首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Overlying bottom water samples were collected in the Vistula River plume, southern Baltic Sea, (Poland) and analysed for dissolved and labile particulate (1 M HCl extractable) Cu, Pb, Zn, Mn, Fe and Ni, hydrological parameters being measured simultaneously. Particulate organic matter (POM), chlorophyll a and dissolved oxygen are key factors governing the chemical behaviour of the measured metal fractions. For the dissolved Cu, Pb, Zn, Fe and Ni two maxima, in the shallow and in the deeper part of the river plume, were found. In the shallow zone desorption from seaward fluxing metal-rich riverine particles account for markedly increased metal concentrations, as confirmed also by high particulate metal contents. For Pb, atmospheric inputs were also considered to have contributed to the elevated concentrations of dissolved Pb adjacent to the river mouth. In the deep zone desorption from detrital and/or resuspended particles by aerobic decomposition of organic material may be the main mechanism responsible for enrichment of particle-reactive metals (Cu, Pb, Zn) in the overyling bottom waters. The increased concentrations of dissolved Fe may have been due to reductive dissolution of Fe oxyhydroxides within the deep sediments by which dissolved Ni was released to the water. The distribution of Mn was related to dissolved oxygen concentrations, indicating that Mn is released to the water column under oxygen reduced conditions. However, Mn transfer to the dissolved phase from anoxic sediments in deeper part of the Vistula plume was hardly evidenced suggesting that benthic flux of Mn occurs under more severe reductive regime than is consistent with mobilization of Fe. Behaviour of Mn in a shallower part has been presumably affected by release from porewaters and by oxidization into less soluble species resulting in seasonal removal of this metal (e.g. in April) from the dissolved phase. The particulate fractions represented from about 6% (Ni) and 33% (Mn, Zn, Cu) to 80% (Fe) and 89% (Pb) of the total (labile particulate plus dissolved) concentrations. The affinity of the metals for particulate matter decreased in the following order: Pb > Fe > Zn > or = > Cu > Mn > Ni. Significant relationships between particulate Pb-Zn-Cu reflected the affinity of these metals for organic matter, and the significant relationship between Ni-Fe reflected the adsorption of Ni onto Fe-Mn oxyhydroxides. A comparison of metal concentrations with data from other similar areas revealed that the river plume is somewhat contaminated with Cu, Pb and Zn which is in agreement with previous findings on anthropogenic origin of these metals in the Polish zone of southern Baltic Sea.  相似文献   

2.
A laboratory experiment was carried out in which the flocculation products, formed from the mixing of filtered (0.4 μm) river water and seawater, were analysed. This study established that Fe, Mn, Al, Cu, Ni, Cd and Co have resolvable and well-defined estuarine chemistries. Copper, Ni, Mn and Co have salinity dependences of removal which are similar to those of dissolved Fe and humic acids. The amount of removal of the above trace metals increases between 0 and 15–18‰, after which little additional removal occurs. The extents of removal from river water are very different: Fe, 95%; Al, 20%; Cu, Ni, 40%; Co, 10%; Cd, 5% and Mn, 25–45%. The basic removal mechanism appears to be the estuarine flocculation of trace metals which exist, in part, in river water as colloids in association with colloidal humic acids and hydrous iron oxides. A qualitative model, based on this mechanism, supports the observations of this flocculation study.The results of this study give the most complete and consistent set of data presently available, from which to postulate the most important processes controlling the estuarine chemistry of trace metals. The generality of their behaviours still needs to be determined by future investigations.  相似文献   

3.
The distribution of the dissolved labile and of the particulate Fe and Cu together with dissolved oxygen, nutrients, chlorophyll a and total particulate matter was investigated in the surface waters of Terra Nova Bay polynya in mid-January 2003. The measurements were conducted within the framework of the Italian Climatic Long-term Interactions of the Mass balance in Antarctica (CLIMA) Project activities. The labile dissolved fraction was operationally defined by employing the chelating resin Chelex-100, which retains free and loosely bound trace metal species. The dissolved labile Fe ranges from below the detection limit (0.15 nM) to 3.71 nM, while the dissolved labile Cu from below the detection limit (0.10 nM) to 0.90 nM. The lowest concentrations for both metals were observed at 20 m depth (the shallowest depth for which metals were measured). The concentration of the particulate Fe was about 5 times higher than the dissolved Fe concentration, ranging from 0.56 to 24.83 nM with an average of 6.45 nM. The concentration of the particulate Cu ranged from 0.01 to 0.71 nM with an average of 0.17 nM. The values are in agreement with the previous data collected in the same area. We evaluated the role of the Fe and Cu as biolimiting metals. The N:dissolved labile Fe ratios (18,900–130,666) would or would not allow a complete nitrate removal, on the basis of the N:Fe requirement ratios that we calculated considering the N:P and the C:P ratios estimated for diatoms. This finding partially agrees with the Si:N ratio that we found (2.29). Moreover we considered a possible influence of the dissolved labile Cu on the Fe uptake process.  相似文献   

4.
Dissolved trace element concentrations (Ba, Fe, Mn, Si, Sr, and Zn) were investigated in the Haicheng River near to the Liaodong Bay in Northeast China during 2010. Dissolved Ba, Fe, Mn, and Sr showed significant spatial variation, whereas dissolved Fe, Mn, and Zn displayed seasonal variations. Conditions such as water temperature, pH, and dissolved oxygen were found to have an important impact on redox reactions involving dissolved Ba, Fe, and Zn. Dissolved Fe and Mn concentrations were regulated by adsorption or desorption of Fe/Mn oxyhydroxides and the effects of organic carbon complexation on dissolved Ba and Sr were found to be significant. The sources of dissolved trace elements were found to be mainly from domestic sewage, industrial waste, agricultural surface runoff, and natural origin, with estimated seasonal and annual river fluxes established as important inputs of dissolved trace elements from the Haicheng River into the Liaodong Bay or Bohai Sea.  相似文献   

5.
In the near pristine environment of a silled fjord on the west coast of Scotland samples were taken for the determination of dissolved and particulate trace metals (Fe, Mn, Cu, Ni, Cd, Zn and Pb), together with nutrient and hydrographic data, during 19 surveys carried out over a year. An indication of the pristine nature of the environment are the low concentrations of dissolved silicon, phosphate and nitrate which are considerably lower than those of coastal waters which are subject to larger anthropogenic burdens. Distributions of dissolved Cu, Ni and Cd were found to broadly reflect conservative mixing of freshwater and seawater with both end members having similar concentrations. The concentration of dissolved Cu and Ni in seawater entering upper Loch Linnhe (Cu 0.28 μg l−1; Ni 0.26 μg l−1) was consistent with the 1:1 conservative mix of Irish Sea water and North Atlantic surface water predicted from radio-caesium tracer experiments (Mackay & Baxter, 1985). Atmospheric input of trace metals to upper Loch Linnhe appeared to be a relatively minor term in the mass balance relative to fluvial inputs. Values of distribution coefficients Kd were similar to those previously reported for the coastal environment. Iron showed the strongest affinity for the suspended sediments; with particulate percentages of the total load usually greater than 80%. Lead and Mn showed a similar strong affinity to the particle phase. For Cu, Ni and Zn the mass of the element in the dissolved phase was generally greater than that in the particulate fraction. Cadmium, was least associated with the particles, with typically greater than 90% existing in the dissolved phase.  相似文献   

6.
Phytoplankton diversity, primary and bacterial production, nutrients and metallic contaminants were measured during the wet season (July) and dry season (March) in the Bach Dang Estuary, a sub-estuary of the Red River system, Northern Vietnam. Using canonical correspondence analysis we show that phytoplankton community structure is potentially influenced by both organometallic species (Hg and Sn) and inorganic metal (Hg) concentrations. During March, dissolved methylmercury and inorganic mercury were important factors for determining phytoplankton community composition at most of the stations. In contrast, during July, low salinity phytoplankton community composition was associated with particulate methylmercury concentrations, whereas phytoplankton community composition in the higher salinity stations was more related to dissolved inorganic mercury and dissolved mono and tributyltin concentrations. These results highlight the importance of taking into account factors other than light and nutrients, such as eco-toxic heavy metals, in understanding phytoplankton diversity and activity in estuarine ecosystems.  相似文献   

7.
The Odra river flood of 1997 was a rare hydrological as well as an interesting sedimentological event. At Hohenwutzen (Lower Odra River) we observed the suspended particulate matter transport and the temporal development of water and solidsπ pollution with heavy metals and As. While the suspended particulate matter concentration decreased the trace element concentrations increased during the flood by fractionation of particles and solution processes. Because of a successive flooding of differently contaminated sedimentary sources and polluted regions the contents of heavy metals developed irregularly. Their median particulate concentrations did not exceed the values of older samples taken under mean discharge conditions between 1989 and 1995. The dissolved amounts correspond to those of the Elbe river in 1990. During the flood the dissolved share of all analyzed total element contents increased. The total loads increased 4fold (Cr) to 17fold (Cd).  相似文献   

8.
Surface transects and vertical profiles of total and leachable particulate Fe, Mn, Al and P, along with dissolved and soluble Fe were obtained during August 2003 in the southeastern Bering Sea. High concentrations of leachable particulate Fe were observed in the bottom waters over the Bering Sea shelf with an unusually high percentage of the suspended particulate Fe being leachable. Leachable particulate Fe averaged 81% of total particulate Fe, and existed at elevated concentrations that averaged 23 times greater than dissolved Fe in the isolated cool pool waters over the mid shelf where substantial influence of sedimentary denitrification was apparent. The elevated leachable particulate Fe is suggested to be a result of sedimentary Fe reduction in surficial sediments, diffusion of Fe(II) from the sediments to the bottom waters, and subsequent oxidation and precipitation of reduced Fe in the overlying bottom waters. Eddies and meanders of the Bering Slope Current can mix this Fe-rich water into the Green Belt at the outer shelf-break front. Elevated levels of leachable particulate Fe were observed in surface waters near the Pribilof Islands where enhanced vertical mixing exists. Storm events and/or cooling during fall/winter with the resultant destruction of the thermally stratified two-layer system can also mix the subsurface water into surface waters where the elevated leachable particulate Fe is a substantial source of biologically available Fe.  相似文献   

9.
Several studies have provided evidence for the enrichment of trace elements in coastal waters, particularly for copper. These enrichments have been attributed to diffusion from continental shelf sediments and to an influx of river water. We attempted to resolve between these sources by undertaking an extensive suite of measurements of trace metals (Cu, Ni, Cd), 226Ra and 228Ra in the surface waters of the Gulf of Mexico, along with trace metal profiles at 6 stations (April 1981 and December 1982). These data establish that enrichments of copper, nickel and cadmium occur in the shallow waters of the Gulf of Mexico. On the Mississippi continental shelf, high trace element concentrations (Cu, Ni: ~ 9 nmol/kg; Cd: ~ 200 pmol/kg) in lower-salinity waters (26‰) are similar to those observed in the Mississippi plume at the same salinity. This evidence suggests a river water source. On the other hand, trace element enrichments are also observed in the northern Gulf (Cu: +0.4 nmol/kg; Ni: +0.5 nmol/kg; Cd: +20 pmol/kg) which coincide with an increase in 228Ra but are not accompanied by decreased salinity. The excess of evaporation over precipitation in this region makes it possible that this water could be evaporated estuarine water; therefore, hydrographic observations cannot distinguish readily between river and shelf sources. A regional flux balance shows that most of the excess copper in the surface waters of the Florida Current can be supplied by the river-borne dissolved copper flux. Within the uncertainties of such calculations, the continental shelf copper flux must be less than or equal to the river flux.  相似文献   

10.
Suspended particulate matter (SPM) was collected in the freshwater-seawater mixing zone in the lower reaches of the Daugava River (Latvia) and adjacent marine area, during five cruises in 1998-2001. The study focused on biogeochemical phase exchange processes. SPM in the freshwater was found to be mainly allochthonous with a high content of organic matter, Mn and sorbed phosphate. Property-salinity plots suggested flocculation of humic-Fe complexes across the salinity gradient. The variability of sorbed phosphate was related to particulate Fe, although no dependence on pH and ionic strength was observed. The Mn contents of SPM mainly follow conservative mixing, but there are also indications of interface exchange of Mn in the mixing zone. The geochemical behaviour of particulate Al appears to differ from that of Fe. In early spring, trace element contents in SPM (Cr, Ni, Cu, Zn, Cd, Pb) correlate tightly with particulate organic matter, whose distribution is linked to phytoplankton distributions.  相似文献   

11.
A total of 95 surface water samples (6 m depth) was collected during a transect from the Bothnian Bay to Kiel between 28 August and 5 September 1982. This report presents the dissolved trace metal (<0.4 μm) and the associated hydrographic and nutrient data. Except for aluminium, all other metals determined (Zn, Cd, Cu, Ni, Fe, Mn) showed a rather homogeneous distribution within the subregions, with highest values in the Bothnian Bay (except for Mn) and net variations of the individual samples of about 20%. Cadmium, copper and nickel reveal conservative behaviour when values from this study and literature data from the Kattegat and North Sea area are plotted against salinity.  相似文献   

12.
In this study,accumulation and distribution of Pb,Cu,Zn,Co,Ni,Mn and Fe in water,bottom sediments and four plant species (Myriophyllum verticillatum,Hydrocharis morsus-ranae,Nymphaea alba and Typha latifolia) were investigated in (C)ernek Lake of Kizihrmak Delta.The Kizdirmak Delta is one of the largest natural wetlands of Turkey and it is protected by the Ramsar convention since 1993.Selected physico-chemical parameters such as pH,conductivity and dissolved oxygen and also trace metal concentrations were monitored in water.All the parameters obtained were found higher than that of the national standards for the protected lakes and reserves.The accumulated amounts of various trace metals in bottom sediments and wetland plants were found in the following order of Fe > Mn > Zn > Ni > Co > Cu > Pb and Fe > Mn > Zn > Ni > Co respectively.The historical trace metal intake of Myriophyllum verticillatum,Hydrocharis morsus-ranae,Typha latifolia and Nymphaea alba were obtained higher than that of the toxic metal levels and these plants may be accepted as accumulators for the detected trace metals and also bioindicators in the historically polluted natural areas.  相似文献   

13.
This study addresses the changes in dissolved major and trace element concentrations along the Orinoco River, including the mixing zone between the Orinoco and Apure Rivers. Water samples from the Apure and Orinoco Rivers were collected monthly in four sectors over a period of 15 months. Auxiliary parameters (pH, dissolved oxygen, conductivity, and temperature), total suspended sediments, dissolved organic carbon (DOC), and major (Na, K, Ca, Mg, and Si) and trace (Al, Fe, Mn, Zn, Cu, and Cr) element concentrations were measured in all sectors. The relative contribution of both rivers after the Apure–Orinoco confluence was determined using Ca as a tracer. Moreover, a mixing model was developed to determine whether dissolved species exhibit a conservative behavior during mixing. The results indicate that DOC is removed from waters during the Apure–Orinoco mixing, probably due to absorption of DOC on mineral phases supplied by the Apure River. Dissolved Na, Ca, and Mg behave conservatively during the mixing processes, and their concentrations are controlled by a dilution process. The anomaly in the temporal pattern of K in the Orinoco is caused by the input of biogenic K originating from the Apure River during the high‐water stage. The loss of dissolved Si during the low‐water stage can be explained by the uptake of Si by diatoms. Dissolved Mn, Zn, Al, and Fe showed a non‐conservative behavior during the Apure–Orinoco mixing. The removal of Mn and Zn from the dissolved phase can be explained by the formation of Mn‐oxyhydroxides and the scavenging of Zn onto Mn oxides. Dissolved Fe is controlled by redox processes, although the removals of Fe and Al due to the preferential adsorption of large organometallic complexes by mineral surfaces after the Apure–Orinoco confluence can affect the mobility of both elements during transport. The conservative behavior shown by Cu and Cr can be related to the tendency of both elements to be complexed with small organic colloids, which are not preferentially adsorbed by clays.  相似文献   

14.
《Marine pollution bulletin》2009,58(6-12):624-631
The Western Scheldt river and estuary is known to be highly polluted as it receives industrial, agricultural and domestic effluents from one of the most populated and industrialised zones in Europe. Aquatic organisms are exposed to pollutants, specifically metals that are present in different environmental phases, e.g. dissolved, suspended material or sediment phases. The objective of this study was to study the relationship that exists between environmental metal levels, the degree of metal uptake by aquatic organisms with the concomitant biological responses. For this purpose the bivalve mollusk, Mytilus edulis, was selected as bioaccumulation indicator organism. Environmental (water and sediment) and mussel samples were collected during the late winter (March 2000) from sampling sites in the Scheldt estuary. Sites were selected to represent a salinity gradient from the mouth of the estuary to the furthest distribution area of mussels upstream in the system. Together with standard water quality parameters (e.g. salinity, dissolved oxygen, dissolved organic carbon, etc.) concentrations of twelve metals were analysed in the water (dissolved and suspended matter) and sediments. Levels of these metals were also measured in the soft tissue of M. edulis, together with concomitant biomarker responses in resident mussel populations at each site. The biomarkers that were included in this study were condition index, scope for growth, survival in air, cell membrane stability, DNA damage, and metallothioneins. Data were subjected to multivariate statistical analysis. The physico-chemical parameters and metals in the environmental samples clustered the sites to reflect the distribution based on the salinity gradient. Bioaccumulation results revealed increased metal uptake along a pollution gradient with the highest metal bioaccumulation occurring at the upstream most sites and therefore closest to the in the industrial activities. However, the biomarker responses clustered the sites in a manner that reflected the influence of combination of internal exposure (bioaccumulation) and external exposure (physico-chemical conditions). These differences in biomarker responses clearly demonstrated were attributed to abiotic factors other than metal pollution alone e.g. localized short-term increases in increased suspended sediment concentrations and decreased dissolved oxygen concentrations.  相似文献   

15.
The Western Scheldt river and estuary is known to be highly polluted as it receives industrial, agricultural and domestic effluents from one of the most populated and industrialised zones in Europe. Aquatic organisms are exposed to pollutants, specifically metals that are present in different environmental phases, e.g. dissolved, suspended material or sediment phases. The objective of this study was to study the relationship that exists between environmental metal levels, the degree of metal uptake by aquatic organisms with the concomitant biological responses. For this purpose the bivalve mollusk, Mytilus edulis, was selected as bioaccumulation indicator organism. Environmental (water and sediment) and mussel samples were collected during the late winter (March 2000) from sampling sites in the Scheldt estuary. Sites were selected to represent a salinity gradient from the mouth of the estuary to the furthest distribution area of mussels upstream in the system. Together with standard water quality parameters (e.g. salinity, dissolved oxygen, dissolved organic carbon, etc.) concentrations of twelve metals were analysed in the water (dissolved and suspended matter) and sediments. Levels of these metals were also measured in the soft tissue of M. edulis, together with concomitant biomarker responses in resident mussel populations at each site. The biomarkers that were included in this study were condition index, scope for growth, survival in air, cell membrane stability, DNA damage, and metallothioneins. Data were subjected to multivariate statistical analysis. The physico-chemical parameters and metals in the environmental samples clustered the sites to reflect the distribution based on the salinity gradient. Bioaccumulation results revealed increased metal uptake along a pollution gradient with the highest metal bioaccumulation occurring at the upstream most sites and therefore closest to the in the industrial activities. However, the biomarker responses clustered the sites in a manner that reflected the influence of combination of internal exposure (bioaccumulation) and external exposure (physico-chemical conditions). These differences in biomarker responses clearly demonstrated were attributed to abiotic factors other than metal pollution alone e.g. localized short-term increases in increased suspended sediment concentrations and decreased dissolved oxygen concentrations.  相似文献   

16.
The Western Scheldt river and estuary is known to be highly polluted as it receives industrial, agricultural and domestic effluents from one of the most populated and industrialised zones in Europe. Aquatic organisms are exposed to pollutants, specifically metals that are present in different environmental phases, e.g. dissolved, suspended material or sediment phases. The objective of this study was to study the relationship that exists between environmental metal levels, the degree of metal uptake by aquatic organisms with the concomitant biological responses. For this purpose the bivalve mollusk, Mytilus edulis, was selected as bioaccumulation indicator organism. Environmental (water and sediment) and mussel samples were collected during the late winter (March 2000) from sampling sites in the Scheldt estuary. Sites were selected to represent a salinity gradient from the mouth of the estuary to the furthest distribution area of mussels upstream in the system. Together with standard water quality parameters (e.g. salinity, dissolved oxygen, dissolved organic carbon, etc.) concentrations of twelve metals were analysed in the water (dissolved and suspended matter) and sediments. Levels of these metals were also measured in the soft tissue of M. edulis, together with concomitant biomarker responses in resident mussel populations at each site. The biomarkers that were included in this study were condition index, scope for growth, survival in air, cell membrane stability, DNA damage, and metallothioneins. Data were subjected to multivariate statistical analysis. The physico-chemical parameters and metals in the environmental samples clustered the sites to reflect the distribution based on the salinity gradient. Bioaccumulation results revealed increased metal uptake along a pollution gradient with the highest metal bioaccumulation occurring at the upstream most sites and therefore closest to the in the industrial activities. However, the biomarker responses clustered the sites in a manner that reflected the influence of combination of internal exposure (bioaccumulation) and external exposure (physico-chemical conditions). These differences in biomarker responses clearly demonstrated were attributed to abiotic factors other than metal pollution alone e.g. localized short-term increases in increased suspended sediment concentrations and decreased dissolved oxygen concentrations.  相似文献   

17.
We examined particle size distributions of suspended particulate matter (SPM); physical and environmental influences on the observed distributions; and relationships between particle size and geochemical partitioning of metals, over the fall and winter period in a small urban river (Don River, Toronto, Ontario, Canada). For this dataset, the majority of particles (80%) in suspension were less than 10 µm in size. In addition, while total SPM concentrations showed a positive trend with increasing discharge (Q); the proportions of particles found within given size classes were independent of both SPM concentration and Q. Temperature was the only measured environmental variable related to the particle concentrations within size classes. As water temperature increased, the concentration of particles in the smallest size class (1–4 µm) decreased, while the concentration of silt and/or algae sized particles (10–50 µm) increased. Increasing water temperatures may promote bacterial attachment to particles and their subsequent flocculation into larger sized particles. Decreasing concentrations of leachable (most labile) Cd, Zn and Mn were associated with increasing concentrations of the largest particles (70–150 µm) in suspension. In contrast, higher reducible (oxides) associated concentrations of Cd, Zn and Mn occurred with increasing concentrations of smaller particles (1–10 µm) in suspension. Both of these trends are speculated to reflect the importance of particle surface area for metal sorption reactions.  相似文献   

18.
Concentrations of dissolved metals (Cd, Cu, Ni, Mn and Zn) were determined for summer and winter, under low-flow conditions in Port Jackson, a microtidal, well-mixed estuary in south-east Australia. Mean concentrations of Cd (0.04+/-0.02 microg/l), Ni (0.86+/-0.40 microg/l), Mn (20.0+/-25 microg/l) and Zn (6.47+/-2.0 microg/l) were below water quality guidelines. Concentrations of Cu (1.68+/-0.37 microg/l), however, slightly exceeded recommended values. Dissolved Ni and Mn behaved mostly conservatively, whereas Cd, Cu and Zn showed mid-estuarine maxima. Peaks in Cd, Cu and Zn concentrations were located in the upper estuary, independent of the salinity and suspended particulate matter loading, and were consistent with anthropogenic inputs of metals in the estuary. Concentrations of dissolved Cu were highest in summer, whereas concentrations of Cd, Ni and Mn were significantly lower in summer than winter (P< or =0.05). The increase in temperature and biological activity during summer explained the seasonal variation. The sequence of log K(d) values (20-30 salinity) was Mn>Zn>Cu>Ni. These results give unique information concerning the contemporaneous distribution of dissolved trace metals in the Port Jackson estuary and they provide a data set against which the long-term contamination may be assessed.  相似文献   

19.
Determinations of dissolved reactive and total dissolved mercury, particulate and sedimentary mercury, dissolved organic carbon (DOC), particulate organic carbon (POC) and suspended particulate matter (SPM) have been made in the estuary of river Douro, in northern Portugal. The estuary was stratified by salinity along most of its length, it had low concentrations of SPM, typically <20 mg dm(-3), and concentrations of DOC in the range <1.0-1.8 mg dm(-3). The surface waters had a maximum dissolved concentration of reactive mercury of about 10 ng dm(-3), whereas for the more saline bottom waters it was about 65 ng dm(-3). The surface waters had maximum concentrations of total suspended particulate mercury of approximately 7 microg g(-1) and the bottom waters were always <1 microg g(-1). Concentrations of mercury in sediments was low and in the range from 0.06 to 0.18 microg g(-1). The transport of mercury in surface waters was mainly associated with organic-rich particulate matter, while in bottom waters the dissolved phase transport of mercury is more important. Lower particulate organic matter, formation of chlorocomplexes in more saline waters and eventually the presence of colloids appear to explain the difference of mercury partitioning in Douro estuarine waters.  相似文献   

20.
At present, there is a very limited information on the levels and distribution of dissolved metals in Manila Bay. In this study, the horizontal and vertical distribution of operationally defined species (labile, bound and total) of dissolved copper (Cu), cadmium (Cd) and zinc (Zn) were determined using differential pulse anodic and cathodic stripping voltammetry in water samples obtained from 18 stations in November 1998. In addition, the 24-h variability in the concentrations of these species at different depths in the water column was determined. These measurements were complemented by the determination of temperature, salinity, dissolved oxygen, chlorophyll a, particulate organic carbon and nutrients. Results showed that more than 50% of total dissolved copper and cadmium were labile while 50% of total dissolved zinc was organically bound. Vertical profiles showed that Cu, Cd and Zn concentrations were generally high at the surface. Zinc and cadmium were characterised by the presence of a mid-depth minimum while copper did not show any clear vertical trend.

Dissolved Cu concentrations during the spatial and diurnal samplings ranged from 0.32 to 6.95 nM and 1.52 to 45.65 nM, respectively. For Cd, the concentrations in 18 stations ranged from 0.05 to 2.92 nM, and from 0.03 to 2.42 nM over a 24-h period. Zn concentrations ranged from 2.48 to 147.43 nM and 2.87 to 88.27 nM during the spatial and diurnal samplings, respectively. The large variation in the concentration of Cu, Cd and Zn in the bay was observed to be associated with the presence of a large vertical density gradient in the water column, which appeared to limit the exchange of materials between the surface and bottom waters. Elevated levels of these metals near point sources suggest anthropogenic inputs in the bay.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号