首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Weddell Sea during the winters of 1974–1976 a significant opening in the sea-ice cover occurred in the vicinity of a large bathymetric feature — the Maud Rise seamount. The event is commonly referred to as the Weddell Polynya. Aside from such a large-scale, relatively persistent polynya in the Weddell Sea, transient, small-scale polynya can also appear in the sea-ice cover at various times throughout the winter and at various locations with respect to the Maud Rise. The underlying causes for the occurrence of such transient polynya have not been unambiguously identified. We hypothesize that variations in the mean ocean currents are one major contributor to such variability in the sea-ice cover. Analysis of the sea-ice equations with certain idealized patterns of ocean currents serving as forcing is shown to lead to Ekman transports of sea ice favorable to the initiation of transient polynya. Aside from the actual spatial pattern of the idealized ocean currents, many other factors need also be taken into account when looking at such transient polynya. Two other such factors discussed are variations in the sea-ice thickness field and the treatment of the sea-ice rheology. Simulations of a sea-ice model coupled to a dynamical ocean model show that the interaction of (dynamical) oceanic currents with large-scale topographic features, such as the Maud Rise, does lead to the formation of transient polynya, again through Ekman transport effects. This occurs because the seamount has a dynamic impact on the three-dimensional oceanic flow field all the way up through the water column, and hence on the near surface ocean currents that are in physical contact with the sea ice. Further simulations of a sea-ice model coupled to a dynamic ocean model and forced with atmospheric buoyancy fluxes show that transient polynya can be enhanced when atmospheric cooling provides a positive feedback mechanism allowing preferential open-ocean convection to occur. The convection, which takes hold at sites where transient polynya have been initiated by sea-ice–ocean stress interaction, has an enhancing effect arising from the convective access to warmer, deeper waters. To investigate all of these effects in a hierarchical manner we use a primitive equation coupled sea-ice–ocean numerical model configured in a periodic channel domain with specified atmospheric conditions. We show that oceanic flow variability can account for temporal variability in small-scale, transient polynya and thus point to a plausible mechanism for the initiation of large-scale, sustained polynya such as the Weddell Polynya event of the mid 1970s.  相似文献   

2.
In high-latitude oceans with seasonal ice cover, the ice and the low-salinity mixed layer form an interacting barrier for the heat flux from the ocean to the atmosphere. The presence of a less dense surface layer allows ice to form, and the ice cover reduces the heat loss to the atmosphere. The ice formation weakens the stability at the base of the mixed layer, leading to stronger entrainment and larger heat flux from below. This heat transport retards, and perhaps stops, the growth of the ice cover. As much heat is then entrained from below as is lost to the atmosphere. This heat loss further reduces the stability, and unless a net ice melt occurs, the mixed layer convects. Two possibilities exist: (1) A net ice melt, sufficient to retain the stability, will always occur and convection will not take place until all ice is removed. The deep convection will then be thermal, deepening the mixed layer. (2) The ice remains until the stability at the base of the mixed layer disappears. The mixed layer then convects, through haline convection, into the deep ocean. Warm water rises towards the surface and the ice starts to melt, and a new mixed layer is reformed. The present work discusses the interactions between ice cover and entrainment during winter, when heat loss to the atmosphere is present. One crucial hypothesis is introduced: “When ice is present and the ocean loses sensible heat to the atmosphere and to ice melt, the buoyancy input at the sea surface due to ice melt is at a minimum”. Using a one-dimensional energy-balance model, applied to the artificial situation, where ice melts directly on warmer water, it is found that this corresponds to a constant fraction of the heat loss going to ice melt. It is postulated that this partitioning holds for the ice cover and the mixed layer in the high-latitude ocean. When a constant fraction of heat goes to ice melt, at least one deep convection event occurs, before the ice cover can be removed by heat entrained from below. After one or several convection events the ice normally disappears and a deep-reaching thermal convection is established. Conditions appropriate for the Weddell Sea and the Greenland Sea are examined and compared with field observations. With realistic initial conditions no convection occurs in the warm regime of the Weddell Sea. A balance between entrained heat and atmospheric heat loss is established and the ice cover remains throughout the winter. At Maud Rise convection may occur, but late in winter and normally no polynya can form before the summer ice melt. In the central Greenland Sea the mixed layer generally convects early in winter and the ice is removed by melting from below as early as February or March. This is in agreement with existing observations.  相似文献   

3.
杨颖玥  刘海龙 《海洋与湖沼》2023,54(6):1564-1572
卫星记录以来,南极海冰范围发生5次快速下降事件,研究这5次事件的时空特征,对进一步认识海冰快速下降事件的物理机制具有重要意义。基于海冰范围和海冰密集度的卫星数据,从时间和空间两个维度总结5次南极海冰快速下降事件的特征,再结合大气和海洋各项环境因素的再分析数据,探讨海冰快速下降的影响因素及其驱动过程。结果显示:南极海冰快速下降的空间分布存在季节性差异, 2021年8~12月以及2016年8~12月的春季南极海冰快速下降由别林斯高晋海、威德尔海、印度洋和西太平洋区域的海冰减少所主导; 2010年12月至2011年4月以及1985年12月至1986年4月的夏季南极海冰快速下降由威德尔海、罗斯海沿岸和西太平洋区域的海冰减少所主导;2008年4~8月的冬季南极海冰快速下降则由别林斯高晋海和西太平洋的部分区域的海冰减少所主导。探究影响海冰的环境因素发现,海表面温度和海表面净热通量对海冰减少的热力效应影响具有区域性差异。此外,南极海冰快速下降受阿蒙森低压的影响,相应的海表面风异常既通过经向热输运的热力效应导致海冰减少,也通过风的动力效应驱动海冰漂移使得海冰密集度降低。  相似文献   

4.
A comparative analysis was conducted on climate variability in four sub-arctic seas: the Sea of Okhotsk, the Bering Sea shelf, the Labrador Sea, and the Barents Sea. Based on data from the NCEP/NCAR reanalysis, the focus was on air–sea interactions, which influence ice cover, ocean currents, mixing, and stratification on sub-seasonal to decadal time scales. The seasonal cycles of the area-weighted averages of sea-level pressure (SLP), surface air temperature (SAT) and heat fluxes show remarkable similarity among the four sub-arctic seas. With respect to variation in climate, all four seas experience changes of comparable magnitude on interannual to interdecadal time scales, but with different timing. Since 2000 warm SAT anomalies were found during most of the year in three of the four sub-arctic seas, with the exception of the Sea of Okhotsk. A seesaw (out of phase) pattern in winter SAT anomalies between the Labrador and the Barents Sea in the Atlantic sector is observed during the past 50 years before 2000; a similar type of co-variability between the Sea of Okhotsk and the Bering Sea shelf in the Pacific is only evident since 1970s. Recent positive anomalies of net heat flux are more prominent in winter and spring in the Pacific sectors, and in summer in the Atlantic sectors. There is a reduced magnitude in wind mixing in the Sea of Okhotsk since 1980, in the Barents Sea since 2000, and in early spring/late winter in the Bering Sea shelf since 1995. Reduced sea-ice areas are seen over three out of four (except the Sea of Okhotsk) sub-arctic seas in recent decades, particularly after 2000 based on combined in situ and satellite observations (HadISST). This analysis provides context for the pan-regional synthesis of the linkages between climate and marine ecosystems.  相似文献   

5.
The sensitivity of the North Atlantic gyre circulation to high latitude buoyancy forcing is explored in a global, non-eddy resolving ocean general circulation model. Increased buoyancy forcing strengthens the deep western boundary current, the northern recirculation gyre, and the North Atlantic Current, which leads to a more realistic Gulf Stream path. High latitude density fluxes and surface water mass transformation are strongly dependent on the choice of sea ice and salinity restoring boundary conditions. Coupling the ocean model to a prognostic sea ice model results in much greater buoyancy loss in the Labrador Sea compared to simulations in which the ocean is forced by prescribed sea ice boundary conditions. A comparison of bulk flux forced hindcast simulations which differ only in their sea ice and salinity restoring forcings reveals the effects of a mixed thermohaline boundary condition transport feedback whereby small, positive temperature and salinity anomalies in subpolar regions are amplified when the gyre spins up as a result of increased buoyancy loss and convection. The primary buoyancy flux effects of the sea ice which cause the simulations to diverge are ice melt, which is less physical in the diagnostic sea ice model, and insulation of the ocean, which is less physical with the prognostic sea ice model. Increased salinity restoring ensures a more realistic net winter buoyancy loss in the Labrador Sea, but it is found that improvements in the Gulf Stream simulation can only be achieved with the excessive buoyancy loss associated with weak salinity restoring.  相似文献   

6.
The physical processes responsible for the formation in a large‐scale ice–ocean model of an offshore polynya near the Greenwich meridian in the Southern Ocean are analysed. In this area, the brine release during ice formation in autumn is sufficient to destabilise the water column and trigger convection. This incorporates relatively warm water into the surface layer which, in a first step, slows down ice formation. In a second step, it gives rise to ice melting until the total disappearance of the ice at the end of September. Two elements are crucial for the polynya opening. The first one is a strong ice‐transport divergence in fall induced by south‐easterly winds, which enhances the amount of local ice formation and thus of brine release. The second is an inflow of relatively warm water at depth originating from the Antarctic Circumpolar Current, that sustains the intense vertical heat flux in the ocean during convection. The simulated polynya occurs in a region where such features have been frequently observed. Nevertheless, the model polynya is too wide and persistent. In addition, it develops each year, contrary to observations. The use of a climatological forcing with no interannual variability is the major cause of these deficiencies, the simulated too low density in the deep Southern Ocean and the coarse resolution of the model playing also a role. A passive tracer released in the polynya area indicates that the water mass produced there contributes significantly to the renewal of deep water in the Weddell Gyre and that it is a major component of the Antarctic Bottom Water (AABW) inflow into the model Atlantic.  相似文献   

7.
Dissolved organic nitrogen (DON), dissolved organic carbon (DOC) and inorganic nutrient concentrations were determined in samples from an area encompassing the Northeast Water Polynya from June to August 1993. In June, still ice-covered polynya area surface waters (PySW) had significantly higher (p<0.05) DOC concentrations (110 μM, n=68) than surface water outside the polynya area (96 μM, n=6). Melting ice and ice algae are suggested as DOC sources. DOC concentrations found in this study are consistent with other studies showing higher DOC concentrations in the Arctic than in other ocean areas. As the productive season progressed, DOC concentrations in Polynya surface water (PySW) decreased (p<0.05) from 110 to 105 μM, while DON concentrations increased (p<0.05) from 5.6 to 6.1 μM, causing a significant decrease (p<0.05) in the C : N ratios of DOM from spring (C : N ratio 20) to summer (C : N ratio 17). We found a significant (p<0.05) decrease in the DOM C : N ratio in all water masses within the polynya area as the productive season progressed. DON was the largest fraction of total dissolved nitrogen (TDN) in PySW and surface waters outside the polynya area. TDN was calculated as the sum of DON, nitrate, nitrite and ammonium concentrations. DON increased (p<0.05) from 62% to 73% of TDN in PySW from spring to summer, a result of increasing DON concentrations and decreasing inorganic nitrogen concentrations over the productive season. The seasonal accumulation of DON and the corresponding decrease in nitrate concentrations in waters with primary production indicate that it is important to take the DON pool into account when estimating export production from nitrate concentration decreases in surface waters. PySW TDN concentrations decreased (p<0.05) from 9.1 (n=61) to 8.6 μM (n=60) from spring (May 25 through June 19) to summer (July 1 through July 27). The seasonal decrease in surface water TDN concentrations corresponded to increases in TDN concentrations in deeper water masses within the Polynya. Most of the TDN increase in deep water was in the form of DON. A possible explanation is that PON was dissolved (partially remineralized) in the water column at mid depths, causing increases in the DON concentration. Transfer of N from PySW (with a short residence time in the polynya area) to Polynya Intermediate Water and deep waters of the Norske and Westwind Trough with multi-year residence times keeps N from leaving the polynya area. In spring, nutrients from degradation of OM in PyIW could support primary production. The role of PyIW as an OM trap could be important in supporting primary production in the polynya area.  相似文献   

8.
We examine the effect of a northward shift in the position of the southern hemisphere subpolar westerly winds (SWWs) on the vertical and horizontal distribution of temperature and salinity in the world ocean. A northward shift of the SWWs causes a latitudinal contraction of the subpolar gyres in the southern hemisphere (SH). In the Indian and Pacific, this leads to subsurface warming in the subtropical thermocline. As the southern margins of the gyres move into latitudes characterised by warmer surface air temperature (SAT), the layers at mid-depth below 400 m depth become ventilated by warmer water. We characterize the approximation of the ventilated thermocline in our coarse resolution model using a set of passive tracer experiments, and illustrate how the northward shift in the SWWs causes an equatorward shift in the latitude of origin of water ventilating layers deeper than 400 m in the Indian and Pacific, leaving the total surface ventilation of the upper 1200 m unchanged. In contrast, the latitudinal constraint on the Antarctic Circumpolar Current posed by the Drake Passage causes a cooling and freshening throughout the Atlantic thermocline; here, subsurface thermocline water originates from higher latitudes under the wind shift. On longer timescales Atlantic cooling and freshening is reinforced by a reduction in North Atlantic Deep Water (NADW) formation and surface salinification of the Indian and Pacific Oceans. In effect, the latitude of zero wind stress curl in the SWWs regulates the relative importance of the “cold water route” via the Drake Passage and the “warm water route” associated with thermocline water exchange via the Indian Ocean. Thus, a more northward location of the SWWs corresponds with a reduced salinity contrast between the Indian/ Pacific Oceans and the Atlantic. This results in reduced NADW formation. Also, a more northward location of the SWWs facilitates the injection of cool fresh Antarctic Intermediate Water into the South Atlantic subtropical gyre. Beyond these changes, on a millennial timescale, the deep ocean warms throughout the water column in response to the wind shift. Global salinity stratification also becomes less stable, as more saline water remains at the surface and accumulates in the Indian and Pacific thermocline. The freshening of the deep ocean reflects a reduced stirring of the global ocean due to reduced net circulation arising from a misalignment between the westerlies and the topographically constrained ACC. Our results lend support to the idea that a more equatorward location of the SWW maximum during glacial climates contributed to cooler and fresher conditions in the Atlantic, inhibiting NADW.  相似文献   

9.
西太平洋暖池热含量与南海夏季风强度的关系   总被引:2,自引:1,他引:1  
为了进一步明确西太平洋暖池热含量对南海夏季风强度的影响,利用1948~2012年日本气象厅(japan meteorological agency,JMA)逐月的海温资料、Hadley中心的海表面温度(Sea Surface Temperature,SST)资料以及NCEP/NCAR再分析资料,分析比较了南海夏季风强度与热带太平洋上层海洋热含量和SST的关系;探讨了海洋热含量影响南海夏季风强度的机制。结果表明:(1)相比于西太暖池SST,西太暖池上层海洋热含量是南海夏季风强度更好的预测因子;(2)前期冬春季的西太平洋暖池热含量与南海夏季风强度呈现显著的正相关,尤其在3月,二者相关系数最大;当暖池热含量偏高(低)时,西太平洋副热带高压偏弱(强),赤道印度洋出现异常反气旋(气旋),印度洋上空的Walker环流分支偏强(弱),南海越赤道气流增强(减弱),最终使得南海夏季风强度偏强(弱)。  相似文献   

10.
南极威德尔海冰间湖形成机制的研究进展   总被引:1,自引:0,他引:1  
针对南极威德尔海冰间湖的特点及影响,本文介绍了有关威德尔海冰间湖形成研究的进展情况,并对存在的问题以及未来的发展进行了分析和阐述。结果说明:动力因素、热力因素和热动力因素都只是威德尔海冰间湖形成和维持的某一方面的控制和影响因子。对威德尔海冰间湖更深入的研究,应该充分考虑较大尺度的海洋-海冰-大气相互作用。  相似文献   

11.
利用经过改变用于长期数值预报的CCM1(R15L7)模式以1975年1月16日00Z模式适应场为初始场积分5个月,研究南极威德尔海附近(60°W~30°E)海冰的面积异常对东亚初夏环流转换季节的影响.发现当南极海冰偏多时,在亚洲北部冷空气活动在初夏仍然很多,势力还很强,东亚南北两支急流分支仍很明显,各种环流特征更偏向于冬季型,不利于东亚初夏的环流季节转换.海冰异常偏少时则相反,亚洲北部的冷空气活动明显减弱,南方暖气流势力明显加强北移,东亚的两支急流也趋于合并北抬,环流形势更接近于夏季型,海冰的减少促进了东亚初夏的环流季节转换过程.  相似文献   

12.
热带太平洋海温异常对北极海冰的可能影响   总被引:1,自引:1,他引:0  
本文利用1950-2015年间Hadley环流中心海冰和海温资料及NCEP/NCAR再分析资料,研究了热带太平洋海温异常对北极海冰的可能影响,并从大气环流和净表面热通量两个角度探讨了可能的物理机制。结果表明,在ENSO事件发展年的夏、秋季节,EP型与CP型El Niño事件与北极海冰异常的联系无明显信号。而La Niña事件期间北极海冰出现显著异常,并且EP型与CP型La Niña之间存在明显差异。EP型La Niña发生时,北极地区巴伦支海、喀拉海关键区海冰异常减少,CP型La Niña事件则对应着东西伯利亚海、楚科奇海地区海冰异常增加。在EP型La Niña发展年的夏、秋季节,热带太平洋海温异常通过遥相关波列,使得巴伦支海、喀拉海海平面气压为负异常并与中纬度气压正异常共同构成类似AO正位相的结构,形成的风场异常有利于北大西洋暖水的输入,同时造成暖平流,偏高的水汽含量进一步加强了净表面热通量收入,使得巴伦支海、喀拉海海冰异常减少。而在CP型La Niña发展年的夏季,东西伯利亚海、楚科奇海关键区受其东侧气旋式环流的影响,以异常北风分量占主导,将海冰从极点附近由北向南输送到关键区,海冰异常增加,而净表面热通量的作用较小。  相似文献   

13.
冬季黑潮延伸体海表温度对阿留申低压活动的双周期响应   总被引:1,自引:1,他引:0  
Based on our previous work, the winter sea surface temperature(SST) in the Kuroshio Extension(KE) region showed significant variability over the past century with periods of ~6 a between 1930 and 1950 and ~10 a between1980 and 2009. How the activity of the Aleutian Low(AL) induces this dual-period variability over the two different timespans is further investigated here. For the ~6 a periodicity during 1930–1950, negative wind stress curl(WSC)anomalies in the central subtropical Pacific associated with an intensified AL generate positive sea surface height(SSH) anomalies. When these wind-induced SSH anomalies propagate westwards to the east of Taiwan, China two years later, positive velocity anomalies appear around the Kuroshio to the east of Taiwan and then the mean advection via this current of velocity anomalies leads to a strengthened KE jet and thus an increase in the KE SST one year later. For the ~10 a periodicity during 1980–2009, a negative North Pacific Oscillation-like dipole takes2–3 a to develop into a significant positive North Pacific Oscillation-like dipole, and this process corresponds to the northward shift of the AL. Negative WSC anomalies associated with this AL activity in the central North Pacific are able to induce the positive SSH anomalies. These oceanic signals then propagate westward into the KE region after 2–3 a, favoring a northward shift of the KE jet, thus leading to the warming of the KE SST. The feedbacks of the KE SST anomaly on the AL forcing are both negative for these two periodicities. These results suggest that the dual-period KE SST variability can be generated by the two-way KE-SST-AL coupling.  相似文献   

14.
Regional hydrographic and current observations from the 2005 MaudNESS winter field campaign in the Maud Rise seamount region of the eastern Weddell Sea show that an annular Halo consisting largely of Warm Deep Water (WDW) encircled the Rise at depths just below the mixed layer. The Halo was associated with elevated isopycnals and, on the northern flank of the Rise, strong subsurface velocities up to 20 cm s−1. Intercomparison of these observations with winter 1986 and 1994 conditions confirms the presence of the Halo and suggests that it, and associated warm pools west of the Rise, are at least semipermanent features of the region. These observational results compare well with the output from an isopycnic ocean model for a variety of parameters including shape of the seamount, inflow conditions and vertical stratification. The model captures processes associated with a steady westward flow impinging on the isolated seamount and shows (1) that the dynamics of the warm-water Halo with a shallow mixed layer are related to the formation of a jet surrounding the Rise and the overlying Taylor column and (2) that eddies of alternating sign (cyclones and anticyclones) are formed from instability of the jet-like flow structure, and are subsequently shed from the western flanks of the Rise. The eddies closest to the rise are dominated by cyclones which tend to adhere to the flanks more strongly than anticyclones. The formation and passage of approximately 3–5 eddies per year is seen in the sea-surface-height anomalies over a 12-year period. Despite apparent spatial and temporal variability in the dynamics of the Halo and shedding of eddies, the time-mean picture is such that significantly elevated isopycnals with WDW below the mixed layer are always present on the flanks of Maud Rise. This mechanism likely contributes annually to earlier seasonal ice loss in the eastern Weddell Sea than farther west. For unusually strong inflow conditions, possibly due to large-scale interannual variability, the Halo becomes more intense and overlies a much larger part of Maud Rise, potentially preconditioning the area for deep ocean ventilation and a subsequent polynya event such as observed in the 1970s.  相似文献   

15.
The Chukchi and Beaufort Seas include several important hydrological features: inflow of the Pacific water, Alaska coast current ( ACC ), the seasonal to perennial sea ice cover, and landfast ice 'along the Alaskan coast. The dynamics of this coupled ice-ocean system is important for both regional scale oceanography and large-scale global climate change research. A mumber of moorings were deployed in the area by JAMSTEC since 1992, and the data revealed highly variable characteristics of the hydrological environment. A regional high-resolution coupled ice-ocean model of the Chukchi and Beaufort Seas was established to simulate the ice-ocean environment and unique seasonal landfast ice in the coastal Beaufort Sea. The model results reproduced the Beaufort gyre and the ACC. The depthaveraged annual mean ocean currents along the Beaufort Sea coast and shelf hreak compared well with data from four moored ADCPs, but the simulated velocity had smaller standard deviations, which indicate small-scale eddies were frequent in the region. The model resuits captured the sea,real variations of sea ice area as compared with remote sensing data, and the simulated sea ice velocity showed an ahnost stationary area along the Beaufort Sea coast that was similar to the observed landfast ice extent. It is the combined effects of the weak oceanic current near the coast, a prevailing wind with an onshore component, the opposite direction of the ocean current, and the blocking hy the coastline that make the Beaufort Sea coastal areas prone to the formation of landfast ice.  相似文献   

16.
《Ocean Modelling》2004,6(1):83-100
A series of vertical mixing schemes implemented in a circumpolar coupled ice–ocean model of the BRIOS family is validated against observations of hydrography and sea ice coverage in the Weddell Sea. Assessed parameterizations include the Richardson number-dependent Pacanowski–Philander scheme, the Mellor–Yamada turbulent closure scheme, the K-profile parameterization, a bulk mixed layer model and the ocean penetrative plume scheme (OPPS). Combinations of the Pacanowski–Philander parameterization or the OPPS with a simple diagnostic model depending on the Monin–Obukhov length yield particularly good results. In contrast, experiments using a constant diffusivity and the traditional convective adjustment cannot reproduce the observations. An underestimation of wind-driven mixing in summer leads to an accumulation of salt in the winter water layer, inducing deep convection in the central Weddell Sea and a homogenization of the water column. Large upward heat fluxes in these simulations lead to the formation of unrealistic, large polynyas in the central Weddell Sea after only a few years of integration. Furthermore, spurious open-ocean convection affects the basin-scale circulation and leads to a significant overestimation of meridional overturning rates. We conclude that an adequate parameterization of both wind-induced mixing and buoyancy-driven convection is crucial for realistic simulations of processes in seasonally ice-covered seas.  相似文献   

17.
An unprecedented high-quality, quasi-synoptic hydrographic data set collected during the ALBATROSS cruise along the rim of the Scotia Sea is examined to describe the pathways of the deep water masses flowing through the region, and to quantify changes in their properties as they cross the sea. Owing to sparse sampling of the northern and southern boundaries of the basin, the modification and pathways of deep water masses in the Scotia Sea had remained poorly documented despite their global significance.Weddell Sea Deep Water (WSDW) of two distinct types is observed spilling over the South Scotia Ridge to the west and east of the western edge of the Orkney Passage. The colder and fresher type in the west, recently ventilated in the northern Antarctic Peninsula, flows westward to Drake Passage along the southern margin of the Scotia Sea while mixing intensely with eastward-flowing Circumpolar Deep Water (CDW) of the antarctic circumpolar current (ACC). Although a small fraction of the other WSDW type also spreads westward to Drake Passage, the greater part escapes the Scotia Sea eastward through the Georgia Passage and flows into the Malvinas Chasm via a deep gap northeast of South Georgia. A more saline WSDW variety from the South Sandwich Trench may leak into the eastern Scotia Sea through Georgia Passage, but mainly flows around the Northeast Georgia Rise to the northern Georgia Basin.In Drake Passage, the inflowing CDW displays a previously unreported bimodal property distribution, with CDW at the Subantarctic Front receiving a contribution of deep water from the subtropical Pacific. This bimodality is eroded away in the Scotia Sea by vigorous mixing with WSDW and CDW from the Weddell Gyre. The extent of ventilation follows a zonation that can be related to the CDW pathways and the frontal anatomy of the ACC. Between the Southern Boundary of the ACC and the Southern ACC Front, CDW cools by 0.15°C and freshens by 0.015 along isopycnals. The body of CDW in the region of the Polar Front splits after overflowing the North Scotia Ridge, with a fraction following the front south of the Falkland Plateau and another spilling over the plateau near 49.5°W. Its cooling (by 0.07°C) and freshening (by 0.008) in crossing the Scotia Sea is counteracted locally by NADW entraining southward near the Maurice Ewing Bank. CDW also overflows the North Scotia Ridge by following the Subantarctic Front through a passage just east of Burdwood Bank, and spills over the Falkland Plateau near 53°W with decreased potential temperature (by 0.03°C) and salinity (by 0.004). As a result of ventilation by Weddell Sea waters, the signature of the Southeast Pacific Deep Water (SPDW) fraction of CDW is largely erased in the Scotia Sea. A modified form of SPDW is detected escaping the sea via two distinct routes only: following the Southern ACC Front through Georgia Passage; and skirting the eastern end of the Falkland Plateau after flowing through Shag Rocks Passage.  相似文献   

18.
基于美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration,NOAA)全球范围扩展重建海面温度资料第5版本(Extended Reconstructed Sea Surface Temperature version 5,ERSSTv5),以及美国国家环境预报中心和国家大气研究中心NCEP(National Centers for Environmental Prediction)/NCAR(National Center for Atmospheric Research)逐月全球再分析资料,采用相关、回归、合成及物理量诊断等方法,对2022年夏季中国大范围高温相关环流异常的可能成因进行了分析。结果表明:(1)2022年夏季南亚高压偏强并分别向东、西方向扩展,西太平洋副热带高压(以下简称“副高”)异常偏强西伸。2022夏季为拉尼娜(La Niña)年,但热带大西洋垂直上升环流相对西太平洋更强,且热带印度洋到西太平洋热带垂直上升环流异常也偏强。(2)2022年热带大西洋、印度洋到西太平洋上空垂直环流异常和La Niña共同作用,使得夏季南亚高压和西太平洋副高极端异常。La Niña和印度洋到西太平洋垂直环流异常有利于南亚高压和西太平洋副高的偏强西伸;热带大西洋环流异常则既有利于南亚高压的加强及东扩,也有利于西太平洋副高偏强西伸。(3)印度洋到西太平洋垂直环流主要通过局地经向哈得来(Hadley)环流影响青藏高原到中国东部的环流异常,表现为青藏高原到中国东部中低层为显著的辐散异常;热带大西洋则通过引起纬向风异常(急流异常),激发遥相关波列并向下游传播,进而影响青藏高原到中国东部地区的环流异常。  相似文献   

19.
During the EPOS leg 2 cruise (European Polarstern Study, November 1988–January 1989), the production rate of biogenic silica in the euphotic zone was measured by the 30Si method at stations in the Scotia and Weddell Seas.The highest integrated production rates were observed in the Scotia Sea (range: 11.2–20.6 mmol Si m−2 day−1), the marginal ice zone of the Weddell Sea exhibiting somewhat lower values (range: 6.0–20.0 mmol Si m−2day−1).Our results demonstrate that as far as biogenic silica production is concerned the marginal ice zone of the Weddell Sea is considerably less productive than that of the Ross Sea. Our results also indicate that the water of the Antarctic Circumpolar Current (ACC) could be more productive in late spring and early summer than at the beginning of spring. Possible reasons for the differences among the three subsystems (Ross Sea, Weddell Sea and ACC) are discussed.  相似文献   

20.
利用卫星观测OLR资料以及海气耦合数值模拟试验结果,从每年波-频分析结果提取了各种传播模态的强度指数序列,分析了热带北半球夏季季节内振荡(BSISO)各种传播模态的年际变化谱特征,探讨了热带各海区海气相互作用对其影响。主要结果如下:赤道外西传波和印度洋北传波以准2 a为显著振荡周期,赤道东传波、南海北传波和西太平洋北传波则都包含准2 a和准5 a两种周期,南海北传波是5种指数中惟一以准5 a为最主要周期振荡的模态。热带印度洋、西太平洋、东太平洋各海区海气相互作用对各指数准2 a振荡、准5 a振荡既有加强作用,也有削弱作用。各海区比较而言,对赤道东传波准2 a和准5 a振荡、南海北传波准2 a和准5 a振荡起最大加强作用的是西太平洋海区海气相互作用;对赤道外西传波准2 a振荡、西太平洋北传波准2 a和准5 a振荡起最大加强作用的是印度洋海区海气相互作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号