首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The discrete infrared features known as the unidentified infrared (UIR) bands originating in starburst regions of other galaxies, and in H II regions and planetary nebulae within the Milky Way, are widely thought to be the result of ultraviolet pumped infrared fluorescence of polycyclic aromatic hydrocarbon (PAH) molecules and ions. These UIR emissions are estimated to account for 10%-30% of the total energy emitted by galaxies. Laboratory absorption spectra including the vacuum ultraviolet region, as described in this paper, show a weakening of the intensity of absorption features as the population of cations increases, suggesting that strong pi* <-- pi transitions are absent in the spectra of PAH cations. This implies a lower energy bound for ultraviolet photons that pump infrared emissions from such ions at 7.75 eV, an amount greater than previously thought. The implications include size and structure limitations on the PAH molecules and ions which are apparent constituents of the interstellar medium. Also, this might affect estimations of the population of early-type stars in regions of rapid star formation.  相似文献   

2.
Unidentified infrared emission bands (UIR bands) have been attributed to polycyclic aromatic hydrocarbons (PAHs), which are believed to require ultraviolet radiation in order for the UIR bands to be excited. If, in addition to amorphous carbon and hydrogenated amorphous carbon (HAC) particles, PAHs are able to form in the outflows of cool carbon-rich stars (Cherchneff et al. 1991), then the weak UV radiation field from such stars would be unlikely to be able to excite the UIR bands and so the PAH species could remain undetected in the spectra of C-stars. However, cool carbon stars with hot companions might be exposed to strong enough UV radiation fields for UIR-band emission to be excited from PAHs. Buss et al. (1991) reported the detection of the 8 μm UIR-band (C-C stretch) in the IRAS LRS spectrum of HD 38218 (TU Tau), a carbon star with a hotter A2III companion. To investigate the phenomenon further, we have therefore obtained UKIRT CGS3 10 μm spectra of three carbon stars with hot companions, TU Tau, UV Aur and CS776. It was found that TU Tau showed the 11.25 μm and 8.6 μm UIR-bands (both attributed to C-H bend modes) at good contrast, while UV Aur clearly exhibited the 11.25 μm UIR band. No narrow UIR-band emission was detected in the spectrum of CS776. We have fitted these 10 μm region spectra using a χ2-minimization program equipped to fit stellar and dust emission continua together with the broad SiC feature and the narrow UIR-bands. The features seen in the spectra of TU Tau and UV Aur can be well fitted by a narrow 11.25 μm UIR-band sitting on top of a broad, self-absorbed 11.3 μm silicon carbide feature. Our results therefore provide strong support for the supposition that PAHs can form in carbon star outflows. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

3.
In order to test the hypothesis of ionized polycyclic aromatic hydrocarbons (PAHs) as possible carriers of the UIR bands, we realized a computational exploration on selected PAHs of small dimension in order to identify which changes ionization would induce on their IR spectra. In this study we performed ab initio calculations of the spectra of neutral and positively ionized naphthalene, anthracene, and pyrene. The results are significantly important. The frequencies in the cations are slightly shifted with respect to the neutral species, but no general conclusion can be reached from the three molecules considered. By contrast, the relative intensities of most vibrations are strongly affected by ionization, leading to a much better agreement between the calculated CH/CC vibration intensity ratios and those deduced from observations.  相似文献   

4.
Deuterium abundance measurements and the 13C NMR spectrum of the HF/HCl insoluble residue of the Orgueil carbonaceous chondrite indicate the presence of an extensive component of polycyclic aromatic hydrocarbons (PAH) that is of possible interstellar origin or is similar to PAH hypothesized to exist in interstellar space. Infrared spectra have been obtained using an FTIR spectrometer of the acid insoluble residue, the residue after heating in vacuum, and condensate. Bulk acid insoluble residue was pressed into KBr pellets and also heated under high vacuum to sublimate a volatile component onto KBr disks. The remaining non-volatile organic component of the Orgueil meteorite from such evaporations pressed into KBr pellets exhibits a spectral signature similar to that observed in emission from the Orion Nebula and found in Raman spectra of interplanetary dust particles (IDPs). In addition it has an 11.3 microns (885 cm-1) band indicating PAH having single hydrogens per peripheral aromatic ring. We conclude the nonvolatile material is similar to interstellar PAH because the observed 11.3 microns (885 cm-1) unidentified infrared (UIR) emission suggests interstellar PAH have single hydrogens per peripheral aromatic ring. The volatile fraction of the Orgueil shows an aliphatic CH stretch feature and its spectrum in the 2-25 microns range is similar to that of the bulk residue.  相似文献   

5.
Following our discovery of unidentified infrared (UIR) band emission in a number of M supergiants in h and χ Per, we have obtained 10-μm spectra of a sample of 60 galactic M supergiants. Only three new sources, V1749 Cyg, UW Aql and IRC+40 427, appear to show the UIR bands; the others show the expected silicate emission or a featureless continuum. The occurrence of UIR-band emission in M supergiants is therefore much higher in the h and χ Per cluster than in the Galaxy as a whole. Possible explanations for the origin and distribution of UIR bands in oxygen-rich supergiants are discussed. We use our spectra to derive mass-loss rates ranging from 10−8 to 10−4 M yr−1 for the new sample, based on the power emitted in the silicate feature. The relationship between mass-loss rate and luminosity for M supergiants is discussed, and correlations are explored between their mid-infrared emission properties.  相似文献   

6.
We have discovered a new IR emission feature at 1905 cm-1 (5.25 microns) in the spectrum of BD +30 degrees 3639. This feature joins the family of well-known IR emission features at 3040, 2940, 1750, 1610, "1310," 1160, and 890 cm-1 (3.3, 3.4, 5.7, 6.2, "7.7," 8.6, and 11.2 microns). The origin of this new feature is discussed and it is assigned to an overtone or combination band involving C-H bending modes of polycyclic aromatic hydrocarbons (PAHs). Laboratory work suggests that spectral studies of the 2000-1650 cm-1 (5.0-6.1 microns) region may be very useful in elucidating the molecular structure of interstellar PAHs. The new feature, in conjunction with other recently discovered spectral structure, suggests that the narrow IR emission features originate in PAH molecules rather than large carbon grains. Larger species are likely to be the source of the broad underlying "plateaus" seen in many of the spectra.  相似文献   

7.
If the "11.3 microns" emission feature seen in the spectra of many planetary nebulae, H II regions, and reflection nebulae is due to polycyclic aromatic hydrocarbons (PAHs), then additional features should be present between 11.3 and 13.0 microns (885 and 770 cm-1). Moderate-resolution spectra of NGC 7027, HD 44179, IRAS 21282+5050, and BD + 30 degrees 3639 are presented which show that the "11.3 microns" feature actually peaks at 11.22 microns (891 cm-1). The spectra also show evidence of new emission features near 11.9 and 12.7 microns (840 and 787 cm-1). These are consistent with an origin from PAHs and can be used to constrain the molecular structure of the family of PAHs responsible for the infrared features. The observed asymmetry of the "11.3 microns" band is consistent with the slight anharmonicity expected in the C--H out-of-plane bending mode in PAHs. Laboratory experiments show that the intensity of this mode relative to the higher frequency modes depends on the extent of molecular "clustering." The observed strengths of the "11.3 microns" interstellar bands relative to the higher frequency bands are most consistent with the features originating from free molecular PAHs. The intensity and profile of the underlying broad structure, however, may well arise from PAH clusters and amorphous carbon particles. Analysis of the 11-13 microns (910-770 cm-1) emission suggests that the molecular structures of the most intensity emitting free PAHs vary somewhat between the high-excitation environment in NGC 7027 and the low-excitation but high-flux environment close to HD 44179. Finally, a previously undetected series of regularly spaced features between 10 and 11 microns (1000 and 910 cm-1) in the spectrum of HD 44179 suggests that a simple polyatomic hydride is present in the gas phase in this object.  相似文献   

8.
New mid-infrared spectra are presented of a number of oxygen-rich evolved stars which have IRAS LRS (Low Resolution Spectrometer) spectra that were classified as showing SiC emission. Two of the sources, IRC−20445 and IRC−20461, show the unidentified infrared (UIR) bands superposed on silicate emission features. Both objects have been classified as M supergiants. Several other sources show three-component spectra, with peaks at 10, 11 and 13 μm. The 13-μm source FI Lyr shows a narrow emission feature at 19 μm. Emission by oxide grains may be responsible for the 11-, 13- and 19-μm features. One object, IRC−20455, shows a self-absorbed silicate feature. There is no clear evidence for SiC emission in any of the spectra: the LRS spectra were erroneously classified as showing SiC emission because of the relatively strong 11-μm emission.  相似文献   

9.
A detailed photometric study of star-forming regions (SFRs) in the galaxy Holmberg II has been carried out using the archival observational data from the far infrared to the ultraviolet obtained with the GALEX, Spitzer, and Herschel telescopes. Spectroscopic observations with the 6-m BTA telescope (Special Astrophysical Observatory of the Russian Academy of Sciences) are used to estimate the ages and metallicities of SFRs. The ages of SFRs have been correlated for the first time with their emission parameters in a wide spectral range and with the physical parameters determined by fitting the observed spectra. It is shown that the fluxes at 8 and 24 µm characterizing the emission from polycyclic aromatic hydrocarbons (PAHs) and hot dust grains decrease with age, but their ratio increases. This implies that the relative contribution from PAHs to the total infrared flux increases with age. It is hypothesized that the detected increase in the ratio of the fluxes at 8 and 24 µm is related to the increase in the relative PAH fraction due to the destruction of larger grains.  相似文献   

10.
We studied the stability of aromatic compounds in low Earth orbit environment and describe the scientific results and successful flight of the ORGANICS experiment on-board the BIOPAN V space exposure facility. This experiment investigated the photo stability of large organic molecules in low Earth orbit. Thin films of selected organic molecules, such as polycyclic aromatic hydrocarbons (PAHs) and the fullerene C60 were subjected to the low Earth orbit environment and the samples were monitored before and after flight. PAHs and fullerenes have been proposed as carriers for a number of astronomical absorption and emission features and are also identified in meteorites. Our experiment on BIOPAN V was exposed to a total fluence of 602.45 kJ m−2 for photons in the range 170–280 nm. The experiment was also intended as a hardware test-flight for a long-term exposure experiment (Survival of organics in space) on the EXPOSE facility on the International Space Station (ISS). For the small fluence that was collected during the BIOPAN V experiment we found little evidence of photo-destruction. The results confirm that PAH molecules are very stable compounds in space. The small differences in destruction rates that are expected to arise among the PAH samples as a function of molecular size and structure will only show after the longer irradiation fluences that are expected in the exposure experiment on the ISS.  相似文献   

11.
The SWS on ISO has revealed the incredible richness of IR emission features in the spectra of post-AGB objects and planetary nebulae. Besides the well known features at 3.3, 6.2, 7.7, 8.6, and 11.3 μm, a wealth of weaker features is present as well. These studies also reveal detailed variations from source to source, which may be of key importance in the molecular identification process. The emission from Polycyclic Aromatic Hydrocarbon molecules and carbon dust are contrasted with an emphasis on the expected temperature and the feature-to-continuum ratio. Graphite stardust, isolated from carbonaceous meteorites, consist of a core of microcrystalline aromatic moieties mantled by crystalline graphite. This structure suggests the importance of two distinct growth stages or processes. The cores resemble terrestrial soot and indicate formation at relatively low temperature where kinetic factors played an important role, presumably involving PAH formation through reactions of C2H2 and its radical progeny, followed by coagulation of these PAHs as well as further chemical growth. The mantle seems to reflect slow chemical growth at higher temperatures of relatively few PAHs accreted onto these cores. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

12.
The hypothesis of organometallic chemistry between polycyclic aromatic hydrocarbons (PAHs) and metals in the interstellar medium (ISM) has been recently proposed to contribute both to the unidentified interstellar infrared (UIR) emission and to the depletion of transition metals in the ISM. Since temperature and pressure conditions of the ISM can be easily simulated by matrix isolation techniques, we have undertaken the preparation of such species through cocondensation reactions of metal atoms (iron) with some PAHs (pyrene, coronene) in low temperature argon and dinitrogen matrices. The identification of species is achieved by means of FTIR and UV-visible spectroscopies. First results show that a weak reactivity occurs between neutral species at lOK: π-complexes, hydrogen-bonded compounds, and one hydride species have been observed.  相似文献   

13.
The 3150-2700 cm-1 (3.17-3.70 microns) range of the spectra of a number of Ar-matrix-isolated PAHs containing excess H atoms (Hn-PAHs) are presented. This region covers features produced by aromatic and aliphatic C-H stretching vibrations as well as overtone and combination bands involving lower lying fundamentals. The aliphatic C-H stretches in molecules of this type having low to modest excess H coverage provide excellent fits to a number of the weak emission features superposed on the plateau between 3080 and 2700 cm-1 (3.25 and 3.7 microns) in the spectra of many planetary nebulae, reflection nebulae, and H II regions. Higher H coverage is implied for a few objects. We compare these results in context with the other suggested identifications of the emission features in the 2950-2700 cm-1 (3.39-3.70 microns) region and briefly discuss their astrophysical implications.  相似文献   

14.
A mixture of the polycyclic aromatic hydrocarbons (PAHs), acenaphthylene and acenaphthene, when subjected to the energetic environment of a hydrogen plasma, is transformed into a material that exhibits an infrared absorption profile in the 3 micron region that is an excellent match of the protoplanetary nebula IRAS 05341+0852 emission profile in the same wavelength region. Acenaphthylene and acenaphthene were chosen as precursors in the experiment because these molecules have a structure that can be described as a keystone in a process in which carbon atoms in a stellar wind condense into PAH species. The spectral match between experiment and observations appears to validate that scenario.  相似文献   

15.
The nature of unidentified cometary emission lines is discussed. A model of ice particles in cometary halos as a mixture of frozen polycyclic aromatic hydrocarbons (PAHs) and acyclic hydrocarbons is considered. The properties of frozen hydrocarbon particles are described and 5–7% of the unidentified cometary emission lines are considered as the photoluminescence of frozen hydrocarbons. The positions of unidentified emission lines in the spectrum of Comet 19P/Borrelly are compared with the positions of quasi-lines in the photoluminescence spectra of PAHs that were dissolved in acyclic hydrocarbons at a temperature of 77 K and that constitute a polycrystalline solution.  相似文献   

16.
Leif Holmlid 《Icarus》2006,180(2):555-564
The long-lived excited state of matter called Rydberg Matter (RM) may explain several spectroscopic features in space, like the diffuse interstellar bands (DIBs) and the unidentified infrared bands (UIR, UIB). RM is here used to interpret some previously unexplained or inconsistent features in comets: (1) line absorption in the emission from the nucleus, (2) IR band emission from the coma, (3) selective and variable molecular line emission from the coma, (4) extended sources of molecules in the coma, (5) degree of linear polarization of light scattered from the coma. (1) The unexplained IR absorptions observed in the flyby of the nucleus of the Comet Borrelly agree well with RM emission bands observed by stimulated emission in the laboratory. It is proposed that RM is the so-called ultrared matter or at least formed from it. (2) The IR bands previously attributed to silicate particles are shown to be better described by RM theory. Transitions in atoms in RM are shown to dominate. (3) The inverted RM medium will optically amplify light from molecular transitions in the comet comae, in agreement with observations that many of the molecular IR emission lines lie within the emission bands from RM, or much too close to Rydberg transitions to be accidental. (4) The unexplained extended sources observed, e.g., for CO are proposed to be due to release of molecules previously incorporated in the RM clusters at low temperature. Such clusters may be the very small particles observed by space probes. (5) Finally, the largely unexplained measurements of the degree of linear polarization of scattered sunlight from comets are explained as due to scattering by the planar RM clusters. Quantitative agreement is demonstrated.  相似文献   

17.
Abstract– Even in the absence of any biosphere on Mars, organic molecules, including polycyclic aromatic hydrocarbons (PAHs), are expected on its surface due to delivery by comets and meteorites of extraterrestrial organics synthesized by astrochemistry, or perhaps in situ synthesis in ancient prebiotic chemistry. Any organic compounds exposed to the unfiltered solar ultraviolet spectrum or oxidizing surface conditions would have been readily destroyed, but discoverable caches of Martian organics may remain shielded in the subsurface or within surface rocks. We have studied the stability of three representative polycyclic aromatic hydrocarbons (PAHs) in a Mars chamber, emulating the ultraviolet spectrum of unfiltered sunlight under temperature and pressure conditions of the Martian surface. Fluorescence spectroscopy is used as a sensitive indicator of remaining PAH concentration for laboratory quantification of molecular degradation rates once exposed on the Martian surface. Fluorescence‐based instrumentation has also been proposed as an effective surveying method for prebiotic organics on the Martian surface. We find the representative PAHs, anthracene, pyrene, and perylene, to have persistence half‐lives once exposed on the Martian surface of between 25 and 60 h of noontime summer UV irradiation, as measured by fluorescence at their peak excitation wavelength. This equates to between 4 and 9.6 sols when the diurnal cycle of UV light intensity on the Martian surface is taken into account, giving a substantial window of opportunity for detection of organic fluorescence before photodegradation. This study thus supports the use of fluorescence‐based instrumentation for surveying recently exposed material (such as from cores or drill tailings) for native Martian organic molecules in rover missions.  相似文献   

18.
By co-depositing a gas mixture of simple carbon- and nitrogen-containing molecules with water on a 10 K surface and exposing it to ultraviolet radiation, we were able to form a residue. This residue was then placed aboard the EURECA satellite behind a magnesium fluoride window and exposed to solar radiation for 4 months before it was returned and analyzed. The resulting residue is believed to simulate the photoprocessing of organic dust mantles in the interstellar medium. Mass spectrometry indicated that the photoprocessing created a rich mixture of polycyclic aromatic hydrocarbons (PAHs) and other conjugated organic molecules, which may explain how PAHs are replenished in space.  相似文献   

19.
We discuss the possible nature of unidentified cometary emission lines. We propose a model of the ice particles in cometary halos as a mixture of frozen polycyclic aromatic hydrocarbons (PAHs) and acyclic hydrocarbons. We describe the general properties of frozen hydrocarbon particles (FHPs) and suggest interpreting some of the unidentified cometary emission lines as the photoluminescence of FHPs. We compare the positions of unidentified emission lines in the spectrum of Comet 122P/de Vico with the positions of quasi-lines in the photoluminescence spectrum of PAHs that were dissolved in acyclic hydrocarbons at a temperature of 77 K and that constituted a polycrystalline solution. We estimate the detectability of FHP photoluminescence in cometary spectra.  相似文献   

20.
We present a multiwavlength infrared (IR) study of the nearby, edge-on, spiral galaxy NGC 891. We have examined 20 independent, spatially resolved IR images of this galaxy, 14 of which are newly reduced and/or previously unpublished images. These images span a wavelength regime from  λ 1.2 μ  m in which the emission is dominated by cool stars, through the mid-IR, in which emission is dominated by polycyclic aromatic hydrocarbons (PAHs), to λ 850 μm, in which emission is dominated by cold dust in thermal equilibrium with the radiation field. The changing morphology of the galaxy with wavelength illustrates the changing dominant components. We detect extraplanar dust emission in this galaxy, consistent with previously published results, but now show that PAH emission is also in the halo, to a vertical distance of   z ≥ 2.5 kpc  . We compare the vertical extents of various components and find that the PAHs (from λ 7.7 and 8 μm data) and warm dust (λ 24 μm) extend to smaller z heights than the cool dust (λ 450 μm). For six locations in the galaxy for which the signal-to-noise ratio was sufficient, we present spectral energy distributions (SEDs) of the IR emission, including two in the halo – the first time a halo SED in an external galaxy has been presented. We have modelled these SEDs and find that the PAH fraction, f PAH, is similar to Galactic values (within a factor of 2), with the lowest value at the galaxy's centre, consistent with independent results of other galaxies. In the halo environment, the fraction of dust exposed to a colder radiation field, f cold, is of the order of unity, consistent with an environment in which there is no star formation. The source of excitation is likely from photons escaping from the disc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号