首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Surface expression of the Chicxulub crater   总被引:2,自引:0,他引:2  
Pope KO  Ocampo AC  Kinsland GL  Smith R 《Geology》1996,24(6):527-530
Analyses of geomorphic, soil, and topographic data from the northern Yucatan Peninsula, Mexico, confirm that the buried Chicxulub impact crater has a distinct surface expression and that carbonate sedimentation throughout the Cenozoic has been influenced by the crater. Late Tertiary sedimentation was mostly restricted to the region within the buried crater, and a semicircular moat existed until at least Pliocene time. The topographic expression of the crater is a series of features concentric with the crater. The most prominent is an approximately 83-km-radius trough or moat containing sinkholes (the Cenote ring). Early Tertiary surfaces rise abruptly outside the moat and form a stepped topography with an outer trough and ridge crest at radii of approximately 103 and approximately 129 km, respectively. Two discontinuous troughs lie within the moat at radii of approximately 41 and approximately 62 km. The low ridge between the inner troughs corresponds to the buried peak ring. The moat corresponds to the outer edge of the crater floor demarcated by a major ring fault. The outer trough and the approximately 62-km-radius inner trough also mark buried ring faults. The ridge crest corresponds to the topographic rim of the crater as modified by postimpact processes. These interpretations support previous findings that the principal impact basin has a diameter of approximately 180 km, but concentric, low-relief slumping extends well beyond this diameter and the eroded crater rim may extend to a diameter of approximately 260 km.  相似文献   

2.
3.
The Chicxulub 200 km diameter crater located in the Yucatan platform of the Gulf of Mexico formed 65 Myr ago and has since been covered by Tertiary post-impact carbonates. The sediment cover and absence of significant volcanic and tectonic activity in the carbonate platform have protected the crater from erosion and deformation, making Chicxulub the only large multi-ring crater in which ejecta is well preserved. Ejecta deposits have been studied by drilling/coring in the southern crater sector and at outcrops in Belize, Quintana Roo and Campeche; little information is available from other sectors. Here, we report on the drilling/coring of a section of 34 m of carbonate breccias at 250 m depth in the Valladolid area (120 km away from crater center), which are interpreted as Chicxulub proximal ejecta deposits. The Valladolid breccias correlate with the carbonate breccias cored in the Peto and Tekax boreholes to the south and at similar radial distance. This constitutes the first report of breccias in the eastern sector close to the crater rim. Thickness of the Valladolid breccias is less than that at the other sites, which may indicate erosion of the ejecta deposits before reestablishment of carbonate deposition. The region east of the crater rim appears different from regions to the south and west, characterized by high density and scattered distribution of sinkholes.  相似文献   

4.
An integrated offshore/onshore reflection and refraction experiment was shot across the Chicxulub impact crater in 1996. The refraction data were previously inverted in 3D using first-arrival travel-time tomography. A regularized inversion, in which both data misfit and model roughness are minimized simultaneously, was used to determine a smooth velocity tomogram across the inner crater region. However, the experimental geometry for the refraction data was irregular, causing concern that this velocity model might not be well resolved. In this paper, we present a suite of checkerboard tests to investigate the lateral resolution of our velocity model. The Chicxulub crater is located partly onshore and partly offshore, with its centre close to the Yucatan coastline in Mexico. The shallow water limited acquisition of marine reflection data to distances of not closer than 25 km from the crater centre, and the centre of the structure is imaged with refraction data only. Intriguing velocity anomalies were observed across the central crater region, providing constraints on the lithological and structural form of Chicxulub. A high-velocity body within the central crater is most likely to represent lower-crustal rocks that were stratigraphically uplifted during the formation of this complex crater. The concave shape of this stratigraphic uplift suggests clues to the mechanics of large-crater collapse—the rocks appear to have moved upward and outward. An inward-dipping zone of lowered velocity has been interpreted as delimiting the outer edge of a central zone of melt-rich rocks. The resolution tests presented here indicate that these observed velocity anomalies are likely to be real.  相似文献   

5.
Impact craters are distinctive landforms on Moon, Mars, Venus and other bodies of the Solar System. In contrast, the Earth has few craters, due to the dynamic nature of the planet, where craters and other geological structures are destroyed, modified or covered. Planetary missions have also shown that in other worlds where craters are numerous and well preserved, the crater record has been modified, through the identification of buried structures. Studies of the concealed crater record have major implications for the crater‐size frequency distribution and crater‐counting chronologies. On Earth, Chicxulub is an example of a large multi‐ring buried basin. Its study provides clues for the investigation other planetary surfaces. In addition, geophysical surveys have unravelled its deep 3‐D structure, providing data and constraints for new planetary missions.  相似文献   

6.
Internal surface, formation factor, Nuclear Magnetic Resonance (NMR)-T2 relaxation times and pore radius distributions were measured on representative core samples for the estimation of hydraulic permeability. Permeability is estimated using various versions of the classic Kozeny–Carman-equation (K–C) and a further development of K–C, the fractal PaRiS-model, taking into account the internal surface. In addition to grain and pore size distribution, directly connected to permeability, internal surface reflects the internal structure (“micro morphology”). Lithologies could be grouped with respect to differences in internal surface. Most melt rich impact breccia lithologies exhibit large internal surfaces, while Tertiary post-impact sediments and Cretaceous lithologies in displaced megablocks display smaller internal surfaces. Investigations with scanning electron microscopy confirm the correlation between internal surface and micro morphology. In addition to different versions of K–C, estimations by means of NMR, pore radius distributions and some gas permeability measurements serve for cross-checking and calibration. In general, the different estimations from the independent methods and the measurements are in satisfactory accordance. For Tertiary limestones and Suevites bulk with very high porosities (up to 35%) permeabilites between 10−14 and 10−16 m2 are found, whereas in lower Suevite, Cretaceous anhydrites and dolomites, bulk permeabilites are between 10−15 and 10−23 m2.  相似文献   

7.
The depositional and diagenetic history of Cretaceous–Tertiary (KT) impact ejecta deposited 360 km from the Chicxulub crater, at Albion Island, Belize, has been investigated using integrated cathodoluminescence and isotopic analyses. A quarry exposes 26 m of Upper Cretaceous Barton Creek Formation dolomitized marine limestone overlain by 16 m of dolomitized Albion Formation impact ejecta. The Albion Formation consists of a lower fine‐grained ≈1‐m‐thick spheroid bed and an upper 15‐m‐thick coarse conglomeratic diamictite bed. A 14‐event paragenetic sequence has been documented and used as a temporal framework to interpret chemostratigraphic trends in bulk rock δ18O, δ13C and 87Sr/86Sr. The uppermost surface of the Barton Creek Formation was subaerially exposed before the KT impact, as indicated by a brecciated palaeosol that caps upsection decreases in δ13C and δ18O. Small 1‐cm‐diameter spheroids in the spheroid bed exhibit vermicular crystalline textures but lack the concentric zonations common to accretionary lapilli. These spheroids are hypothesized originally to have been impact glass or reactive Ca and Mg oxide dusts that adhered to water vapour particles condensing from the cooling impact vapour cloud. The spheroids were dolomitized soon after deposition. The earliest dolomitization in the matrix sediments of the Albion Formation was also post‐depositional, replacing clays formed by devitrification of impact glass. Dolomite and clay 87Sr/86Sr exhibit a distinct symmetrical distribution in the spheroid bed ranging from 0·707745 to 0·707872. Although unproven, this may represent primary changes in the chemical composition of the impact glass. The limestone clasts in the diamictite bed were dolomitized before the KT impact and exhibit upsection decreases in bulk rock 87Sr/86Sr. This suggests that the clasts were excavated from strata equivalent in age or older than the Barton Creek Formation at locations closer to, or in, the Chicxulub crater.  相似文献   

8.
CSDP core Yaxcopoil-1 was drilled to a depth of 1,511 m within the Chicxulub crater. An organic-rich marly limestone near the base of the hole (1,495 to 1,452 m) was deposited in an open marine shelf environment during the latest Cenomanian (uppermost Rotalipora cushmani zone). The overlying sequence of limestones, dolomites and anhydrites (1,495 to 894 m) indicates deposition in various carbonate platform environments (e.g., sabkhas, lagoons). A 100-m-thick suevite breccia (894–794 m) identifies the Chicxulub impact event. Above the suevite breccia is a dolomitic limestone with planktic foraminiferal assemblages indicative of Plummerita hantkeninoides zone CF1, which spans the last 300 ky of the Maastrichtian. An erosional surface 50 cm above the breccia/dolomite contact marks the K/T boundary and a hiatus. Limestones above this contact contain the first Tertiary planktic foraminifera indicative of an upper P. eugubina zone P1a(2) age. Another hiatus 7 cm upsection separates zone P1a(2) and hemipelagic limestones of planktic foraminiferal Zone P1c. Planktic foraminiferal assemblages of Zone Plc to P3b age are present from a depth of 794.04 up to 775 m. The Cretaceous carbonate sequence appears to be autochthonous, with a stratigraphic sequence comparable to late Cretaceous sediments known from outside the Chicxulub crater in northern and southern Yucatan, including the late Cenomanian organic-rich marly limestone. There is no evidence that these sediments represent crater infill due to megablocks sliding into the crater, such as major disruption of sediments, chaotic changes in lithology, overturned or deep dipping megablocks, major mechanical fragmentation, shock or thermal alteration, or ductile deformation. Breccia units that are intercalated in the carbonate platform sequence are intraformational in origin (e.g., dissolution of evaporites) and dykes are rare. Major disturbances of strata by the impact therefore appear to have been confined to within less than 60 km from the proposed impact center. Yaxcopoil-1 may be located outside the collapsed transient crater cavity, either on the upper end of an elevated and tilted horst of the terrace zone, or even outside the annular crater cavity. The Chicxulub site thus records a large impact that predates the K/T boundary impact and mass extinction.  相似文献   

9.
A scientific drilling program is being carried out by the National Autonomous University of Mexico (UNAM) at the southern sector of the Chicxulub impact crater in the Yucatan Peninsula, Mexico. Eight boreholes, ranging in depth from 60 m to 702 m, with a total of 2.62 km of continuos core, were recovered. A high recovery rate of up to 99% (overall average recovery rate for the eight boreholes is 87%) allows us to investigate in detail the stratigraphy of the impact lithologies and the Tertiary carbonate sequence. Three of the boreholes (UNAM-5, UNAM-6, and UNAM-7, with core recovery rates from 89 to 99%) sampled impact breccias that were classified in two units—an upper breccia sequence rich in basement clasts, impact glass, and fragments of melt (suevitelike breccia) and a lower breccia sequence rich in limestone, dolomite, and evaporite clasts (bunte-like breccia). Depths of contact between the Tertiary carbonate sequence and the impact breccias are 332.0 m in UNAM-5, 222.2 m in UNAM-7, and 282.8 m in UNAM-6, giving the depth to the K/T boundary. In UNAM-7, the contact between the upper and the lower breccias is at 348.4 m, which yields a thickness of 126.2 m for the suevitelike breccia. The rest of the boreholes sampled part of the Tertiary carbonate sequence (~200 m thick), composed mainly of limestones, dolomitized carbonates, and calcarenite, with some fossiliferous horizons.  相似文献   

10.
The 27.2 km diameter Tooting crater is the best preserved young impact crater of its size on Mars. It offers an unprecedented opportunity to study impact-related phenomena as well the geology of the crust in the Amazonis Planitia region of Mars. For example, the nearly pristine condition enables the partial reconstruction of the sequence of events for crater formation, as well as facilitates a comparison to deposits seen at the Ries crater in Germany. High-resolution images taken by the High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) on the Mars Reconnaissance Orbiter spacecraft have revealed a wealth of information on the distribution of features within the crater and beyond the rim: a large central peak, pitted material on the floor and terrace blocks, lobate flows interpreted to be sediment flows, impact melt sheets, four discrete layers of ejecta, and an asymmetric secondary crater field. Topographic data derived from the Mars Orbiter Laser Altimeter (MOLA) and stereo HiRISE and CTX images show that the central peak is ~1100 m high, the lowest point of the crater floor is 1274 m below the highest part of the rim, and the crater rim has ~600 m of variability around its perimeter. Layering within the cavity walls indicates ~260 m of structural uplift of the target material, which constitutes ~35% of the total relief of the rim. Abundant evidence is found for water flowing down the cavity walls, and on the surface of the ejecta layers, both of which took place sometime after the impact event. Thickness measurements of the ejecta layers reveal that the continuous blanket is remarkably thin (~3–5 m) in some places, and that the distal ramparts may be ~60 m high. Crater counts made on the ejecta layers indicate a model age of <3 Ma for the formation of Tooting crater, and that the target rocks have a model age of ~240–375 Ma. It is therefore possible that this may be the source of certain basaltic shergottite meteorites ejected at ~2.8 Ma that have crystallization ages which are comparable to those of the basaltic lava flows that formed the target materials for this impact event. The geology and geomorphology of Tooting crater may help in the interpretation of older large impact craters on Mars, as well as the potential role of target volatiles in the impact cratering process.  相似文献   

11.
Discovery of the Chicxulub multi-ring impact crater came as a result of oil exploration surveys in the southern Gulf of Mexico. Subsequent studies on the Chicxulub impact and the Cretaceous/Palaeogene (K/Pg) boundary have revealed links between the impact and hydrocarbons, with implications for the K/Pg global environmental and climatic effects, as well as for oil exploration in the Gulf.  相似文献   

12.
《International Geology Review》2012,54(12):1145-1149
Evidence of “Upper Cretaceous” sediments above the melt rock/breccia assemblage at Chicxulub has been used to dispute the link between this large impact crater and the Cretaceous-Tertiary (KT) extinction horizon. We have evaluated core samples and well logs from the Petróleos Mexicanos (Pemex) Yucatan No. 6 exploratory well located ~50 km from ground zero. Despite previous reports to the contrary, the sequence of crystalline rocks and breccias located at depths exceeding 1000 m below sea level are characteristic of the upper lithological sequence observed at other large impact basins such as the 220 km Sudbury structure. Furthermore, the “Upper Cretaceous” sediments overlying the melt rocks and impact brecias at Chicxulub contain abundant glass shards and shocked minerals, demonstrating conclusively that these are reworked debris involved in the impact event, and not normal marine sediments. Core samples straddling the KT boundary indicate that the impact event created a basin several hundred meters deep.  相似文献   

13.
14.
15.
16.
Using orbital imaging radar, we detected a double circular structure, located in the southeastern part of the Libyan Desert, which is partially hidden under sandy sediments. Fieldwork confirmed it to be an unknown double impact crater, each crater having a diameter of about 10 km, younger than 140 Ma. Sampling on the site enabled the observation of quantities of shatter cone structures and impact breccias containing planar fractures. To cite this article: P. Paillou et al., C. R. Geoscience 335 (2003).  相似文献   

17.
By using accelerator mass spectrometry we have measured the 10Be concentrations of 86 Australasian tektites. Corrected to the time of tektite production ∼0.8 My ago, the 10Be concentrations (106 atom/g) range from 59 for a layered tektite from Huai Sai, Thailand, to 280 for an australite from New South Wales, Australia. The average value is 143 ± 50. When tektites are sorted by country, their average measured 10Be concentrations increase slowly with increasing distance from Southeast Asia, the probable location of the tektite producing event, from 59 ± 9 for 6 layered tektites from Laos to 136 ± 20 for 20 splash-form tektites from Australia. The lowest 10Be concentrations for tektites fall on or within a contour centered off the shore of Vietnam, south of the Gulf of Tonkin (107°E; 17°N), but also encompassing two other locations in the area of northeastern Thailand previously proposed for the site of a single tektite-producing impact. The 10Be concentrations of layered tektites show only a weak anticorrelation (R ∼ −0.3) with the numbers of relict crystalline inclusions.Loosely consolidated, fine-grained terrestrial sediments or recently consolidated sedimentary rocks are the most likely precursor materials. Dilution of sediments with other kinds of rock raises problems in mixing and is not supported by petrographic data. Sedimentary columns that have the right range of 10Be concentrations occur off the coasts of places where sedimentation rates are high relative to those in the deep sea. A single impact into such a region, 15 to 300 m thick, could have propelled near-surface, high-10Be material farthest—to Australia—while keeping the deeper-lying, low-10Be layers closer to home. We do not rule out, however, other proposed mechanisms for tektite formation.  相似文献   

18.
In the suevite breccia of the Ries impact crater, Germany, glasses occur as bombs, and small particles in the groundmass. These glasses were formed from melt produced by shock fusion of crystalline basement rocks. Ejection from the crater resulted in the formation of aerodynamically shaped bombs, a few homogeneous spherules and a large mass of small glass particles which were deposited in the suevite breccia. Bombs and small particles included within chilled bottom and top layers of suevite deposits have been preserved in vitreous state, whereas glasses within the interior of the suevite devitrified, due to slower cooling rates.This paper summarizes the results of petrographical and chemical investigations of suevite glasses and their devitrification products. Conclusions are derived on origin and history of bombs and glass particles.Vitreous bombs and glass particles consist of schlieren-rich glass, mineral fragments (mainly quartz), rock fragments and vesicles. Wet chemical, trace element and microprobe analyses reveal that a primary melt was formed by shock fusion of a basement complex, consisting of about 80% biotite granite and 20% amphibolite. The, originally, more than 1800° C hot melt then incorporated shocked and desintegrated rocks of outer zones of the impact. Partial fusion of the rock debris resulted in a polyphase mixture consisting of melts, different in composition, accumulations of refractory mineral fragments and vesicles.Devitrified bombs and glass particles which are found in the interior of suevite deposits show alterations of texture and composition, due to microcrystallite growth and action of hydrothermal and weathering solutions. Incipient devitrification is indicated by brown staining of the glasses, originating, probably, by exsolution of minute magnetite particles. By optical microscopy and X-ray analysis, plagioclase and pyroxenes have been identified as main devitrification products. Shapes and textures of microcrystallites indicate fast crystal growth in a viscous and supercooled medium. Hot fluids permeating the suevite deposited microcrystalline quartz in vesicles and cracks. Later, montmorillonite was precipitated by solutions corroding the glass. Action of solutions on glasses which were weakened in coherence by devitrification resulted in oxidation of iron, leaching of iron and magnesium, and enrichment in alkalis.  相似文献   

19.
The gravity survey of the Steinheim impact crater comprises about 500 gravity stations resulting in aBouguer anomaly map of the crater and its surroundings. From this map aBouguer residual anomaly of the impact structure was deduced which shows considerable character. A central negative anomaly with an amplitude of about -2 mgal and a halfwidth of 3 km is surrounded by ring-like relative positive and negative anomalies which extend to a radial distance of about 5–6 km. The interpretation is based on nine radial profiles with close station spacing. Model calculations were performed suggesting the Steinheim crater to be much larger and of different formation than has been assumed. Based on the gravity interpretation, on a morphological analysis, and on additional geological and geophysical observations a model of the Steinheim crater and its development is proposed. The main characteristics are a 500–600 m deep primary excavation and a final, apparent, diameter of roughly 7 km, contrasting to an up to now favoured shallow excavation and a 3.5–4 km final diameter. The model considerations include mass and energy calculations and references to the Ries impact crater.
Zusammenfassung Im Gebiet der Impakt-Struktur Steinheimer Becken wurden in Ergänzung zu früheren Untersuchungen neue Schweremessungen durchgeführt. Mit den nunmehr etwa 500 vorliegenden, nachBouguer reduzierten Schwerewerten wurde eine Karte derBouguer-Anomalien konstruiert, aus der nach Abzug eines Regionalfeldes eine Restfeld-Anomalie für den Impakt-Krater gewonnen wurde. Sie ist grob rotationssymmetrisch und zeigt außerhalb eines zentralen Schwereminimums von –2 mgal ringförmig angeordnete, relative positive und negative Schwereanomalien. Die Interpretation stützt sich auf neun radiale Profile erhöhter Stationsdichte, von denen vier für Modellrechnungen ausgewählt wurden. Auf Grund der berechneten Dichtemodelle, einer ergänzenden morphologischen Analyse der Kraterstruktur sowie zusätzlicher geologischer und geophysikalischer Befunde wird ein Modell für den Aufbau und die Entstehung des Steinheimer Beckens vorgeschlagen. Danach ist das heutige Becken mit einem Durchmesser von rund 3,5 km der Ausdruck einer primären Kraterstruktur, die in einer Exkavationsphase entstand und eine Tiefe von 500–600 m besaß. Ausgleichsbewegungen führten zu einer Massenkonvergenz und Anhebung in der Kratermitte und einer Absenkung außerhalb des primären Kraters, die die endgültige Struktur auf grob 7 km Durchmesser vergrößerte. Die Modell-Betrachtungen schließen Massen- und Energieabschätzungen sowie Vergleiche zum Ries-Krater ein.

Résumé La recherche gravimétrique dans le cratère d'impact de Steinheim et ses environs (Allemagne du Sud) comprend environ 500 stations de mesure qui ont été utilisées pour construire une carte des anomalies deBouguer. Un champ régional a été tracé pour obtenir l'anomalie résiduelle du cratère. On observe une anomalie négative (–2 mgal) au centre de la structure cernée d'anomalies positives et négatives relatives de faible amplitude, jusqu'à une distance radiale de 5–6 km. Pour l'interprétation neuf profils radiaux, où les stations sont à faible distance, ont été utilisés. Les modèles calculés pour quatre profils radiaux suggèrent que la structure de Steinheim est plus grande qu'on ne l'a supposé jusqu'à présent. En partant de l'interprétation des mesures gravimétriques, d'une analyse topographique du cratère et d'observations géologiques et géophysiques complémentaires un modèle de la structure Steinheim et de son développement est proposé. On en conclut que le bassin actuel avec un diamètre de 3,5 km est l'expression d'une structureprimaire du cratère qui s'est formée au cours d'une phase d'excavation et possédait une profondeur de 500–600 mètres. Des mouvements d'égalisation conduisirent à une convergence de masses avec soulèvement dans le centre du cratère et un affaissement à l'extérieur du cratère primaire, lequel s'accrut jusqu'à la structure finale de quelque 7 km. Le modèle inclut le calcul des masses déplacées et des énergies d'impact ainsi qu'une comparaison avec le cratère d'impact du Ries.

, . 500 , , , , . – 2 , . 9- , 4 . . 3,5 , 500 – 600 . , , , 7 . , .
  相似文献   

20.
Physical properties and the crystallization behavior of natural diaplectic labradorite glass of the shocked anorthosite from the Manicouagan impact crater have been studied. Glasses prepared by laboratory fusion of this anorthosite and a synthetic An55 plagioclase composition were used for comparison. The close similarities in the mid-and far-infrared spectra of the diaplectic and fused glasses indicate a comparable degree of short-range order and lack of long-range order in their structures. They also show an identical viscosity-temperature relation, reflecting a similar and probably high degree of coherence of the (Si,Al)O4 tetrahedra in the network. However, striking differences exist in the crystallization characteristics. Diffusion-controlled crystallization takes place in the fused glass between about 900 and 1,400° C and proceeds generally by the advance of dendritic crystal layers from the surface into the interior of the samples. By contrast, diffusion plays a minor, if any, role in the crystallization of the diaplectic glass, which, on annealing between 800 and 1,000° C reverts to the original plagioclase structure and the primary mineral grains are restored. From the present experimental results it is suggested that high shock-induced temperatures cause onset of the melting process in the compressed crystalline labradorite. However, due to the extremely short duration of the transient high-temperature excursions, the crystal-melt transition does not come to completion. Instead, a disordered transitional state of the compressed material is frozen-in which is recovered after pressure release as diaplectic glass. Its structure thus represents a frozen-in disordered state intermediate between the structures of the crystalline labradorite and its melt. It appears that the diaplectic glass structure is rather inhomogeneous, thereby reflecting the heterogeneous deformational and thermal conditions associated with shock compression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号