首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight lithofacies representing a westward trending, deep sea fan, dominantly deposited from mass flow mechanisms, are recognised in geologic sections in the lower part of the Sarava Formation, of Late Oligocene/Early Miocene age, on Maewo Island, Vanuatu, New Hebrides. Also present representing the floor on which the deep sea fan prograded are non-calcareous, red siltstone and minor green siltstone which indicate deposition beyond the calcareous compensation depth, i.e. a depth greater than 4.25 km, and rare thin airfall ash.Previous workers proposed that rifting occurred in the area now occupied by Maewo during the Mid Miocene. However, the great depth at which the Late Oligocene/Early Miocene strata were deposited suggests that rifting occurred prior to the Late Oligocene. Rifting may have occurred even earlier because Pentecost Island, which lies south of Maewo, has a dismembered ophiolite suite which ranges in age from 35-28 Ma (Oligocene). The ophiolite suite may have formed in an interarc environment.The writer's reconstruction of the Oligocene arc system of the New Hebrides is an analogue of the present day Mariana Arc System. Interarc rifting ceased by the Early Miocene and during the Mid-Late Miocene the subduction of zone may have migrated westwards to lie along the Maewo-Pentecost axis.  相似文献   

2.
广西来宾-合山一带晚二叠世海底扇浊积岩相   总被引:11,自引:6,他引:5       下载免费PDF全文
广西来宾蓬莱滩及合山马滩两地的晚二叠世地层中发育有典型的重力流沉积构造,如粒序层理、包卷层理、槽模、重荷模、碟状构造和滑塌褶皱等。通过对蓬莱滩合山组和大隆组以及马滩剖面的大隆组岩相特征的详细研究,提出来宾蓬莱滩晚二叠世合山组和大隆组以及合山马滩晚二叠世大隆组形成于海底扇环境,划分出具碟状构造的块状砂岩(B1)、块状砂岩(B2)、近基浊积岩(C)、远基浊积岩(D)、不规则互层的砂泥岩(E)、滑塌褶皱层(F)及含浮游生物化石的页岩、硅质岩(G)等岩相类型,同时归纳出外扇相组合、中扇舌状体相组合、中扇水道相组合、斜坡相组合及深切谷水道相组合等,还对这些海底扇浊积岩系的古地理意义做了讨论。桂中碳酸盐岩台地相区和云开古陆之间在晚二叠世为一发育海底扇浊积岩的深水盆地,其中来宾-合山一带在大隆组沉积期处于水深约300~1 000 m的深水盆地环境,合山一带火山活动提供的火山物质及来自东侧云开古陆的陆源物质构成该区浊积岩的主要物源。  相似文献   

3.
以珠江口盆地白云凹陷钻井、测井、地震和古生物资料为基础,结合前人研究成果,系统的分析了白云凹陷晚渐新统到早中新统沉积相发育特征及凹陷沉积充填演化过程。研究结果表明,珠海组下部发育大型陆架边缘三角洲沉积,地震反射特征表明该三角洲发育三期;钻遇水下分支河道、支流间湾、河口坝及远砂坝微相,沉积物以富砂为特征,发育冲刷-充填构造、递变层理及较粗的水平潜穴等多种构造;珠海组上部为浅海相,沉积物以海相砂泥岩互层为主,此时期陆架坡折带位于白云凹陷南坡;珠江组沉积时期,海平面升降旋回频繁,陆架坡折带迁至凹陷北坡。随着古珠江流域扩大,沉积物输入量增加,在珠江组下部发育了深水扇,沉积物以细-粗砂岩为主,夹少量粉砂岩及深海泥岩,发育颗粒流、液化流、浊流及碎屑流等四种主要的重力流,钻遇内扇水道,中扇废弃水道及水道间漫溢沉积,外扇深海泥沉积;珠江组上部为半深海相,沉积物以深海泥岩为主。   相似文献   

4.
珠江口盆地荔湾3-1气田珠江组深水扇沉积相分析   总被引:7,自引:1,他引:6  
根据已钻井取芯段岩相分析,从荔湾3-1气田珠江组深水扇沉积体系中划分出巨厚层和厚层块状砂岩相、厚层正粒序砂岩相、厚层逆粒序砂岩相、平行—板状斜层理砂岩相、滑塌变形砂岩相、薄层砂岩夹层相、薄层(粉)砂岩与泥岩互层相、厚层粉砂岩相、厚层泥岩相和层状深水灰岩相等10种岩相类型和识别出砂岩相组合、泥岩相组合、(粉)砂岩与泥岩互...  相似文献   

5.
辽河盆地大凌河油层湖底扇沉积特征   总被引:8,自引:0,他引:8  
辽河盆地位于辽宁省南部,渤海湾盆地东北角,是继中生代发育起来的第三纪断陷盆地。分东部凹陷,西部凹陷和大民屯凹陷等二级构造单元(图1)。  相似文献   

6.
A 1600-m-thick succession of the Miocene Horse Camp Formation (Member 2) exposed in east-central Nevada records predominantly terrigenous clastic deposition in subaerial and subaqueous fan-delta environments and nearshore and offshore lacustrine environments. These four depositional environments are distinguished by particular associations of individual facies (14 defined facies). Subaerial and subaqueous fan-delta facies associations include: ungraded, matrix-and clast-supported conglomerate; normally graded, matrix- and clast-supported conglomerate; ungraded and normally graded sandstone; and massive to poorly laminated mudstone. Subaqueous fan-delta deposits typically have dewatering structures, distorted bedding and interbedded mudstone. The subaerial fan-delta environment was characterized by debris flows, hyperconcentrated flows and minor sheetfloods; the subaqueous fan-delta environment by debris flows, high- and low-density turbidity currents, and suspension fallout. The nearshore lacustrine facies association provides examples of deposits and processes rarely documented in lacustrine environments. High-energy oscillatory wave currents, probably related to a large fetch, reworked grains as large as 2 cm into horizontally stratified sand and gravel. Offshore-directed currents produced uncommonly large (typically 1–2 m thick) trough cross-stratified sandstone. In addition, stromatolitic carbonate interbedded with stratified coarse sandstone and conglomerate suggests a dynamic environment characterized by episodic terrigenous clastic deposition under high-energy conditions alternating with periods of carbonate precipitation under reduced energy conditions. Massive and normally graded sandstone and massive to poorly laminated mudstone characterize the offshore lacustrine facies association and record deposition by turbidity currents and suspension fallout. A depositional model constructed for the Horse Camp Formation (Member 2) precludes the existence of all four depositional environments at any particular time. Rather, phases characterized by deposition in subaerial fan, nearshore lacustrine and offshore lacustrine environments alternated with phases of subaerial fan-delta, subaqueous fan-delta and offshore lacustrine deposition. This model suggests that high-energy nearshore currents due to deep water along the lake margin reworked sediment of the fan edge, thus preventing development of a subaqueous fan-delta environment and promoting development of a well-defined nearshore lacustrine environment. Low-energy nearshore currents induced by shallow water along the  相似文献   

7.
Isolated, high relief carbonate platforms developed in the intracratonic basin of east-central Mexico during Albian-Cenomanian time. Relief on the platforms was of the order of 1000 m and slopes were as steep as 20–43°. Basin-margin debris aprons adjacent to the platforms comprise the Tamabra Formation. In the Sierra Madre Oriental, at the eastern margin of the Valles-San Luis Potosi Platform, an exceptionally thick (1380m) progradational basin to platform sequence of the Tamabra Formation can be divided into six lithological units. Basinal carbonate deposition that preceded deposition of the Tamabra Formation was emphatically punctuated by an allochthonous reef block 1 km long by 0·5 km wide with a stratigraphic thickness of 95 m. It is encased in Tamabra Formation unit A, approximately 360 m of peloidal-skeletal wackestone and lithoclastic-skeletal packstone that includes some graded beds. Unit B is 73 m of massive dolomite with sparse skeletal fragments and intraclasts. Unit C, 114m thick, consists of structureless skeletal wackestone passing upward into graded skeletal packstone. Interlaminated lime mudstone and fine grained bioclastic packstone with prominent horizontal burrows are interspersed near the top. Unit D is 126 m of breccia with finely interbedded skeletal grainstone and burrowed or laminated mudstone. The breccias contain a spectrum of platform-derived lithoclasts and basinal intraclasts, up to 10 m in size. The breccias are typically grain supported (rudstone) with a matrix of lightly to completely dolomitized mudstone or skeletal debris. Beds are up to several metres thick. Unit E is 206 m of massive, sucrosic dolomite that replaced breccias. Unit F is approximately 500 m of thick bedded to massive skeletal packstone with abundant rudists and a few mudstone intraclasts. Metre scale laminated lime mudstone beds are interspersed. The section is capped by El Abra Formation platform margin limestone, consisting of massive beds of caprinid packstone and grainstone with many whole valves. Depositional processes within this sequence shift from basinal pelagic or peri-platform sedimentation to distal, platform-derived, muddy turbidity currents with a large slump block (Unit A); through more proximal (coarser and cleaner) turbidity currents (Unit B?, C); to debris flows incorporating platform margin and slope debris (Units D, E). Finally, a talus of coarse, reef-derived bioclasts (Unit F) accumulated as the platform margin prograded over the slope sequence. Interspersed basinal deposits evolved gradually from largely pelagic to include influxes of dilute turbidity currents. Units containing turbidites with platform-derived bioclasts reflect flooding of the adjacent platform. Breccia blocks and lithoclasts were probably generated by erosion and collapse of the platform during lowstands. Laminated, black, pelagic carbonates, locally cherty, are interbedded with both breccias and turbidites. At least those interbedded with turbidites may have been deposited within an expanded mid-water oxygen minimum zone during relative highstands of sea level. They are in part coeval with mid-Cretaceous black shales of the Atlantic Ocean.  相似文献   

8.
王起琮  李文厚  赵虹  王岚  屈红军 《地质科学》2006,41(1):54-63,I0003
鄂尔多斯盆地东南部三叠系延长组一段湖相浊积岩主要分布于子长县寺湾和横山县庙沟等地区,位于长一段上部。岩石类型包括:块状砂岩,近基的中细粒砂岩,远基的粉砂岩及细砂岩,不规则砂、泥岩互层和深湖相泥岩。据岩石组合类型将该浊积扇划分为上扇和中扇,其沉积序列为向上粒度变粗、砂层变厚的进积型浊积扇沉积序列。根据底部印模构造指向,物源区大致位于研究区的北东。本文总结了浊积扇的演化,探讨了该浊积扇的发现对于认识区域构造背景及油气勘探的意义。  相似文献   

9.
Uplift of the Tibetan Plateau during the late Cainozoic resulted in a thick apron of molassic sediments along the northern piedmonts of the Kunlun and Altyn Mountains in the southern Tarim Basin. Early Neogene sediments are characterised by sandstone, siltstone and red mudstone, representing floodplain to distal alluvial fan environments. The Early Pliocene Artux Formation consists of medium-grained sandstone and sandy mudstone with thin layers of fine pebbly gritstone. The Late Pliocene to Early Pleistocene Xiyu Formation is dominated by pebble to boulder conglomerate typical of alluvial fan debris flow deposits. Sedimentological investigation, together with grain size and chemical analyses of siltstone bands intercalated with sandstone and conglomerate in the Xiyu and Artux Formations, point to an aeolian origin, suggesting desertic conditions in the Tarim Basin by the Early Pliocene. The onset of aeolian sedimentation in the southern Tarim Basin coincided with uplift of the northern Tibetan Plateau inferred from the lithofacies change from fine-grained mudstone and sandstone to coarse clasts. Tibetan Plateau uplift resulted in the shift of sedimentary environments northwards into the southern Tarim Basin, and could well have triggered the onset of full aridity in the Taklimakan region as a whole.  相似文献   

10.
ABSTRACT The Wagwater Trough is a fault-bounded basin which cuts across east-central Jamaica. The basin formed during the late Palaeocene or early Eocene and the earliest sediments deposited in the trough were the Wagwater and Richmond formations of the Wagwater Group. These formations are composed of up to 7000 m of conglomerates, sandstones, and shales. Six facies have been recognized in the Wagwater Group: Facies I-unfossiliferous massive conglomerates; Facies II—channelized, non-marine conglomerates, sandstones, and shales; Facies III-interbedded, fossiliferous conglomerates and sandstones; Facies IV—fossiliferous muddy conglomerates; Facies V—channelized, marine conglomerates, sandstones, and shales; and Facies VI—thin-bedded sheet sandstones and shales. The Wagwater and Richmond formations are interpreted as fan delta-submarine fan deposits. Facies associations suggest that humid-region fan deltas prograded into the basin from the adjacent highlands and discharged very coarse sediments on to a steep submarine slope. At the coast waves reworked the braided-fluvial deposits of the subaerial fan delta into coarse sand and gravel beaches. Sediments deposited on the delta-front slope were frequently remobilized and moved downslope as slumps, debris flows, and turbidity currents. At the slope-basin break submarine fans were deposited. The submarine fans are characterized by coarse inner and mid-fan deposits which grade laterally into thin bedded turbidites of the outer fan and basin floor.  相似文献   

11.
济阳坳陷牛庄洼陷沙三段三角洲前缘浊积岩特征   总被引:13,自引:0,他引:13  
根据地质、测井、地震资料的综合分析,对济阳坳陷牛庄洼陷沙河街组三段三角洲前缘的浊积岩特征进行了研究。结果表明,该区存在砂质浊积岩体和细粒浊积岩体两种浊流沉积物。其中砂质浊积岩体粒度较细、结构成熟度和成分成熟度较低,结构和构造均反映了砂体具有滑塌再沉积的特点,可用Bouma序列来描述,常发育CDE,BCD,ABCD型浊流组合。砂质浊积岩体可进一步划为有根式和无根式两类。有根式砂体常呈扇形,可分为内扇槽道、中扇辫状水道、水道间、水道前缘和外扇无水道五种微相;无根式砂体常呈片状、舌状,可分为中心微相和边缘微相两个相带。细粒浊积岩属于低密度流的产物,不能用Bouma序列来解释,主要发育递变纹层泥岩和不均匀的块状泥岩两种细粒浊积岩。根据两类沉积物的沉积特征,建立了该区三角洲一浊积岩体综合沉积模式。论述了三角洲前缘浊积岩的成因及石油地质意义。  相似文献   

12.
Geological domains in northeastern India evolved though time after the rupture of the Gondwanaland. Collision of the Indian and the Burmese plates took place during the middle part of Cretaceous. Evolution of the Paleogene Barail trough, Neogene Surma and Tipam Groups took place gradually. The Barail trough originated at the active margin of the Indo-Burmese plate convergence. Previously, the Barail sedimentary wedge was interpreted to have been deposited in a deltaic to shallow-marine environment. Latter studies have proposed a new depositional model. The Barail Group, a part of the Assam-Arakan Orogen comprises the lowermost Laisong Formation, middle Jenam and upper Rinji Formation. Most of the Paleogene strata of the Barail Group carry imprints of a deep-water submarine fan near an active subduction zone. A deep-water proximal- to mid-fan depositional setting has been ascribed to the lower Laisong strata. Facies analysis of the extensive exposures of the Jenam Formation, near the Jenamghat, Assam, have enabled a detailed reconstruction of a proximal to mid-part of a submarine fan under an overall influence of turbidity currents and debris flow, ultimately evolving into turbidity currents. The Jenam sedimentary wedge bears tell-tale preservation of olistostromes (chaotic facies) with abundant volcaniclastics and basic rock fragments, massive sandstones, conglomeratic sandstone to sandstone-siltstone-shale and sandstone-siltstone-mudstones with profuse turbidites. Facies attributes amply signal the inherent instability of the Barail trough owing to its location near an active subduction zone. The Jenam suite of rocks containing a strong impress of volcanogenic materials along with quartzo-feldspathic rocks were mixed up by turbidity currents and shed into the submarine environment as the Jenam deep-water turbidites.  相似文献   

13.
Eleven lithofacies and five lithofacies associations were indentified in the Miocene Zhujiang Formation on the basis of detailed core analysis.It could be determined that three depositional types developed,namely submarine fan,basin and deep-water traction current.Six microfacies were further recognized within the fan,including main channels in the inner fan,distributary channels in the middle fan,inter-channels,levees and the outer fan.The lower Zhujiang Formation,mainly sandstone associations,was inner fan and inner-middle fan deposits of the basin fan and the slope fan. The middle part,mainly mudstone associations,was outer fan deposits.With the transgression,the submarine fan was finally replaced by the basinal pelagic deposits which were dominated by mudstone associations,siltstone associations,and deep-water limestone associations.During the weak gravity flow activity,the lower channels,the middle-upper outer fans and basin deposits were strongly modified by the deep-water traction current.The identification of the deep-water traction deposition in Miocene Zhujiang Formation would be of great importance.It could be inferred that the deep-water traction current had been existing after the shelf-break formation since the Late Oligocene (23.8 Ma) in the Baiyun sag,influencing and controlling the sediment composition,the distribution, and depositional processes.It would provide great enlightenment to the paleo-oceanic current circulation in the northern South China Sea.  相似文献   

14.
Subaqueous tuff deposits within the lower Miocene Lospe Formation of the Santa Maria Basin, California, are up to 20 m thick and were deposited by high density turbidity flows after large volumes of ash were supplied to the basin and remobilized. Tuff units in the Lospe Formation include a lower lithofacies assemblage of planar bedded tuff that grades upward into massive tuff, which in turn is overlain by an upper lithofacies assemblage of alternating thin bedded, coarse grained tuff beds and tuffaceous mudstone. The planar bedded tuff ranges from 0.3 to 3 m thick and contains 1-8 cm thick beds that exhibit inverse grading, and low angle and planar laminations. The overlying massive tuff ranges from 1 to 10 m thick and includes large intraclasts of pumiceous tuff and stringers of pumice grains aligned parallel to bedding. The upper lithofacies assemblage of thin bedded tuff ranges from 0.4 to 3 m thick; individual beds are 6-30 cm thick and display planar laminae and dewatering structures. Pumice is generally concentrated in the upper halves of beds in the thin bedded tuff interval. The association of sedimentary structures combined with semi-quantitative analysis for dispersive and hydraulic equivalence of bubble-wall vitric shards and pumice grains reveals that particles in the planar bedded lithofacies are in dispersive, not settling, equivalence. This suggests deposition under dispersive pressures in a tractive flow. Grains in the overlying massive tuff are more closely in settling equivalence as opposed to dispersive equivalence, which suggests rapid deposition from a suspended sediment load. The set of lithofacies that comprises the lower lithofacies assemblage of each of the Lospe Formation tuff units is analogous to those of traction carpets and subsequent suspension sedimentation deposits often attributed to high density turbidity flows. Grain distributions in the upper thin bedded lithofacies do not reveal a clear relation for dispersive or settling equivalence. This information, together with the association of sedimentary features in the thin bedded lithofacies, including dewatering structures, suggests a combination of tractive and liquefied flows. Absence of evidence for elevated emplacement temperatures (e.g. eutaxitic texture or shattered crystàls) suggests emplacement of the Lospe Formation tuff deposits in a cold state closely following pyroclastic eruptions. The tuff deposits are not only a result of primary volcanic processes which supplied the detritus, but also of processes which involved remobilization of unconsolidated ash as subaqueous sediment gravity flows. These deposits provide an opportunity to study the sedimentation processes that may occur during subaqueous volcaniclastic flows and demonstrate similarities with existing models for sediment gravity flow processes.  相似文献   

15.
Field investigation and laboratory research on flysch of the Liufengguan Group in Qinling indicate the following: (1) Sandstone of the Liufengguan Group is categorized as feldspathic lithic graywacke with a minor amount of lithic graywacke in the QFR triangular diagram. Grain size≤0.3 mm. Bedding plane structures such as groove casts and suspected flute casts can be found at the bottom of the sandstone. It is inferred that currents may have come from the southeast during deposition. Bedding structures such as ripple marks, graded bedding, parallel bedding, small-scale cross bedding, climbing bedding, suspected convolute bedding, microlamination and sliding structures have also been observed, which are of indicative significance. It is thought that the Liufengguan Group has the sedimentary characteristics of bedding, bedding plane structures and lithological assemblages of deep-sea low-density turbidity current deposits. The vertical succession of the Bouma sequence in the inner fan subfacies zone is generally incomplete: the assemblage of Ta and Tabc is commonly seen; the succession of the middle fan subfacies zone is relatively complete; and divisions Te and Tb are common in the outer fan subfacies zone. (2) The flysh of the Liufengguan Group is a sequence of deep-sea argillaceous-arenaceous submarine fan deposits, in which the authors recognize the inner, middle and outer fan subfacies and also nine types of lithofacies: normal graded sandstone (A1), medium- to thick-bedded, fine-grained sandstone (A2), medium- to thick-bedded and massive siltstone (A3), thin-bedded, fine-grained sandstone and mudstone (B1), irregular interbeds of thin-bedded, fine-grained sandstone and siltstone (B2), thin-bedded, fine-grained sandstone (C1), very thin-bedded, fine-grained sandstone (D1), olistostromes (E1) and deep-sea mudstone (F). The inner fan consists of four microfacies: natural levee (A1), water channel (A2, A3) and olistostrome (E1); in the middle fan there also occur four microfacies, i.e., branch channel (B1), branch channel (B2), interdistributary bay (D1) and olistostrome. The outer fan is made up of the branch channel (C1) and sheet sand (D1) microfacies, which alternate vertically with sediments of deep-sea plain subfacies (F). There occur fining- and thinning-upward channel deposits in the outer-fan subfacies zone of the submarine fan of the Liufengguan Group observed in this study. The quartz content of the graywacke of the deposits is all higher than 40% and may reach as high as 60%. Therefore, on the basis of the aforementioned features, this flysh should be formed in a passive continental-margin tectonic environment.  相似文献   

16.
The Eibiswald Bucht is a small subbasin of the Western Styrian Basin exposing sediments of Lower Miocene age. In the past the entire sequence exposed in the Eibiswalder Bucht has been interpreted as being of fluvial/lacustrine origin; here, results are presented of detailed sedimentological investigations that lead to a revision of this concept. The lowermost siliciclastic sedimentary unit of the Eibiswalder Bucht sequence is the Radl Formation. It is overlain by the Eibiswald Beds, which are subdivided into the Lower, Middle and Upper Eibiswald Beds. The Radl Formation and the Lower Eibiswald Beds are interpreted as a fan delta complex deposited along NNW-SSE striking faults. Based on the sedimentary facies this fan delta can be subdivided into a subaerial alluvial fan facies group, a proximal delta facies group and a distal delta/prodelta facies group. The Radl Formation comprises the alluvial fan and proximal delta facies groups, the Lower Eibiswald Beds the distal delta/prodelta facies group. The alluvial fan and the proximal delta consist of diverse deposits of gravelly flows. The distal delta/prodelta consists of wave-reworked, bioturbated, low density turbidites intercalated with minor gravelly mass flows. The prodelta can be regarded as as the basin facies of the small and shallow Eibiswalder Bucht, where marine conditions prevailed. The basin was probably in part connected with the Eastern Styrian Basin, the contemporary depositional environment of the Styrian Schlier (mainly turbiditic marine offshore sediments in the Eastern Styrian Basin). Analysis of the clast composition, in conjunction with the paleotransport direction of the coarse delta mass flows of the Radl Formation, shows that the source rocks were exclusively crystalline rocks ranging from greenschists to eclogites.  相似文献   

17.
The Late Cretaceous Gürsökü Formation represents the proximal fill of the Sinop–Samsun Forearc Basin that was probably initiated by extension during the Early Cretaceous. The succession records sedimentation in two contrasting depositional systems: a slope-apron flanking a faulted basin margin and coarse-grained submarine fans. The slope-apron deposits consist of thinly bedded turbiditic sandstones and mudstones, interbedded with non-channelized chaotic boulder beds and intraformational slump sheets representing a spectrum of processes ranging from debris flow to submarine slides. The submarine fan sediments are represented by conglomerates and sandstones interpreted as deposited from high density turbidity currents and non-cohesive debris flows. The occurrence of both slope apron and submarine fan depositional systems in the Gürsökü Formation may indicates that the region was a tectonically active basin margin during the Late Cretaceous.  相似文献   

18.
The canyon mouth is an important component of submarine‐fan systems and is thought to play a significant role in the transformation of turbidity currents. However, the depositional and erosional structures that characterize canyon mouths have received less attention than other components of submarine‐fan systems. This study investigates the facies organization and geometry of turbidites that are interpreted to have developed at a canyon mouth in the early Pleistocene Kazusa forearc basin on the Boso Peninsula, Japan. The canyon‐mouth deposits have the following distinctive features: (i) The turbidite succession is thinner than both the canyon‐fill and submarine‐fan successions and is represented by amalgamation of sandstones and pebbly sandstones as a result of bypassing of turbidity currents. (ii) Sandstone beds and bedsets show an overall lenticular geometry and are commonly overlain by mud drapes, which are massive and contain fewer bioturbation structures than do the hemipelagic muddy deposits. (iii) The mud drapes have a microstructure characterized by aggregates of clay particles, which show features similar to those of fluid‐mud deposits, and are interpreted to represent deposition from fluid mud developed from turbidity current clouds. (iv) Large‐scale erosional surfaces are infilled with thick‐bedded to very thick‐bedded turbidites, which show lithofacies quite similar to those of the surrounding deposits, and are considered to be equivalent to scours. (v) Concave‐up erosional surfaces, some of which face in the upslope direction, are overlain by backset bedding, which is associated with many mud clasts. (vi) Tractional structures, some of which are equivalent to coarse‐grained sediment waves, were also developed, and were overlain locally by mud drapes, in association with mud drape‐filled scours, cut and fill structures and backset bedding. The combination of these outcrop‐scale erosional and depositional structures, together with the microstructure of the mud drapes, can be used to identify canyon‐mouth deposits in ancient deep‐water successions.  相似文献   

19.
齐永安  张洲  周敏  郑伟 《沉积学报》2009,27(2):254-264
豫西济源中三叠世油房庄组下部发育曲流河沉积,以细砂、粉砂和粉砂质泥岩为主,局部含泥砾和粗砂岩。根据Miall的岩相分类法,油房庄组发育有17种岩相,主要有Sts、Sps、Sws、Fh、Fr、Fc、Ch和Cr等,可归纳为代表曲流河不同发展阶段的7种岩相组合类型。根据岩相类型和沉积构造特征,曲流河沉积识别出3个沉积亚相和8个沉积微相,其中河道亚相包括河道滞留沉积微相和边滩沉积微相;堤岸亚相包括天然堤沉积微相和决口扇沉积微相;洪泛平原亚相由近端洪泛平原沉积微相、远端洪泛平原沉积微相、永久性河漫湖泊微相和暂时性河漫湖泊微相组成。研究区河流曲率P为0.64,属于低弯度曲流河沉积。  相似文献   

20.
为探讨陆相断陷湖盆陡坡带构造活动控制下水下粗碎屑岩沉积特征、搬运机制及其演化规律,以滦平断陷盆地陡坡带下白垩统西瓜园组为研究对象,采用无人机倾斜摄影、实测剖面、砾石定向性定量表征等技术方法,从沉积背景、岩相类型、沉积单元及相序特征等方面开展野外露头解剖工作.滦平盆地西瓜园组沉积时期,近岸水下扇沉积于构造沉降速率大、湖平面上升、深水、古地貌陡峭环境,洪水携带粗碎屑沉积沿陡坡带入湖,底部发育与地震活动相关的砾质碎屑流,伴随发育滑动—滑塌沉积,上部发育高密度浊流.随着沉积物不断供给,斜坡坡度逐渐减小;随着粗碎屑沉积搬运距离不断增加,砂砾质碎屑流中砾石表现出明显定向性,高密度浊流所占厚度比例增加;末端以低密度浊流为主.扇三角洲沉积于构造沉降速率相对较低、水深相对较浅、古地貌相对平缓的环境,发育相对成熟的供源体系,汇水系统长度较长,扇三角洲前缘粗碎屑岩由碎屑流向高密度浊流、牵引流、低密度浊流转换.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号