首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sudden intrusion of Kuroshio warm water into the Bungo Channel (kyucho) occurs mainly at neap tides during summer, suggesting that tidal mixing is one of the essential factors regulating kyucho. In order to clarify the physical mechanisms responsible for the regulation of kyucho, we carry out non-hydrostatic three-dimensional numerical experiments allowing Kuroshio warm water to intrude into a strong tidal mixing region. It is shown that the Kuroshio warm water can (or cannot) pass through the tidal mixing regions off the east coast of the Bungo Channel during neap (or spring) tides. The analysis of the dynamic balance off the east coast of the Bungo Channel shows that tidal residual currents generated by tidal flow interaction with complicated land configurations off the east coast of the Bungo Channel can also play an important role in regulating kyucho. In order to assess separately the effects of tidal mixing and tidal residual currents on kyucho, we incorporate the parameterized vertical mixing and tidal stresses into the numerical model instead of tidal currents. It is demonstrated that tidal mixing cannot by itself block the northward intrusion of Kuroshio warm water, and that an additional effect induced by tidal residual eddies equivalent to horizontal mixing is needed to regulate kyucho. This strongly suggests that the basin–ocean water exchange processes in areas with complicated land configurations can only be reproduced by taking into account the effects of tidal residual eddies on a 1-km scale in addition to tidal mixing effects evaluated by microstructure measurements.  相似文献   

2.
Kyucho is a sudden and swift current which is usually accompanied by rise of water temperature. Several features of the Kyucho in the Bungo Channel, Japan, are presented through field observations. The Kyucho in the Bungo Channel is an intrusion of warm water from the Pacific Ocean into the eastern half of the Bungo Channel, being driven gravitationally and advancing along the eastern coast of the channel. The Kyucho occurs usually in summer and seldom occurs in winter. It occurs at neap tides showing the prominent spring-neap periodicity. The modulation of the vertical mixing intensity associated with the variations of tidal current, wind and surface heating etc. is supposed to be a main cause of springneap and seasonal periodicities.  相似文献   

3.
The generation and propagation mechanisms of a Kyucho and a bottom intrusion in the Bungo Channel, Japan, have been studied numerically using the hydrostatic primitive equations by assuming density stratification during summer. The experiments are designed to generate a Kuroshio small meander in Hyuga-Nada, which acts as a trigger for these disturbances. After the current speed of the Kuroshio is changed, a small meander is generated. At the head of the small meander, warm Kuroshio water is engulfed, and encounters the southwest coast of Shikoku. However, convergence of heat flux on the bump off Cape Ashizuri suppresses the generation of a warm disturbance, if the current speed is large. As the cold eddy associated with the small meander approaches Cape Ashizuri, the heat flux diverges on the bump. This heat source forces a warm disturbance, which intrudes along the east coast of the Bungo Channel as a baroclinic Kelvin wave (a Kyucho). After the cold eddy passes off Cape Ashizuri, the Kuroshio approaches the bump again. Strong convergence of heat flux then occurs on the bump, which forces a cold disturbance. This disturbance propagates as a topographic Rossby wave along the shelf break at the mouth of the channel. After the topographic wave reaches the west end of the shelf break, it intrudes along the bottom layer of the channel as a density current (a bottom intrusion). These results suggest that a Kyucho and a bottom intrusion are successive events associated with the propagation of the small meander.  相似文献   

4.
To clarify the time change in water exchanges between Ise Bay and the adjacent ocean, repeated hydrographic observations were conducted along the longitudinal section in Ise Bay. The results show that the mixing condition at the bay mouth (Irago Strait) changed fortnightly in summer. During the spring tides, the strait water below the pycnocline was well-mixed and nearly homogeneous. By contrast, it was weakly stratified during the neap tide. There is a strong negative correlation between the tidal range and the density difference between the upper and lower layers at the strait. In summer, the intrusion depth of oceanic water into the bay and consequent hydrographic conditions inside the bay changed frequently according to the tidal strength. During the spring tides a prominent bottom front was created at the bay mouth, indicating that the strait water, which is a mixture of oceanic and bay waters, intruded through the middle layer. On the other hand, during the neaps, cold and saline oceanic water intruded through the bottom layer into the bay. The intrusion depth is significantly correlated with the tidal range. It is considered that the wellmixed strait water, which has a density equivalent to the middle layer inside the bay, is lighter than the bottom bay water and thus intrudes through the middle layer during the spring tides, while insufficient mixing makes the bottom water at the strait heavier than the bay water, leading to the bottom intrusion during the neap tides.  相似文献   

5.
Numerical study of baroclinic tides in Luzon Strait   总被引:6,自引:1,他引:5  
The spatial and temporal variations of baroclinic tides in the Luzon Strait (LS) are investigated using a three-dimensional tide model driven by four principal constituents, O1, K1, M2 and S2, individually or together with seasonal mean summer or winter stratifications as the initial field. Barotropic tides propagate predominantly westward from the Pacific Ocean, impinge on two prominent north-south running submarine ridges in LS, and generate strong baroclinic tides propagating into both the South China Sea (SCS) and the Pacific Ocean. Strong baroclinic tides, ∼19 GW for diurnal tides and ∼11 GW for semidiurnal tides, are excited on both the east ridge (70%) and the west ridge (30%). The barotropic to baroclinic energy conversion rate reaches 30% for diurnal tides and ∼20% for semidiurnal tides. Diurnal (O1 and K1) and semidiurnal (M2) baroclinic tides have a comparable depth-integrated energy flux 10–20 kW m−1 emanating from the LS into the SCS and the Pacific basin. The spring-neap averaged, meridionally integrated baroclinic tidal energy flux is ∼7 GW into the SCS and ∼6 GW into the Pacific Ocean, representing one of the strongest baroclinic tidal energy flux regimes in the World Ocean. About 18 GW of baroclinic tidal energy, ∼50% of that generated in the LS, is lost locally, which is more than five times that estimated in the vicinity of the Hawaiian ridge. The strong westward-propagating semidiurnal baroclinic tidal energy flux is likely the energy source for the large-amplitude nonlinear internal waves found in the SCS. The baroclinic tidal energy generation, energy fluxes, and energy dissipation rates in the spring tide are about five times those in the neap tide; while there is no significant seasonal variation of energetics, but the propagation speed of baroclinic tide is about 10% faster in summer than in winter. Within the LS, the average turbulence kinetic energy dissipation rate is O(10−7) W kg− 1 and the turbulence diffusivity is O(10−3) m2s−1, a factor of 100 greater than those in the typical open ocean. This strong turbulence mixing induced by the baroclinic tidal energy dissipation exists in the main path of the Kuroshio and is important in mixing the Pacific Ocean, Kuroshio, and the SCS waters.  相似文献   

6.
Simulations of the time and depth-dependent salinity and current fields of the Columbia River Estuary have been performed using a multi-channel, laterally averaged estuary model. The study simulated two periods. The first, in October 1980, with low riverflow of about 4,000m3s−1, which showed marked changes in the salinity intrusion processes between neap and spring tides; and second, in spring 1981, with high riverflow varying between 7,000 and 15,000m3s−1, which showed the rapid response of the salinity intrusion to changes in riverflow and that vertical mixing did not change character with increasing tidal energy because of the maintenance of stratification by freshwater flow. An extreme low flow simulation (riverflow of 2,000m3s−1) showed a more partially mixed character of the estuary channels with tidal dispersion of salt across the Taylor Sands from the North Channel to the upper reaches of the Navigation Channel. Asymmetries in the non-linear tidal mean flows, in the flood and ebb circulations, and salinity intrusion characteristics between the two major channels were observed at all riverflows. The model confirms Jay and Smith's (1990) analysis of the circulation processes in that tidal advection of salt by the vertically sheared tidal currents is the dominant mechanism by which the salinity intrusion is maintained against large freshwater flows. An accurate finite-difference method, which minimized numerical dispersion, was used for the advection terms and was an important component in reasonably simulating the October neap-spring differences in the salinity intrusion. The simulations compare favorably with elevation, current and salinity time series observations taken during October 1980 and spring 1981.  相似文献   

7.
Channel constrictions within an estuary can influence overall estuary-sea exchange of salt or suspended/dissolved material. The exchange is modulated by turbulent mixing through its effect on density stratification. Here we quantify turbulent mixing in Hikapu Reach, an estuarine channel in the Marlborough Sounds, New Zealand. The focus is on a period of relatively low freshwater input but where density stratification still persists throughout the tidal cycle, although the strength of stratification and its vertical structure vary substantially. The density stratification increases through the ebb tide, and decreases through the flood tide. During the spring tides observed here, ebb tidal flow speeds reached 0.7?m?s?1 and the buoyancy frequency squared was in the range 10?5 to 10?3?s?2. Turbulence parameters were estimated using both shear microstructure and velocimeter-derived inertial dissipation which compared favourably. The rate of dissipation of turbulent kinetic energy reached 1?×?10?6?m2?s?3 late in the ebb tide, and estimates of the gradient Richardson number (the ratio of stability to shear) fell as low as 0.1 (i.e. unstable) although the results show that bottom-boundary driven turbulence can dominate for periods. The implication, based on scaling, is that the mixing within the channel does not homogenise the water column within a tidal cycle. Scaling, developed to characterise the tidal advection relative to the channel length, shows how riverine-driven buoyancy fluxes can pass through the tidal channel section and the stratification can remain partially intact.  相似文献   

8.
《Oceanologica Acta》1998,21(5):677-694
Microphytobenthic biomass was estimated in the Bay of Brest (1994) and the western English Channel (Trezen Vraz, 1993) using spectrophotometry. Best results (42 % difference) were obtained with an instantaneous extraction procedure at room temperature, compared with the cold extraction procedure. Chlorophyll biomass in sediment was higher in the western English Channel (65–215 mg Chl a m−2) than in the Bay of Brest (10–113 mg Chl a m−2), in contrast to total pigment biomass (Chl a + pheo a : 88–254 mg m−2 at Trezen Vraz vs. 131–934 mg m−2 in the Bay of Brest). This study emphasized decreasing pigment biomass from the estuary to the open sea. Low benthic pigment biomass in the Bay, compared to eutrophic ecosystems, agrees with previous studies on the pelagic system, suggesting that there is no eutrophication in the Bay of Brest. Microphytobenthic blooms were strongly correlated with environmental factors, such as river floods, light intensity, water temperature and the spring/neap tidal cycle. Turbidity and light could be limiting factors at Roscanvel, i.e. the deepest site facing gyre circulation. The latter would favour sedimentation of silt particles at the sediment-water interface. Microphytobenthos population dynamics would be also dependent on the spring/neap tidal cycle, since maximum chlorophyll biomass occurred at neap tides at all three sites in the Bay of Brest, in contrast to the western English Channel. Lower temporal variations of pigment biomass in sediment were observed in the Channel, compared with the Bay of Brest; maximum chlorophyll biomass in sediment was found to occur three to four weeks after the phytoplankton blooms.  相似文献   

9.
基于椒江河口大、小潮期间水位、流速、盐度和悬沙浓度观测数据,研究了椒江河口主潮汐通道的水动力、盐度和悬沙浓度的时空变化特征,解释了高浊度强潮作用下的层化物理机制。椒江河口大潮期悬沙浓度和盐度均大于小潮期,主潮汐通道区域落潮期悬沙浓度大于涨潮期;盐度随潮变化,盐水锋面出现在S2测站,锋面附近出现最大浑浊带;自陆向海,悬沙浓度递减,盐度递增;随水深增加,悬沙浓度与盐度递增。Richardson数与混合参数显示,盐度和悬沙引起的层化现象,是随着潮汐的变化而变化,涨潮时的层化均强于落潮,小潮时的层化持续时间最长,区域更广。混合参数随潮周期变化,大潮期高于临界值1.0,小潮期低于临界值1.0。小潮期水体层化强于大潮期;潮汐应变项是影响势能差异变化率的重要因素;落潮期间层化向混合状态转化,涨潮相反。  相似文献   

10.
A cold-water intrusion, called a “bottom intrusion”, occurs in the lower layer of the Bungo Channel in Japan. It is an intrusion from the shelf slope region of the Pacific Ocean margin in the south of the channel. In order to reveal the fundamental characteristics of the bottom intrusion, we conducted long-term observations of water temperature at the surface and bottom layers of the channel and 15-day current observations at the bottom of the shelf-break region. The long-term water temperature data indicated that the bottom intrusion occurs repeatedly between early summer and late autumn, and its reiteration between early and mid-summer causes a local minimum of water temperature in the lower layer in mid-summer. Moreover, the data revealed that most of the bottom intrusions occurred in neap tidal periods. The current meter recorded a bottom intrusion with a speed of approximately 15 cm⋅s−1. The current meter also revealed that the intruded cold water slowly retreated back to the shelf slope region after the intrusion. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Eucampia zodiacus Ehrenberg is harmful, as it causes reduction in the quality of the aquacultured Porphyra thalli owing to nutrient depletions during dense blooms in the late winter in the macrotidal Ariake Sea, Japan. To understand the mechanism of bloom development, changes in the abundance of E. zodiacus during a bloom were investigated along vessel transects from February to April 2012. In addition, marine environmental variables were continuously monitored by the Ariake Sea Monitoring Tower, which revealed that turbidity periodically decreased during neap tides. During the 16 February neap tide, a high Secchi depth (4.3 m) was recorded at offshore stations and the Z 1% depth, at which the light intensity attenuates to 1 % of that at the sea surface, exceeded the water depth. On 16 February, the abundance of E. zodiacus was 52–732 cells mL?1, peaking at 7.0 m depth offshore. Subsequently, abundance increased at all stations. During the 22 February spring tide, abundance became vertically uniform. On 19 March, abundance at the tower reached 3758 cells mL?1 at the surface. We conclude that an improvement in light conditions in the deeper layer triggered the bloom, although the size and the duration of the bloom were determined by nutrient availability. Thus, decreases in turbidity during neap tides and subsequent strong vertical mixing during spring tides may be instrumental in the population dynamics of the large diatom E. zodiacus in macrotidal environments.  相似文献   

12.
Profiles of tidal current and suspended sediment concentration(SSC) were measured in the North Branch of the Changjiang Estuary from neap tide to spring tide in April 2010. The measurement data were analyzed to determine the characteristics of intratidal and neap-spring variations of SSC and suspended sediment transport. Modulated by tidal range and current speed, the tidal mean SSC increased from 0.5 kg/m3 in neap tide to 3.5 kg/m3 in spring tide. The intratidal variation of the depth-mean SSC can be summarized into three types: V-shape variation in neap tide, M-shape and mixed M-V shape variation in medium and spring tides. The occurrence of these variation types is controlled by the relative intensity and interaction of resuspension, settling and impact of water exchange from the rise and fall of tide. In neap tide the V-shape variation is mainly due to the dominant effect of the water exchange from the rise and fall of tide. During medium and spring tides, resuspension and settling processes become dominant. The interactions of these processes, together with the sustained high ebb current and shorter duration of low-tide slack, are responsible for the M-shape and M-V shape SSC variation. Weakly consolidated mud and high current speed cause significant resuspension and remarkable flood and ebb SSC peaks. Settling occurs at the slack water periods to cause SSC troughs and formation of a thin fluff layer on the bed. Fluxes of water and suspended sediment averaged over the neap-spring cycle are all seawards, but the magnitude and direction of tidal net sediment flux is highly variable.  相似文献   

13.
Plankton samples collected in November 2002, February, May and August 2003 were used to examine seasonal variation in tidal exchange of zooplankton biomass, abundance and species composition between Lough Hyne Marine Nature Reserve and the adjacent Atlantic coast. Micro- to mesozooplankton were collected by pump over 24-h sampling periods during spring and neap tides from the narrow channel connecting the semi-enclosed water body to the Atlantic. Sample biomass (dry weight) and total zooplankton abundance peaked in the summer and were lowest in winter, showing a positive relationship with temperature. Zooplankton biomass, total abundance and numbers of holo- and meroplankton revealed import during some diel cycles and export in others. However, the tidal import of these planktonic components was generally dominant, especially during May. The greatest import of numbers of holoplankters and meroplanktonic larvae occurred during May and August, respectively. There was no significant variation in sample biomass between periods of light and dark, but some variation in zooplankton abundance could be explained by this diel periodicity. Significant differences in sample assemblage composition between flood and ebb tide samples were always observed, except during winter neap tides. There was a net import of the copepods Temora longicornis and Oithona helgolandica and the larval stages of Mytilus edulis during spring and summer. Proceraea cornuta and Capitellid trochophores were imported during winter, and a hydrozoan of the genus Obelia during the spring spring tides. Seasonal export from the lough was shown by Pseudopolydora pulchra larvae (autumn and spring), Serpulid trochophores (autumn) and veligers of the bivalve Anomia ephippium (summer). It is suggested that the direction of tidal exchange of meroplanktonic taxa is related to the distribution of the adult populations. Copepod naupliar stages dominated the assemblages except during May spring tides when the copepod Pseudocalanus elongatus made up over 22% of the abundance. The general import of micro- to mesozooplankton may, in part, explain the higher densities of this size-class of zooplankton within the semi-enclosed system of Lough Hyne.  相似文献   

14.
The south to the north project(WDP) on the saltwater intrusion in the Changjiang Estuary is studied by the improved three-dimensional(3D) numerical model.The net unit width flux in the Changjiang Estuary as well as the sectional salt flux is calculated in the North Branch(NB),the South Branch(SB),the North Channel(NC),the South Channel(SC),the North Passage(NP) and the South Passage(SP),respectively.The net seaward water flux in the SB is reduced,and the net water flux spilling over from the NB to the SB is enhanced after the eastern WDP.Under the mean river discharge condition in the dry season,the net salt flux spilling over from the NB to the SB is increased by 2.09 t/s and 0.52 t/s during the spring and neap tides,respectively,due to the eastern WDP.The saltwater intrusion in the Changjiang Estuary is enhanced by the eastern WDP.Compared with that during the spring tide,the net water diversion ratio during the neap tide in the NC is smaller,and thus the enhancement of the saltwater intrusion by the eastern WDP is smaller in the NC,and larger in the NP and the SP.The tidally averaged surface salinity at the water intakes of the Dongfengxisha Reservoir,the Chenhang Reservoir and the Qingcaosha Reservoir rises both during the spring and neap tides.  相似文献   

15.
A sampling and computational approach for estimating nutrient fluxes from a salt marsh ecosystem is presented. Extensive and intensive sampling of tidal velocities, water depths, and nutrient concentrations was made synoptically across three tidal creeks, connecting a 34 km2 South Carolina salt marsh with surrounding coastal waters. An estimate of nutrient exchange over each sampling period is based on measurements over four tidal cycles during a neap and spring tidal regime. The computation of instantaneous fluxes of NO3?NO2?, NH4+, and o-PO24? was based on the cross-multiplication of concentration, velocity, and integrated over the cross-sectional area of each tidal creek. The net flux of nutrients was estimated using a least-squares regression model which included periodic functions simulating tidal and diurnal cycles. This computational approach allows for a rigorous test of the statistical significance of the measured nutrient fluxes and a basis on which interpretations of the ecological significance of the exchange can be made.Tidal patterns in inorganic nutrient concentrations and the corresponding exchanges are presented for a spring time sampling. Nitrate-nitrite was exported consistently from the marsh to the coastal ocean with a mean value of 8.0 kg per tidal cycle for the neap sampling set and 15.6 kg per tidal cycle for the spring set. This corresponded to high concentrations of nitrate-nitrite (0.6 μM) on the ebb tide with low concentrations (0.1 μM) on the flood tide. Ammonia flux was variable and did not portray a consistent tidal concentration pattern. Concentrations ranged from 1 to 6 μM. Ammonia flux was exported to the coastal ocean only during the spring tidal set with a mean value of 114 kg per tidal cycle. Ortho-phosphate was also exported only on the spring tidal set with a mean flux of 40.0 kg per tidal cycle. A tidal concentration pattern of high concentrations (0.6 μM) on the ebb tide and low concentrations (0.05 μM) on the flood was consistent for ortho-phosphate during both neap and spring tidal sets.  相似文献   

16.
Some features of jump in water temperature in aSargassum forest   总被引:1,自引:0,他引:1  
To clarify the influence of aSargassum forest on water temperature distributions observations were made inside and outside aSargassum forest off the Nagata Shore on the northern Saiki Bay open to the Bungo Channel on the Pacific side of Kyushu, Japan. About sixty thermistor probes were deployed at 0.5 m depth intervals from the bottom to the sea surface at seven stations spaced at 50–80 m distances along two transects: one inside the forest and the other outside. Water temperature was measured at five minutes intervals from 6 to 9 August 1987 with thermistor probes. The spatial standing crop distribution of theSargassum forest along the transects was investigated. A water temperature jump of about 2°C, recorded during the observation, is probably caused by an intrusion of a warm water mass from the central Bungo Channel to Saiki Bay. The water temperature jump under theSargassum forest on the rough bottom with stones occurred one to two hours behind that outside the forest (sandy bed) although the distance between the transects inside and outside the forest was only 50–80 m. It is suggested that theSargassum forest and the rough bottom would prevent intruding warm water from smoothly replacing cold water due to resistance of theSargassum species and the bottom to a current.  相似文献   

17.
Residual circulation patterns in a channel network that is tidally driven from entrances on opposite sides are controlled by the temporal phasing and spatial asymmetry of the two forcing tides. The Napa/Sonoma Marsh Complex in San Francisco Bay, CA, is such a system. A sill on the west entrance to the system prevents a complete tidal range at spring tides that results in tidal truncation of water levels. Tidal truncation does not occur on the east side but asymmetries develop due to friction and off-channel wetland storage. The east and west asymmetric tides meet in the middle to produce a barotropic convergence zone that controls the transport of water and sediment. During spring tides, tidally averaged water-surface elevations are higher on the truncated west side. This creates tidally averaged fluxes of water and sediment to the east. During neap tides, the water levels are not truncated and the propagation speed of the tides controls residual circulation, creating a tidally averaged flux in the opposite direction.  相似文献   

18.
Surface temperature data obtained in and out of the bay all year round from March 1990 through February 1991, except from July through October 1990 were analyzed to investigate seasonal variability of theKyucho in Sukumo Bay, southwest of Shikoku, Japan. TheKyucho periodically occurs in the bay during both the warming period of March through June and the cooding period of November through February. The onset period of theKyucho is 8–15 days during the warming period and 4–14 days during the cooling period, giving an average of about 10 and 8 days, respectively. The position of the Kuroshio axis offshore in the south of Cape Ashizuri-misaki is a significant factor with theKyucho in the bay. Thermal infrared images taken by the NOAA-11 in the sea off east of Kyushu were also analyzed during the two observation periods. It is clearly found that a warm filament derived from the Kuroshio (KWF) advects northeast to Cape Ashizurimisaki along the Kuroshio, then encounters the southwest coast of Shikoku, followed by inducing theKyucho in the bay by the warm water intrusion. The alongshelf dimension of the KWFs is approximately 50–100 km, and the cross-shelf distance from the western edge of the KWFs to that of the body of the east Kuroshio is about 30–50 km. The KWF sometimes closely approaches to the east coast of Kyushu. An onshore meander of the Kuroshio front around Cape Toimisaki might grow into a KWF in the sea off east of Kyushu.  相似文献   

19.
本文应用本系列论文Ⅱ中建立的长江河口水动力和盐水入侵三维数值模式,模拟长江河口20世纪50年代、70年代和2012年盐水入侵,定量分析不同年代河势下盐水入侵状况和变化程度及其原因。在北支,不同年代盐水入侵的变化是由分流比和潮差共同作用造成的。50年代北支盐水入侵较强,70年代大幅下降,中上段出现淡水,2012年盐水入侵极为严重,整个北支被高盐水占据,上段出现强烈的盐度锋面。50年代和2012年,北支盐水倒灌南支,大潮期间远大于小潮期间,2012年远强于50年代,70年代没有北支盐水倒灌南支现象。在南支,50年代、70年代南支大部分为盐度都小于0.45的淡水,在2012年大潮期间由于出现了强烈的北支盐水倒灌,南支上段出现盐度大于0.45的盐水。在南北港,在50年代盐水入侵最严重;大潮期间,北港净分流比南港大21.6%,北港盐度小于南港盐度,外海盐水主要通过南港入侵,出现南港盐水倒灌进入北港的现象。至70年代,南支主流转向南港,南港净分流比增大,比北港大10.4%,南港盐度明显小于北港盐度;南北港盐水入侵较弱。在2012年,南支主流再次转向北港,北港分流比比南港大10.4%,南港的盐水入侵再次强于北港。小潮期间,50年代由于南港分流比相比于大潮时更小,南港盐水上溯距离更远,上段盐度比更大;至70年代,北港分流比减少,盐水入侵减弱;至2012年,由于大潮时期北支倒灌的盐水在小潮期间到达北港,北港净盐通量比大潮时期大。由于潮动力减弱,小潮期间各年代垂向盐度分层更明显,盐水入侵变化与大潮期间一致。  相似文献   

20.
The effects of tidal forcing on the biogeochemical patterns of surface water masses flowing through the Strait of Gibraltar are studied by monitoring the Atlantic Inflow (AI) during both spring and neap tides. Three main phenomena are defined depending on the strength of the outflowing phase predicted over the Camarinal Sill: non-wave events (a very frequent phenomenon during the whole year); type I Internal wave events (a very energetic event, occurring during spring tides); and type II Internal wave events (less intense, occurring during neap tides).During neap tides, a non-wave event comprising oligotrophic open-ocean water from the Gulf of Cádiz is the most frequent and clearly dominant flow through the Strait. In this tidal condition, the inflow of North Atlantic Central Water (NACW) provides the main nutrient input to the surface layer of the Alboran Sea, supplying almost 70% of total annual nitrate transport to the Mediterranean basin. A low percentage of active and large phytoplankton cells and low average concentrations of chlorophyll (0.3–0.4 mg m−3) are found in this tidal phase. Around 50% of total annual phytoplankton biomass transport into the Mediterranean Sea through the Strait presents these oligotrophic characteristics.In contrast, during spring tides, patches of water with high chlorophyll levels (0.7–1 mg m−3) arrive intermittently, and these are recorded concurrently with the passage of internal waves coming from the Camarinal Sill (type I internal wave events). When large internal waves are arrested over the Camarinal Sill this implies strong interfacial mixing and the probable concurrent injection of coastal waters into the main channel of the Strait. These processes result in a mixed water column in the AI and can account for around 30% of total annual nitrate transport into the Mediterranean basin. Associated with type I internal wave events there is a regular inflow of large and active phytoplankton cells, transported in waters with relatively high nutrient concentrations, which constitutes a significant supply of planktonic resources to the pelagic ecosystem of the Alboran Sea (almost 30% of total annual phytoplankton biomass transport).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号