1.5 hPa, z: −15 gpm to 5 gpm). This points to the importance of dynamical feedbacks within the atmosphere-land system. Land and soil processes have a distinct remote influence on large scale atmospheric circulation patterns in addition to their direct, regional effects. The assessment of induced uncertainties due to the changed implementations of land surface processes discussed in this study demonstrates the need to take all those processes for future Arctic climate projections into account, and demonstrates a clear need to include similar implementations in regional and global climate models.  相似文献   

15.
Approximately 1700 Pg of soil carbon (C) are stored in the northern circumpolar permafrost zone, more than twice as much C than in the atmosphere. The overall amount, rate, and form of C released to the atmosphere in a warmer world will influence the strength of the permafrost C feedback to climate change. We used a survey to quantify variability in the perception of the vulnerability of permafrost C to climate change. Experts were asked to provide quantitative estimates of permafrost change in response to four scenarios of warming. For the highest warming scenario (RCP 8.5), experts hypothesized that C release from permafrost zone soils could be 19–45 Pg C by 2040, 162–288 Pg C by 2100, and 381–616 Pg C by 2300 in CO2 equivalent using 100-year CH4 global warming potential (GWP). These values become 50 % larger using 20-year CH4 GWP, with a third to a half of expected climate forcing coming from CH4 even though CH4 was only 2.3 % of the expected C release. Experts projected that two-thirds of this release could be avoided under the lowest warming scenario (RCP 2.6). These results highlight the potential risk from permafrost thaw and serve to frame a hypothesis about the magnitude of this feedback to climate change. However, the level of emissions proposed here are unlikely to overshadow the impact of fossil fuel burning, which will continue to be the main source of C emissions and climate forcing.  相似文献   

16.
Liu  Tingxiang  Zhang  Shuwen  Yu  Lingxue  Bu  Kun  Yang  Jiuchun  Chang  Liping 《Theoretical and Applied Climatology》2017,130(3-4):971-978
Currently, US forests constitute a large carbon sink, comprising about 9 % of the global terrestrial carbon sink. Wildfire is the most significant disturbance influencing carbon dynamics in US forests. Our objective is to estimate impacts of climate change, CO2 concentration, and nitrogen deposition on the future net biome productivity (NBP) of US forests until the end of twenty-first century under a range of disturbance conditions. We designate three forest disturbance scenarios under one future climate scenario to evaluate factor impacts for the future period (2011–2100): (1) no wildfires occur but forests continue to age (Saging), (2) no wildfires occur and forest ages are fixed in 2010 (Sfixed_nodis), and (3) wildfires occur according to a historical pattern, consequently changing forest age (Sdis_age_change). Results indicate that US forests remain a large carbon sink in the late twenty-first century under the Sfixed_nodis scenario; however, they become a carbon source under the Saging and Sdis_age_change scenarios. During the period of 2011 to 2100, climate is projected to have a small direct effect on NBP, while atmospheric CO2 concentration and nitrogen deposition have large positive effects on NBP regardless of the future climate and disturbance scenarios. Meanwhile, responses to past disturbances under the Sfixed_nodis scenario increase NBP regardless of the future climate scenarios. Although disturbance effects on NBP under the Saging and Sdis_age_change scenarios decrease with time, both scenarios experience an increase in NBP prior to the 2050s and then a decrease in NBP until the end of the twenty-first century. This study indicates that there is potential to increase or at least maintain the carbon sink of conterminous US forests at the current level if future wildfires are reduced and age structures are maintained at a productive mix. The effects of CO2 on the future carbon sink may overwhelm effects of other factors at the end of the twenty-first century. Although our model in conjunction with multiple disturbance scenarios may not reflect the true conditions of future forests, it provides a range of potential conditions as well as a useful guide to both current and future forest carbon management.  相似文献   

17.
This study utilized the MM5 mesoscale model to simulate the landfalling process of Typhoon Talim. The simulated typhoon track, weather patterns, and rainfall process are consistent with the observation. Using the simulation results, the relation of the second type thermal helicity (H 2) to rainfall caused by the landfalling typhoon Talim was analyzed. The results show that H 2 could well indicate the heavy inland rainfall but it did not perform as well as the helicity in predicting rainfall during the beginning stage of the typhoon landfall. In particular, H 2 was highly correlated with rainfall of Talim at 1-h lead time. For 1–5-h lead time, it also had a higher correlation with rainfall than the helicity did, and thus showing a better potential in forecasting rainfall intensification. Further analyses have shown that when Talim was in the beginning stage of landfall, 1) the 850–200-hPa vertical wind shear around the Talim center was quite small (about 5 m s−1); 2) the highest rainfall was to the right of the Talim track and in the area with a 300-km radius around the Talim center, exhibiting no obvious relation to low-level temperature advection, low-level air convergence, and upper-level divergence; 3) the low-level relative vorticity reflected the rainfall change quite well, which was the main reason why helicity had a better performance than H 2 in this period. However, after Talim moved inland further, 1) it weakened gradually and was increasingly affected by the northern trough; 2) the vertical wind shear was enhanced as well; 3) the left side of the down vertical wind shear lay in the Lushan and Dabieshan mountain area, which could have contributed to triggering a secondary vertical circulation, helping to produce the heavy rainfall over there; hence, H 2 showed a better capacity to reflect the rainfall change during this stage.  相似文献   

18.
The vertically integrated horizontal energy transports and the vertically integrated vertical energy flux divergence from ERA-40 and ISCCP are not in balance assuming a stationary climate as a time mean over several years. The reasons are the inherent uncertainties in each of the respective data sets. We therefore modify them using a variational approach with a discretization in spherical harmonics to obtain consistent values. The variational approach only modifies the smaller yet more uncertain divergent part of the flow, leaving the large rotational part untouched. From these consistent fields we can calculate posterior covariance matrices of the vertically integrated horizontal energy transport and the vertically integrated vertical energy flux divergence, providing a measure of the uncertainty of the previous calculation. We are able to use these posterior covariance matrices to give an estimate of the uncertainty of the zonally and vertically integrated meridional energy transport, which is about 0.25 PW in the tropics and 0.04 PW in high latitudes, as well as for the vertical energy flux divergence of the atmosphere, which ranges from 2.5 to 5 W/m2 in the tropics to 15–17 W/m2 in high latitudes.  相似文献   

19.
The ozonolysis of propene has been investigated in a temperature controlled reaction chamber at 295, 260, and 230 K. Experiments were performed using a total zero air pressure of 760 Torr (STP) and propene/ozone reactant mixing ratios ranging from 2.3 to 23 ppmv. An analysis of FTIR spectra collected at the conclusion of each reaction revealed that methane was formed with a yield of 0.14 ± 0.03 (precision) for all the temperatures investigated.In addition, the yield of HCHO decreased from 0.67 ± 0.04 to 0.43± 0.03 upon cooling from 295 to 230 K, whereas the yield of HCOOH increased from 0.11 ± 0.02 to 0.53 ± 0.04. Experiments were also performedusing an excess of cyclohexane (to scavenge OH) and it was found that the formaldehyde yield was 0.79 ± 0.05 and 0.61 ± 0.04 at 295 and260 K, respectively. Finally, to more fully understand the reaction energies involved in product formation, we have performed molecular orbital calculations of heats of formation of reactants, stable intermediates, and products. Three conclusions can be made of this work. First, the reaction CH2OO + Aldehyde Secondary Ozonide HCOOH + Aldehyde is not an important mechanism in formic acid production. Second, the decomposition of the primary ozonide products (e.g., C2 radical species) appears to occur, in part, by a thermal mechanism (e.g., thermalized to chamber temperature). Third, ab initio resultscombined with experiment reveal no correlation between reaction exothermicity and products formed (e.g., kinetically dictated product formation occurs). The abinitio database is provided nevertheless as a starting point for transition state calculations to be performed in the future. Finally, since formaldehyde yield decreases by at most 35% with decreasing temperature and formic acid is relatively unreactive in the atmosphere, our results suggest that temperature-dependent HCHO yield will constitute only a minor perturbation to HOx formation in the middle troposphere.  相似文献   

20.
Calibration of Four Species of Tillandsia as Air Pollution Biomonitors   总被引:1,自引:0,他引:1  
Many organisms have been used as bioindicators of atmospheric contamination, with moss and lichen species being the most common. However, studies using epiphytic vascular species of Tillandsia have shown a good correlation between the presence of pollutants and the bioindicator's response. Therefore, the aim of our investigation was to calibrate and compare the response of four Tillandsia species of Argentina to ascertain whether they could be used as atmospheric contamination biomonitors. For this, we analysed the correlation between the levels of heavy metals in total atmospheric deposition samples and: a) their rate of enrichment; b) the physiological response of the plant samples. Tillandsia samples collected from a non contaminated area in the province of Córdoba were transplanted to four areas in the capital city with different sources of pollution (industrial or traffic emissions). They were exposed for a period of 3 to 6 months after which the concentrations of Pb, Ni, Fe, Zn, Cu and S as well as the physiological parameters of foliar damage were determined. Simultaneously samples of total atmospheric deposition were also taken.The highest level of metal enrichment was found in T. capillaris followed by T. tricholepis, T. permutata and T. retorta. Also, the use of a foliar damage index proved to be effective and could be a useful tool to evaluate different levels of atmospheric quality in these species. The rate of heavy metal deposition was higher in the industrial area for all metals except for Zn whose values were higher in areas with high levels of traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号