首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nature of crustal and lithospheric mantle evolution of the Archean shields as well as their subsequent deformation due to recent plate motions and sustained intraplate geodynamic activity, has been a subject of considerable interest. In view of this, about three decades ago, a new idea was put forward suggesting that out of all shield terrains, the Indian shield has an extremely thin lithosphere(w100 km,compared to 250e350 km, elsewhere), apart from being warm, non-rigid, sheared and deformed. As expected, it met with scepticism by heat flow and the emerging seismic tomographic study groups, who on the contrary suggested that the Indian shield has a cool crust, besides a coherent and thick lithosphere(as much as 300e400 km) like any other shield. However, recently obtained integrated geological and geophysical findings from deep scientific drillings in 1993 Killari(M w: 6.3) and 1967 Koyna(M w: 6.3)earthquake zones, as well as newly acquired geophysical data over other parts of Indian shield terrain,have provided a totally new insight to this debate. Beneath Killari, the basement was found consisting of high density, high velocity mid crustal amphibolite to granulite facies rocks due to exhumation of the deeper crustal layers and sustained granitic upper crustal erosion. Similar type of basement appears to be present in Koyna region too, which is characterized by considerably high upper crustal temperatures.Since, such type of crust is depleted in radiogenic elements, it resulted into lowering of heat flow at the surface, increase in heat flow contribution from the mantle, and upwarping of the lithosphereasthenosphere boundary. Consequently, the Indian shield lithosphere has become unusually thin and warm. This study highlights the need of an integrated geological, geochemical and geophysical approach in order to accurately determine deep crust-mantle thermal regime in continental areas.  相似文献   

2.
Indian shield comprising a number of Archean-Proterozoic cratons, forms one of the most dynamic, sheared and deformed continental segment amongst all stable areas of the earth. However, for a long time it has been believed that its lithosphere remained unaffected by episodic tectono-thermal and volcanic perturbations. Using available seismic data, an attempt has been made to study the seismic structure of the south Indian shield in order to examine the effects of such mantle processes on its overall crust-mantle structure. Our study suggests that by and large, Indian crust is intermediate to mafic in composition. On an average, only a couple of kilometers of the initially formed upper (granitic-gneissic) crust now remains in place and a thick chunk of the original lower crust has been consumed by the underlying thermally buoyant mantle due to sub-crustal erosion and then subsequently replaced by possibly as much as about 16 km thick magma layer on either side of the Moho. This study throws a new light on the geologic and geodynamic evolution of this region and contradicts the hitherto believed paleo-stability of the Indian shield.  相似文献   

3.
The estimates of rheological thickness and total lithospheric strength for the Indian continental lithosphere have been obtained based on the representative rheological properties of upper crust, lower crust and upper mantle, and some of the available heat flow and heat generation data. The rheological thickness, computed at different locations in the Indian shield, shows lateral variation ranging from 79km in the southern part to 65 km in the northern part for a strain rate of 10-14 s-1. The total strength of the continental lithosphere is of the order of 1013 Nm-1 for the same value of strain rate and decreases northward. The computations carried out for a range of strain rates show an increase in the rheological thickness and strength of the lithosphere with increasing strain rate. These results would be important in understanding the flexural response of the Indian continental lithosphere to surface and subsurface loading, and response to tectonic forces acting on it.  相似文献   

4.
A two‐dimensional thermorheological model of the Central Alps along a north–south transect is presented. Thermophysical and rheological parameters of the various lithological units are chosen from seismic and gravity information. The inferred temperature distribution matches surface heat flow and results in Moho temperatures between 500 and 800 °C. Both European and Adriatic lithospheres have a ‘jelly‐sandwich’ structure, with a 15–20 km thick brittle upper crust overlying a ductile lower crust and a mantle lid whose uppermost part is brittle. The total strength of the lithosphere is of the order of 0.5–1.0 × 1013 N m−1 if the upper mantle is dry, or slightly less if the upper mantle is wet. In both cases, the higher values correspond to the Adriatic indenter.  相似文献   

5.
The estimate of the paleothermal state (at −3 Ga) of the Indian shield is deduced using pressure and temperature estimates from the mineral assemblages combined with models of the heat transport mechanism and depth distribution of radiogenic heat in the crust. We find that at 3 Ga ago, the mean thermal gradient within the crust, reduced heat flow and mean mantle temperature were 28°C/km 1.08 h.f.u. and 2350°C, respectively.  相似文献   

6.
中国东北地区地热资源及热结构分析   总被引:1,自引:0,他引:1  
在我国东北地区,盆地的热流高而在山区和地台区(额尔古纳和佳木斯地台)热流较低,通过对该区的研究发现,在地壳和上地幔中莫霍面埋深,高导层埋深和热流值之间存在着密切的联系,通过对该区热流数据分析我们可以得到这样的结论:该区的地壳和上地幔的热结构引起了热流分布的变化。计算结果还表明,该区地台的地幔热流,地壳中10km以下和10km以上的热流对地表热流的贡献不同。该区松辽盆地中广泛分布着传导型中低温地热资源,对松辽盆地地热资源的开发利用有着广泛的前景。最后结合已有的地质和物探资料,还给出了长白山天池火山地区长白温泉地热系统的概念性模型。  相似文献   

7.
Progress in the Study of Deep Profiles of Tibet and the Himalayas (INDEPTH)   总被引:5,自引:0,他引:5  
This paper introduces 8 major discoveries and new understandings with regard to the deep structure and tectonics of the Himalayas and Tibetan Plateau obtained in Project INDEPTH, They are mainly as follows. (1) The upper crust, lower crust and mantle lithosphere beneath the blocks of the plateau form a "sandwich" structure with a relatively rigid-brittle upper crust, a visco-plastic lower crust and a relatively rigid-ductile mantle lithosphere. This structure is completely different from that of monotonous, cold and more rigid oceanic plates. (2) In the process of north-directed collision-compression of the Indian subcontinent, the upper crust was attached to the foreland in the form of a gigantic foreland accretionary wedge. The interior of the accretionary wedge thickened in such tectonic manners as large-scale thrusting, backthrusting and folding, and magmatic masses and partially molten masses participated in the crustal thickening. Between the upper crust and lower crust lies a large detachment (e.g  相似文献   

8.
Thermal and rheological structures of the Xisha Trough, South China Sea   总被引:8,自引:0,他引:8  
The Xisha Trough, located in the northwest of the South China Sea (SCS) mainly rifted 30 Ma ago, has been a failed rift since the cessation of the seafloor spreading of the NW subbasin. Based on the velocity–depth model along Profile OBH-4 across the Xisha Trough, a seven-layer density–depth model is used to estimate density structure for the profile. The relationship between seismic velocity and radiogenic heat production is used to estimate the vertical distribution of heat sources in the lower crust. The 2-D temperature field is calculated by applying a 2-D numerical solution of the heat conduction equation and the thermal lithosphere thickness is obtained from the basalt dry solidus (BDS). The rheology of the profile is estimated on the basis of frictional failure in the brittle regime and power-law steady-state creep in the ductile regime. Rheological model is constructed for a three-layer model involving a granitic upper crust, a quartz diorite lower crust and an olivine upper mantle. Gravity modeling supports basically the velocity–depth model. The Moho along Profile OBH-4 is of relatively high heat flow ranging from 46 to 60 mW/m2 and the Moho heat flow is higher in the trough than on the flanks. The depth of the “thermal” lithospheric lower boundary is about 54 km in the center, deepens toward two sides, and is about 75 km at the northern slope area and about 70 km at the southern Xisha–Zhongsha Block. Rheological calculation indicates that the two thinnest ductile layers in the crust and the thickest brittle layer in the uppermost mantle lie in the central region, showing that the Xisha Trough has been rheologically strengthened, which are mainly due to later thermal relaxation. In addition, the strengthening in rheology during rifting was not the main factor in hampering the breakup of the Xisha Trough.  相似文献   

9.
为了探讨东海陆架盆地西湖凹陷岩石圈热流变性质,本文以实测地温数据为依据,模拟西湖凹陷岩石圈热结构,在此基础上,应用流变学原理模拟确定西湖凹陷岩石圈流变性质。结果表明,西湖凹陷岩石圈为一个冷地壳-热地幔、强地壳-弱地幔的"奶油蛋糕"型岩石圈。西湖凹陷平均地表热流密度为71 m W/m~2,地幔热流密度为40~65 m W/m~2,对地表热流密度的贡献度达73%~79%,地表热流受地幔热流控制,莫霍面温度在700℃左右,热岩石圈平均厚度为66 km。西湖凹陷岩石圈流变分层明显,上、中地壳基本为脆性层,下地壳和岩石圈上地幔为韧性层,岩石圈总流变强度平均约为2.65′10~(12) N/m,其中地壳流变强度为2.12′10~(12) N/m,地幔流变强度为5.29′10~(11) N/m,有效弹性厚度为11.7~14.5 km,地壳的流变性质控制了岩石圈的流变行为。此外,西湖凹陷岩石圈总强度较低,在构造应力作用下易于变形,且存在壳幔解耦现象。西湖凹陷岩石圈热状态及流变性质决定了西湖凹陷东部地区主要以浅部地壳的断层滑动和地层破裂来调节深部的构造应力。  相似文献   

10.
济阳坳陷地幔热流和深部温度   总被引:6,自引:2,他引:6  
济阳坳陷深部地热状况对于分析岩石圈深部结构特征、探索该盆地形成和演化的地球动力学过程具有重要意义.依据济阳坳陷最新的钻探资料和深部地球物理探测结果, 按沉积盖层、上、中、下地壳4层结构, 建立了分别代表该区凹陷部位和凸起及斜坡带上的2种地壳结构模型.通过多道能谱分析, 测试了区内4 3块岩心样品的放射性元素U、Th、40K含量, 统计得出了济阳坳陷沉积盖层的平均生热率为(1.40±0.26) μW/m3.在研究大地热流分布的基础上, 结合济阳坳陷地壳各岩层放射性生热率, 采用“剥层”法, 从地表开始, 由浅到深逐步扣除各层段所提供的热量, 得到了济阳坳陷的地幔热流.并且采用相似的方法, 利用一维稳态热传导方程, 分析了地壳上地幔顶部的温度状况.结果表明, 济阳坳陷的地幔热流约为38.4~39.2 mW/m2, 占整个地表总热流量的5 8%;地幔顶部温度约为602~636℃.与世界上其他各类地质构造单元相比, 济阳坳陷无论是地幔热流值或其与地表热流之比值都是比较高的, 其深部地热状态具有介于稳定地区和构造活动区之间的特点.   相似文献   

11.
International Journal of Earth Sciences - Earthquakes in the brittle upper crust induce viscoelastic flow in the lower crust and lithospheric mantle, which can persist for decades and lead to...  相似文献   

12.
A three-component broadband seismograph is in operation since January 2007 at the Indian School of Mines (ISM) campus, Dhanbad. We have used the broadband (BB) seismograms of 17 teleseismic events (M ≥ 5.8) recorded by this single BB station during 2008–09 to estimate the crust and upper mantle discontinuities in Dhanbad area which falls in the peninsular India shield. The converted wave technique and the Receiver function analysis are used. A 1-D velocity model has been derived using inversion. The Mohorovicic (Moho) discontinuity (crustal thickness) below the ISM observatory is estimated to be ∼41 km, with an average Poisson ratio of ∼0.28, suggesting that the crust below the Dhanbad area is intermediate to mafic in nature. The single station BB data shed new light to the estimate of crustal thickness beneath the eastern India shield area, which was hitherto elusive. Further, it is observed that the global upper mantle discontinuity at 410 km is delayed by ∼0.6 sec compared to the IASP-91 global model; this may be explained by a slower/hotter upper mantle; while the 660 km discontinuity is within the noise level of data.  相似文献   

13.
利用现今青藏高原地质和地球物理研究成果,本文建立了垂直高原总体构造走向的南北向直立剖面的有限元模型,其根据实际资料,划分成分层和有限单元。在此模型基础上进行弹性材料的计算模拟和分析。 印度板块向北运动挤压、高原北部岩石圈阻碍及软流圈拖曳是青藏高原北移变形、隆升和地壳增厚的动力机制;重力及其均衡调整作用是地体间相对运动和地体内差异运动的主要动力,另外青藏高原还受地壳和上地幔结构构造的影响。计算模拟还得到了一些有实际意义的结果,如活动的地质构造和地球物理现象的分带集中、主边界和雅鲁藏布江等地体边界断裂的逆冲性质、各地体南部地表的南倾正断层及喜马拉雅山南坡向南的重力推覆等。  相似文献   

14.
地球深度热状况是深部地球动力学和岩石圈活动性研究的重要内容, 岩石圈热结构和热-流变结构可以很好地揭示岩石圈范围内的热状况。近年来, 在青海共和盆地钻探揭露了深部高温干热岩体, 关于其热源机制尚未有定论。本文以青海共和盆地为研究对象, 分析壳内温度分布和流变强度, 探讨壳内低速体的地质属性。结果表明, 共和盆地的地壳流变结构从上而下分为脆性和韧性两层, 韧性层又包括中地壳和下地壳两层韧性层, 在上地壳尺度均表现为脆性破裂为主, 并逐渐过渡为韧性流变; 恰卜恰地区在脆性破裂的上地壳延伸至中下地壳时, 破裂沿一系列滑脱面发生韧性滑动, 局部地段形成壳内熔融, 为恰卜恰地区提供了额外的热源, 使其大地热流值(109.6 mW/m2)显著高于贵德地区(77.6 mW/m2)。这一认识为共和盆地壳内低速体存在提供了新的佐证, 也为区内干热岩热源分析以及高温地热资源探测开发提供了科学依据。  相似文献   

15.
西藏罗布莎豆荚状铬铁矿成矿演化的构造过程   总被引:5,自引:0,他引:5  
李德威 《现代地质》1995,9(4):450-458,T001
摘要:通过对罗布莎铬铁矿区的构造解析,揭示出了豆荚状铬铁矿的成矿演化规律。由地幔韧性剪切带和脆-韧性剪切带组成的含铬剪切带是成矿期构造,被造山期发生的变形分解作用和脆性断裂作用改造,成矿演化经历了从上地幔到上地壳所发生的5个构造变形相的转换,即熔融流变变形相→地幔韧性剪切变形相→壳幔脆→韧性剪切变形相→塑性挤压变形相→脆性断裂变形相,可划分为中生代改造成矿和新生代矿床改造两个阶段,并概括为包含6个变形世代的构造成矿序列。  相似文献   

16.
为研究青藏高原地壳上地幔深部结构构造特征,近年来开展了大量的宽频地震探测工作。笔者收集了最近十几年来在青藏高原内部及其周缘布设的宽频带临时台网和固定台站情况,综合论述了宽频地震层析成像方法在青藏高原深部结构探测,如地壳低速层、印度岩石圈地幔俯冲、青藏高原北部构造研究中所取得的成果。  相似文献   

17.
南华北盆地群岩石圈热-流变结构   总被引:4,自引:0,他引:4  
结合南华北盆地群现代地温场资料和深部地震测深资料及岩石热物性参数,对南华北盆地群的热结构进行了研究。结果表明:南华北盆地群平均热流值为53.7 mW/m2,地幔热流为30~34 mW/m2,莫霍面温度为500~550℃,热岩石圈厚度为110~130 km。在此基础上,进行了岩石圈流变模拟,探讨了研究区的岩石圈流变特征及其地球动力学意义。南华北盆地群岩石圈强度为(7.6~23.3)×1012 N/m,具有显著的 “三明治”结构。上地壳表现为脆性变形,中、下地壳为韧性的流动变形。这一分层变形机制决定了南华北盆地群的成盆演化动力学过程。  相似文献   

18.
用物理模拟实验研究大陆伸展构造   总被引:6,自引:0,他引:6  
本文以岩石圈多层构造为基础,按照下地壳和岩石圈地幔塑性流动控制上地壳构造变形的思想,采用脆延性双层模型进行伸展构造模拟实验。模拟结果表明,延性层流动速度比脆性层运动速度大,对脆性层具有牵引作用;受挤压和边界流动控制,模型构造变形出现伸展区、过渡区和挤压区,其中以伸展区的"地堑-地垒"式伸展构造为主。模型表面标志点位移表明,模型脆性层变形量主要集中在断裂发育部位,而断裂之间块体变形量基本可以忽略不计。此外,实验中还观察到在脆性层断裂部位出现延性层被动上隆现象。   相似文献   

19.
随着板块构造学说的兴起和发展,对大洋地区构造活动、地热及地壳-上地幔结构之间的关系已有了较为明确的认识。在大陆地区,由于其构造发展历史的复杂性,对这种关系的认识还远没有大洋区那样系统和清晰。但近二十年来,大陆地区各种地球物理资料的大量积累已为进行这种研究提供了较为坚实的基础。  相似文献   

20.
Modes of thickening of analogue weak lithospheres   总被引:4,自引:2,他引:4  
Several compressional contexts, such as those involving juvenile or thickened crust, are expected to be associated with rather hot lithospheres whose mechanical behaviour remains poorly documented. In this paper, we present a series of analogue models dedicated to compression of lithospheres characterized by a thin upper brittle crust overlying a weak ductile crust and a ductile sub-Moho mantle. The models show that (1) deformation is controlled by the ductile layers that undergo distributed thickening, (2) thrust systems are limited to the upper brittle crust, (3) thrusting induces burial and stacking of upper crust pop-downs. The overall deformation patterns can be basically interpreted in terms of pop-down thrusting of the brittle crust and pure-shear type ductile flow of crust and mantle. Moreover, the models show that the sinking of supracrustal units does not require inverse density profiles but can be simply driven by compression. Model deformation patterns are consistent with those shared by many ancient belts, including not only Archaean granite–greenstone belts, but also more generally Paleoproterozoic ones. They provide also insights on deformation modes that may characterize modern thickened and abnormally hot domains like High Plateaus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号