首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Three aircraft-based studies of boundary-layer fronts (BLFs) werecarried out during the experiment KABEG in April 1997near the sea-ice edge over the Davis Strait. The zone of strongestcross-front horizontal gradients showed a typical length scaleof 20 km, while the along-front scale was observed to beseveral hundreds of kilometres.The observed BLFs were stronger than the few previously reportedcases. Horizontal gradients of potential temperature and specifichumidity ranged up to 3 K or 0.25 g kg-1over 20 km, respectively.Low-level winds were around 15 m s-1 parallel to the ice edge.The capping inversion sloped from between250 and 400 m over sea ice to between 400 and 700 m over ocean.For two BLF cases turbulent fluxes and energy budgets are calculated.Turbulent energy fluxes show a factor 2 to 3 contrast acrossthe ice edge and range from 15 to 50 W m-2 over sea iceand from 50 to 100 W m-1 over open ocean.The mean boundary-layer energy budgets are dominated bycold, dry horizontal advection, which is exceededby vertical heat flux convergence.The momentum budgets are dominated by pressure gradient force,Coriolis force and momentum flux divergence.  相似文献   

2.
The development of the boundary layer during a cold air outbreak in the FramStrait is documented by aircraft measurements. The convection was organisedinto roll vortices with aspect ratios increasing from 2.9 near the ice edgeto more than 6 at 100 km further downstream. This increase coincides with anincrease of the latent heat release in the cloud layer. The stability parameter-zi/L varies from about zero at the ice edge to 30 at a distance of 200 kmdownstream over open water where the satellite picture still shows cloudstreets. The increase is mainly due to the deepening of the boundary layer.The turbulent vertical sensible and latent heat fluxes near the surface amountto 400 W m-2 within a 300 km off-ice zone. 25% of the upward heat fluxin the subcloud layer is carried out by organised roll motions. Experimentswith a 2-dimensional non-hydrostatic model show a similar roll aspect ratio inthe first 50 km, but further downstream where condensational heating is moreimportant the modelled roll wavelengths are distinctly smaller than the observedones.  相似文献   

3.
4.
We perform large-eddy simulations of neutral atmospheric boundary-layer flow over a cluster of buildings surrounded by relatively flat terrain. The first investigated question is the effect of the level of building detail that can be included in the numerical model, a topic not yet addressed by any previous study. The simplest representation is found to give similar results to more refined representations for the mean flow, but not for turbulence. The wind direction on the other hand is found to be important for both mean and turbulent parameters. As many suburban areas are characterised by the clustering of buildings and homes into small areas separated by surfaces of lower roughness, we look at the adjustment of the atmospheric surface layer as it flows from the smoother terrain to the built-up area. This transition has unexpected impacts on the flow; mainly, a zone of global backscatter (energy transfer from the turbulent eddies to the mean flow) is found at the upstream edge of the built-up area.  相似文献   

5.
A study of the surface energy balance with turbulent fluxes obtained by the Monin-Obukhov similarity theory and a comparison with results for resistance laws are presented for the strong baroclinic conditions in the vicinity of the Filchner/Ronne Ice Shelf front. The data are taken from a field experiment in the Antarctic summer season 1983/84. For the first time in the coastal Antarctic region, this data set comprises synchronous energy balance measurements over the polynya and the ice shelf together with soundings of the boundary layer, yielding vertical profiles of the wind velocity and temperature over the ice shelf, at the ice shelf front and over the polynya.Over the ice shelf, the radiation balance is the largest component of the energy fluxes and is mainly compensated by the subsurface energy flux and the turbulent heat flux in the daily mean. Over the polynya, turbulent fluxes of sensible and latent heat lead to large energy losses of the water surface in the night-time and in situations of very low air temperatures.Different parameterizations for boundary-layer height are compared using tethered sonde and energy balance measurements. With the height of the inversion base over the polynya and the height of the critical bulk Richardson number over the ice shelf, external parameters for the application of resistance laws were determined. The comparison of turbulent surface fluxes obtained by the energy balance measurements and by the resistance laws shows good agreement for the convective conditions over the polynya. For the stably stratified boundary layer over the ice shelf with small amounts of the turbulent heat flux, the deviation is large for the case of a cold air outflow with a superposed inertial oscillation.  相似文献   

6.
An investigation into high Reynolds number turbulent flow over a ridge top in New Zealand is described based on high-resolution in-situ measurements, using ultrasonic anemometers for two separate locations on the same ridge with differing upwind terrain complexity. Twelve 5-h periods during neutrally stratified and weakly stable atmospheric conditions with strong wind speeds were sampled at 20 Hz. Large (and small) turbulent length scales were recorded for both vertical and longitudinal velocity components in the range of 7–23 m (0.7–3.3 m) for the vertical direction and 628–1111 m (10.5–14.5 m) for the longitudinal direction. Large-scale eddy sizes scaled to the WRF (Weather Research and Forecasting) numerical model simulated boundary-layer thickness for both sites, while small-scale turbulent features were a function of the complexity of the upwind terrain. Evidence of a multi-scale turbulent structure was obtained at the more complex terrain site, while an assessment of the three-dimensional isotropy assumption in the inertial subrange of the spectrum showed anisotropic turbulence at the less complex site and evidence of isotropic turbulence at the more complex site, with a spectral ratio convergence deviating from the 4/3 or unity values suggested by previous theory and practice. Existing neutral spectral models can represent locations along the ridge top with simple upwind complexity, especially for the vertical wind spectra, but sites with more orographic complexity and strong vertical wind speeds are often poorly represented using these models. Measured spectra for the two sites exhibited no significant diurnal variation and very similar large-scale and small-scale turbulent length scales for each site, but the turbulence energy measured by the variances revealed a strong diurnal difference.  相似文献   

7.
Stratified Atmospheric Boundary Layers   总被引:32,自引:24,他引:8  
Various features of different stability regimes of the stable boundary layer are discussed. Traditional layering is examined in terms of the roughness sublayer, surface layer, local similarity, z-less stratification and the region near the boundary-layer top. In the very stable case, the strongest turbulence may be detached from the surface and generated by shear associated with a low level jet, gravity waves or meandering motions. In this case, similarity theory and the traditional concept of a boundary-layer break down. The elevated turbulence may intermittently recouple to the surface. Inability to adequately measure turbulent fluxes in very stable conditions limits our knowledge of this regime.  相似文献   

8.
The effectiveness of closure assumptions implemented in turbulent boundary-layer models is rather uncertain over complex terrain. Different closure schemes for Reynolds shear stress based on the mixing-length concept are compared with data from wind tunnel experiments over complex terrain and the results are analysed on the basis of second-order moment equations. A good estimation of the vertical momentum flux velocity scale turns out to be given by the standard deviation of the vertical velocity while the turbulent kinetic energy scaling gives less satisfactory results in regions where turbulence anisotropy is large. Fairly good results are given by closure models implementing a shear-limited mixing-length already proposed for non-logarithmic wind profiles, while large errors characterize traditional mixing-length formulations.  相似文献   

9.
Little is known about the influence of coherent structures on the exchange process, mainly in the case of forest edges. Thus, in the framework of the ExchanGE processes in mountainous Regions (EGER) project, measurements of atmospheric turbulence were taken at different heights between a forest and an adjacent clear cutting using sonic anemometers and high-frequency optical gas analyzers. From these turbulence data, dominant coherent structures were extracted using an already existing wavelet methodology, which was developed for homogeneous forest canopies. The aim of this study is to highlight differences in properties of coherent structures between a forest and a clear cutting. Distinct features of coherent exchange at the forest edge are presented and a careful investigation of vertical and horizontal coupling by coherent structures around the surface heterogeneity is made. Within the forest, coherent structures are less frequent but possess larger time scales, indicating that only the largest coherent motions can penetrate through the forest canopy. At the forest edge, there is no crown layer that can hinder the vertical exchange of coherent structures, because these exhibit similar time scales at all heights. In contradiction to that, no improved vertical coupling was detected at the forest edge. This is mainly because the structures captured by the applied routine contribute less to total turbulent fluxes at the edge than within the forest. Thus, coherent structures with time scales between 10 and 40 s are not the dominant exchange mechanism at the forest edge. With respect to the horizontal direction, a consistent picture of coherent transport could be derived: along the forest edge there is mainly good coupling by coherent structures, whereas perpendicular to the forest edge there is mainly decoupling. Finally, it was found that there is a systematic modulation of coherent structures directly at the forest edge: strong ejection motions appear in all time series during the daytime, whereas strong sweeps dominate at night. An effect of wind direction relative to the forest edge is excluded. Consequently, it is hypothesized that this might be an indication of a quasi-stationary secondary circulation above the clear cutting that develops due to differences in surface temperature and roughness. Such circulations might be a relevant turbulent transport mechanism for ecosystem-atmosphere exchange in heterogeneous landscapes.  相似文献   

10.
Higher-order moments, minima and maxima of turbulent temperature and water vapour mixing ratio probability density functions measured with an eddy-covariance system near the ground were related to each other and to vertical boundary-layer profiles of the same scalars obtained through airborne soundings. The dependence of kurtosis on squared skewness showed a kurtosis intercept below the Gaussian expectation, suggesting a compression of the probability density function by the presence of natural boundaries. This hypothesis was corroborated by comparing actual minima and maxima of turbulent fluctuations to estimates obtained from the first four sample moments by fitting a four-parameter beta distribution. The most sharply defined boundaries were found for the minima of temperature datasets during the day, indicating that negative temperature fluctuations at the sensor are limited by the availability of lower temperatures in the boundary layer. By comparison to vertical profiles, it could be verified that the turbulent minimum of temperature near the ground is close to the minimum of potential temperature in the boundary layer. The turbulent minimum of water vapour mixing ratio was found to be equal to the mixing ratio at a height above the minimum of the temperature profile. This height roughly agrees with the top of the non-local unstable domain according to bulk Richardson number profiles. We conclude that turbulence statistics measured near the surface cannot be solely explained by local effects, but contain information about the whole boundary layer including the entrainment zone.  相似文献   

11.
A diagnostic study of heat transfer within the lower atmosphere and between the atmosphere and the surface of the Arctic Ocean snow/ice pack during clear-sky conditions is conducted using data from the Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment. Surface heat budgets computed for four cloudy and four clear periods show that, while the net turbulent heat fluxes at the surface are small during the cloudy periods, during the clear-sky periods they are a considerable source of surface heating, balancing significant portions of the conductive heat fluxes from within the snow/ice pack. Analysis of the dynamics and thermodynamics of the lower atmosphere during the clear-sky periods reveals that a considerable portion of the heat lost to the surface by turbulent heat fluxes is balanced by locally strong heating near the atmospheric boundary-layer (ABL) top due to the interaction of subsiding motions with the strong overlying temperature inversions surmounting the ABL. This heat is then entrained into the ABL and transported to the surface by turbulent mixing, maintained by a combination of vertical wind shear and wave-turbulence interactions. The frequency of stable, clear-sky periods, particularly during the winter, combined with these results, suggests that the downward transfer of heat through the lower atmosphere and into the surface represents an important component of the heat budgets of the lower atmosphere and snow/ice pack over the annual cycle  相似文献   

12.
The structure of turbulent flows along a transition between tall-forested canopies and forest clearings continues to be an active research topic in canopy turbulence. The difficulties in describing the turbulent flow along these transitions stem from the fact that the vertical structure of the canopy and its leaf area distribution cannot be ignored or represented by an effective roughness length. Large-eddy simulation (LES) runs were performed to explore the effect of a homogeneous variation in the forest leaf area index (LAI) on the turbulent flow across forest edges. A nested grid numerical method was used to ensure the development of a deep boundary layer above the forest while maintaining a sufficiently high resolution in the region close to the ground. It was demonstrated that the LES here predicted first-order and second-order mean velocity statistics within the canopy that agree with reported Reynolds-Averaged Navier–Stokes (RANS) model results, field and laboratory experiments. In the simulations reported here, the LAI was varied between 2 and 8 spanning a broad range of observed LAI in terrestrial ecosystems. By increasing the forest LAI, the mean flow properties both within the forest and in the clearing near the forest edge were altered in two fundamental ways: near the forest edge and into the clearing, the flow statistical properties resembled the so-called back-facing step (BFS) flow with a mean recirculation zone near the edge. Another recirculation zone sets up downstream of the clearing as the flow enters the tall forest canopy. The genesis of this within-forest recirculation zone can be primarily described using the interplay between the mean pressure gradients (forcing the flow) and the drag force (opposing the flow). Using the LES results, a simplified analytical model was also proposed to explain the location of the recirculation zone inside the canopy and its dependence on the forest LAI. Furthermore, a simplified scaling argument that decomposes the mean velocity at the outflow edge into a superposition of ‘exit flow’ and BFS-like flow with their relative importance determined by LAI was explored.  相似文献   

13.
The influence of mesoscale circulations induced by urban-rural differential surface sensible heat flux and roughness on convective boundary-layer (CBL) flow statistics over an isolated urban area has been examined using large-eddy simulation (LES). Results are analyzed when the circulations influence the entire urban area under a zero background wind. For comparison, the CBL flow over an infinite urban area with identical urban surface characteristics under the same background meteorological conditions is generated as a control case (without circulations). The turbulent flow over the isolated urban area exhibits a mix of streaky structure and cellular pattern, while the cellular pattern dominates in the control case. The mixed-layer height varies significantly over the isolated urban area, and can be lower near the edge of the urban area than over the rural area. The vertical profiles of turbulence statistics over the isolated urban area vary horizontally and are dramatically different from the control case. The turbulent kinetic energy (TKE) sources include wind shear, convergence, and buoyancy productions, compared to only buoyancy production in the control case. The normalized vertical velocity variance is reduced compared to the control case except in the central urban area where it is little affected. The low-level flow convergence is mainly responsible for the enhanced horizontal velocity variance in the central urban area, while wind shear is responsible for the additional local maximum of the horizontal velocity variance near the middle of the CBL outside the central area. Parameterizations in the prognostic equation for TKE used in mesoscale models are evaluated against the LES results over the isolated urban area. We also discuss conditions under which the urban-induced circulations occur and when they may affect the entire urban area. Given that urban-induced circulations can influence the entire urban area within hours for an urban area of a realistic size, it is inappropriate to directly apply empirical relations of turbulence statistics derived under horizontally-homogenous flow conditions to an urban area.  相似文献   

14.
Coherent Turbulent Structures Across a Vegetation Discontinuity   总被引:1,自引:2,他引:1  
The study of turbulent flow across a vegetation discontinuity is of significant interest as such landscape features are common, and as there is no available theory to describe this regime adequately. We have simulated the three-dimensional dynamics of the airflow across a discontinuity between a forest (with a leaf area index of 4) and a clearing surface using large-eddy simulation. The properties of the bulk flow, as well as the large-scale coherent turbulent structures across the forest-to-clearing transition and the clearing-to-forest transition, are systematically explored. The vertical transport of the bulk flow upstream of the leading edge gives rise to the enhanced gust zone around the canopy top, while the transport downstream of the trailing edge leads to the formation of a recirculation zone above the clearing surface. The large-scale coherent structures across the two transitions exhibit both similarities with and differences from those upstream of the corresponding transition. For example, the ejection motion is dominant over the sweep motion in most of the region 1?<?z/h < 2 (h is the canopy height) immediately downstream of the trailing edge, much as in the forested area upstream. Also, the streamwise vortex pair, which has previously been observed within the canopy sublayer and the atmospheric boundary layer, is consistently found across both transitions. However, the inflection observed both in the mean streamwise velocity, as well as in the vertical profiles of the coherent structures in the forested area, disappears gradually across the forest-to-clearing transition. The coherence of the turbulence, quantified by the percentage of the total turbulence kinetic energy that the coherent structures capture from the flow, decreases sharply immediately downstream of the trailing edge of the forest and increases downstream of the leading edge of the forest. The effects of the ratio of the forest/clearing lengths under a given streamwise periodicity on flow statistics and coherent turbulent structures are presented as well.  相似文献   

15.
Flow over surface obstructions can produce significantly large wind shears such that adverse flying conditions can occur for aeronautical systems (helicopters, STOL vehicles, etc.) Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer / Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Mean-flow results are compared with those given in a previous paper where the same problem was attacked using a Prandtl mixing-length hypothesis. The diffusion and convection of turbulence kinetic energy not accounted for in the Prandtl mixing-length concept cause departures of the mean wind profiles from those previously computed, primarily in the regions of strong pressure gradients. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow. They highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient.  相似文献   

16.
Using the new high-frequency measurement equipment of the research aircraft DO 128, which is described in detail, turbulent vertical fluxes of ozone and nitric oxide have been calculated from data sampled during the ESCOMPTE program in the south of France. Based on airborne turbulence measurements, radiosonde data and surface energy balance measurements, the convective boundary layer (CBL) is examined under two different aspects. The analysis covers boundary-layer convection with respect to (i) the control of CBL depth by surface heating and synoptic scale influences, and (ii) the structure of convective plumes and their vertical transport of ozone and nitric oxides. The orographic structure of the terrain causes significant differences between planetary boundary layer (PBL) heights, which are found to exceed those of terrain height variations on average. A comparison of boundary-layer flux profiles as well as mean quantities over flat and complex terrain and also under different pollution situations and weather conditions shows relationships between vertical gradients and corresponding turbulent fluxes. Generally, NOx transports are directed upward independent of the terrain, since primary emission sources are located near the ground. For ozone, negative fluxes are common in the lower CBL in accordance with the deposition of O3 at the surface.The detailed structure of thermals, which largely carry out vertical transports in the boundary layer, are examined with a conditional sampling technique. Updrafts mostly contain warm, moist and NOx loaded air, while the ozone transport by thermals alternates with the background ozone gradient. Evidence for handover processes of trace gases to the free atmosphere can be found in the case of existing gradients across the boundary-layer top. An analysis of the size of eddies suggests the possibility of some influence of the heterogeneous terrain in mountainous area on the length scales of eddies.  相似文献   

17.
For the near-calm stable boundary layer, nominally 2-m mean wind speed <0.5 ms−1, the time-average turbulent flux is dominated by infrequent mixing events. These events are related to accelerations associated with wave-like motions and other more complex small-scale motions. In this regime, the relationship between the fluxes and the weak mean flow breaks down. Such near-calm conditions are common at some sites. For very weak winds and strong stratification, the characteristics of the fluctuating quantities change slowly with increasing scale and the separation between the turbulence and non-turbulent motions can become ambiguous. Therefore, a new analysis strategy is developed based on the scale dependence of selected flow characteristics, such as the ratio of the fluctuating potential energy to the kinetic energy. In contrast to more developed turbulence, correlations between fluctuating quantities are small, and a significant heat flux is sometimes carried by very weak vertical motions with large temperature fluctuations. The relation of the flux events to small-scale increases of wind speed is examined. Large remaining uncertainties are noted.  相似文献   

18.
High latitude air–sea interaction is an important component of the earth’s climate system and the exchanges of mass and energy over the sea-ice zone are complicated processes that, at present, are not well understood. In this paper, we perform a series of numerical experiments to examine the effect of sea-ice concentration on the development of high latitude boundary-layer roll clouds. The experiments are performed at sufficiently high spatial resolution to be able to resolve the individual convective roll clouds, and over a large enough domain to be able to examine the roll’s downstream development. Furthermore the high spatial resolution of the experiments allows for an explicit representation of heterogeneity within the sea-ice zone. The results show that the sea-ice zone has a significant impact on the atmospheric boundary-layer development, which can be seen in both the evolution of the cloud field and the development of heat and moisture transfer patterns. In particular, we find the air-sea exchanges of momentum, moisture and heat fluxes are modified by the presence of the roll vortices (typically a 10% difference in surface heat fluxes between updrafts and downdrafts) and by the concentration and spatial distribution of the sea-ice. This suggests that a more realistic representation of processes over the sea-ice zone is needed to properly calculate the air-sea energy and mass exchange budgets.  相似文献   

19.
利用北京大学的微脉冲激光雷达(MPL)观测的偏南气流条件下的混合层高度和夹卷层厚度探测资料,研究简单天气条件下城市混合层的发展机制并与GB94的参数化方案相互映证.通过激光雷达遥感的混合层高度和夹卷层厚度计算了混合层顶的夹卷率A,得到其平衡夹卷阶段的值为0.24.在不考虑机械混合前提下反演了地面感热通量,结果表明遥感的反演值与梯度法的计算值有系统性偏差,但总体上仍旧有较好的相关.偏差量的大小反映了影响混合层发展的机械湍流的参数B,进一步通过GB91模式的模拟确定该参数的最佳值约为3.5.在此基础上讨论了混  相似文献   

20.
Laboratory and numerical model simulations of turbulent circulations within the wake regions of thunderstorm outflows have been done with the assumption that there is no turbulence within the ambient airmass. Furthermore, many observational studies have used Doppler radar data that have been filtered so that turbulent structures are reduced in amplitude or eliminated altogether. This study presents unique Doppler radar observations of the collision of a roll-like boundary-layer circulation with a gust flow. The boundary-layer circulation is seen to interact with the circulation within the gust flow head and to reappear within the wake region. It is suggested that the ambient boundary layer may be an energy source for the generation and/or maintenance of turbulence in the wake region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号