首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sixteen sets of apatite/liquid partition coefficients (Dap/liq) for the rare earth elements (REE; La, Sm, Dy, Lu) and six values for Sr were experimentally determined in natural systems ranging from basanite to granite. The apatite + melt (glass) assemblages were obtained from starting glasses artificially enriched in REE, Sr and fluorapatite components; these were run under dry and hydrous conditions of 7.5–20 kbar and 950–1120°C in a solid-media, piston-cylinder apparatus. An SEM-equipped electron microprobe was used for subsequent measurement of REE and Sr concentrations in coexisting apatites and quenched glasses. The resulting partition coefficient patterns resemble previously determined apatite phenocryst/groundmass concentration ratios in the following respects: (1) the rare earth patterns are uniformly concave downward (i.e., the middle REE are more compatible in apatite than the light and heavy REE); (2) DREEap/liq is much higher for silicic melts than for basic ones; and (3) strontium (and therefore Eu2+) is less concentrated by apatite than are the trivalent REE. The effects of both temperature and melt composition on DREEap/liq are systematic and pronounced. At 950°C, for example, a change in melt SiO2 content from 50 to 68 wt.% causes the average REE partition coefficient to increase from ~7 to ~30. A 130°C increase in temperature, on the other hand, results in a two-fold decrease in DREEap/liq. Partitioning of Sr is insenstitive to changes in melt composition and temperature, and neither the Sr nor the REE partition coefficients appear to be affected by variations in pressure or H2O content of the melt.The experimentally determined partition coefficients can be used not only in trace element modelling, but also to distinguish apatite phenocrysts from xenocrysts in rocks. Reported apatite megacryst/host basalt REE concentration ratios [12], for example, are considerably higher than the equilibrium partition coefficients, which suggest that in this particular case the apatite is actually xenocrystic.A reversal experiment incorporated in our study yielded diffusion profiles of REE in apatite, from which we extracted a REEαCa interdiffusion coefficient of 2–4×10?14 cm2/s at 1120°C. Extrapolated downward to crustal temperatures, this low value suggests that complete REE equilibrium between felsic partial melts and residual apatite is rarely established.  相似文献   

2.
Based on the concentration and distribution pattern analysis of the rare earth elements (REEs) at the Shell Bar section from Qaidam Basin, we studied the geochemical fractionations of REE in paleolake deposits and their paleo-environmental significance. Our results show that the REE concentration in AS (acid soluble) and AR (acid residual) fractions are 20.9 μg/g and 95.4 μg/g (except element Y) individually, showing a strong REE differentiation between AS and AR fractions. However, the two types of fractions (AS & AR) have similar REE distribution patterns, which are slightly rich in light earth rare elements (LREEs), with slightly right-tilting and negative Eu anomaly. The LREE of AR is richer than that of AS. There were no significant correlations between the REE in AS, AR and other proxies. It indicated that the lacustrine deposition had different material sources and experienced varying geochemical procedures. Correlation analysis between the REE and the content of fine grain-size (<4 μm) of the sediments, Rb/Sr ratio and Mn concentration showed high correlation coefficients. Our results demonstrated that the REE in acid soluble and residual fractions bear different environmental significances, which are strongly dependent on local environment. The REE of acid soluble fraction is closely related to the paleoclimatic changes in the lake catchment and the evolutionary processes of lake itself. Our results suggest that δCe and (La/Yb)n could be used as proxies of the reduction-oxidation conditions and furthermore the temperature change and the lake level fluctuations. Using these proxies, we reconstructed the paleoclimate and water level fluctuation history during the high lake level period lasting between 43.5 and 22.4 cal. ka BP.  相似文献   

3.
Experimentally determined spatial patterns of soil redistribution across a break in slope derived using 10 rare earth element (REE) oxides as sediment tracers are presented. An erosion experiment was conducted using simulated rainfall within a laboratory slope model measuring 2·5 m wide by 6 m long with a gradient of 15° declining to 2°. Soil was tagged with multiple REE and placed in different locations over the slope and at the end of the experiment REE concentrations were measured in samples collected spatially. A new method was developed to quantify the erosion and deposition depths spatially, the relative source contributions to deposited sediment and the sediment transport distances. Particle‐size selectivity over an area of net deposition was also investigated, by combining downslope changes in particle‐size distributions with changes in sediment REE composition within a flow pathway. During the experiment, the surface morphology evolved through upslope propagation of rill headcuts, which gradually incised the different REE‐tagged zones and led to sediment deposition at the break in slope and the development of a fan extending over the shallow slope segment. The spatial patterns in REE concentrations, the derived erosion and deposition depths, the relative source contributions to deposition zones and the sediment transport distances, corroborate the morphological observations and demonstrate the potential of using REE for quantifying sediment transport processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
We report REE and minor element distributions for perovskites from seven kimberlites (South Africa and U.S.A.). The REE (1.6–6.3 oxides wt.%) are always strongly light REE enriched, often with Ce > La (chondrite-normalized), and show an expected close correlation with whole-rock analyses. Where examined, perovskite contains far more REE than coexisting apatite, by about an order of magnitude. Calculations indicate that iron is mostly present as Fe3+ and is low (1.0–2.9 wt.% Fe2O3) compared with perovskite from carbonatite complexes such as Oka (4.4 wt.% FeO [3]). In addition to established Nb (0.3–1.7 oxide wt.%), geochemically interesting elements encountered include Zr (up to 1.5 oxide wt.%), Ba and Sr (up to 0.2, 0.4 oxide wt.% respectively). Specific geological applications suggest a possible genetic link between Wesselton pipe and Benfontein Sills kimberlites, and that carbonate-rich dikes in the Premier mine were derived from kimberlites. The overall similarities with incompatible element-rich titanates in veined mantle peridotites suggest a more direct link between kimberlite magmatism and mantle metasomatism.  相似文献   

5.
This study investigated the impact of topography and vegetation on distribution of rare earth elements(REEs)in calcareous soils using methods of single extraction and mass balance calculation. The purposes of the study were to set a basis for further research on the biogeochemical REE cycle and to provide references for soil–water conservation and REE-containing fertilizer amendments. The results show a generally flat Post-Archean Average Australian Shale—normalized REE pattern for the studied calcareous soils. REE enrichment varied widely. The proportion of acidsoluble phases of heavy REEs was higher than that of light REEs. From top to bottom of the studied hills, dominant REE sources transitioned from limestone in-situ weathering to input from REE-containing phases(e.g., clay minerals,amorphous iron, REE-containing fluids). Our results indicate that the REE content of calcareous soils is mainly controlled by slope aspect, while the enrichment degree of REEs is related to geomorphological position and vegetation type.Furthermore, the proportion of acid-soluble phases of REEs is mainly controlled by geomorphological position.  相似文献   

6.
Isotopic ratios and abundances of all REE in two Oklo ore samples have been measured. We have succeeded in developing a new method to estimate the neutron fluence, the conversion factor of uranium and the average neutron energy (or temperature) based on Gd and U isotopic ratios. This new calculation is found to be useful in evaluating those parameters for the natural nuclear reactors at Oklo. Comparison is made between the neutron fluence values evaluated by our new method employing Gd isotopes and a previous one [11] employing Sm and Nd isotopes. The relative agreement becomes better with the increase of fluence. A relationship between the abundances of fissiongenic nuclides of La, Ce, Nd, Sm, and Gd and their mass numbers is also presented.  相似文献   

7.
Rare earth elements(REEs) can record geologic and geochemical processes. We studied two granitic regolith profiles from different climatic zones in eastern Tibetan Plateau and found that(1)∑ RREEs ranged from119.65 to 275.33 mg/kg in profile ND and5.11–474.55 mg/kg in profile GTC, with average values of205.79 and 161 mg/kg, respectively. ∑RREEs was higher in accumulation horizon and semi-regolith;(2) Influenced by climate, the fractionation of light and heavy REEs(LREEs and HREEs) varied during weathering. The ratio of LREEs/HREEs in pedosphere was higher than semi-regolith in tropical profile;(3) A negative Eu anomaly in both profiles was the result of bedrock weathering. A positive Ce anomaly was observed in all layers of profile ND, and only in the upper 100 cm of profile GTC. This indicates that redox conditions along the regolith profile varied considerably with climate.(4) Normalized by chondrite,LREEs accumulated much more than HREEs; REE distribution curves were right-leaning with a V-type Eu anomaly in both profiles.  相似文献   

8.
The distribution and anomalies of rare earth elements(REEs) of granitic regolith were studied in Inner Mongolia and Hainan Island, China. One profile showed slight REE enrichment of an upper layer and no obvious light REE/heavy REE(LREE/HREE) fractionation(La_N/Yb_N of 0.9). The second profile was significantly enriched in REEs and enriched in LREEs in the upper portion(La_N/Yb_N1.8). Eu, Ce, and Gd anomalies of the two profiles are different. Slightly negative Eu, Ce, and Gd anomalies in NMG-3-1 indicate slow dissolution of primary minerals and little secondary products; in contrast, a positive Eu anomaly in HN-2 suggests the vegetation cycle may contribute to soil. The Ce anomaly of HN-2 reflects oxidation of Ce and coprecipitation by Fe-and Mn-oxides and organic matter. Correlation between Ce and Gd anomalies in HN-2 suggests Ce and Gd are both influenced by redoxreduction.  相似文献   

9.
The distribution patterns of rare earth elements(REEs) in fine-grained materials in various depositions were often found to be similar to those of the aeolian sediments deposited in the Loess Plateau in North China and the fine-grained materials were suggested to be derived from wind-blown dust.However,increasing evidence indicated that the REEs in the water-soluble portion of atmospheric depositions also displayed similar patterns to those of aeolian sediments.In this study,water-soluble REEs in three atmospheric depositions collected from different climatic zones in China were adsorbed with two adsorbents with distinct adsorption capacity,glass powder,and co-precipitated iron hydroxide.The results showed that the REEs adsorbed by the two adsorbents displayed patterns similar to those of the original atmospheric depositions.The typical characteristics of the REE patterns of atmospheric deposition can be well reproduced in the adsorbed REEs.The higher the REE concentrations in the atmospheric depositions,or the higher adsorption efficiency of the adsorbents,the better reproducibility of the REEs patterns.The results suggest that the REEs of the fine-grained materials in various sediments,which have a high adsorption capacity,especially those deposited in South China,may come from the water-soluble REEs in atmospheric deposition,and may not be appropriate tracers of wind-blown dust from North China.  相似文献   

10.
Selected basalts from a suite of dredged and drilled samples (IPOD sites 525, 527, 528 and 530) from the Walvis Ridge have been analysed to determine their rare earth element (REE) contents in order to investigate the origin and evolution of this major structural feature in the South Atlantic Ocean. All of the samples show a high degree of light rare earth element (LREE) enrichment, quite unlike the flat or depleted patterns normally observed for normal mid-ocean ridge basalts (MORBs). Basalts from Sites 527, 528 and 530 show REE patterns characterised by an arcuate shape and relatively low (Ce/Yb)N ratios (1.46–5.22), and the ratios show a positive linear relationship to Nb content. A different trend is exhibited by the dredged basalts and the basalts from Site 525, and their REE patterns have a fairly constant slope, and higher (Ce/Yb)N ratios (4.31–8.50).These differences are further reflected in the ratios of incompatible trace elements, which also indicate considerable variations within the groups. Mixing hyperbolae for these ratios suggest that simple magma mixing between a “hot spot” type of magma, similar to present-day volcanics of Tristan da Cunha, and a depleted source, possibly similar to that for magmas being erupted at the Mid-Atlantic Ridge, was an important process in the origin of parts of the Walvis Ridge, as exemplified by Sites 527, 528 and 530. Site 525 and dredged basalts cannot be explained by this mixing process, and their incompatible element ratios suggest either a mantle source of a different composition or some complexity to the mixing process. In addition, the occurrence of different types of basalt at the same location suggests there is vertical zonation within the volcanic pile, with the later erupted basalts becoming more alkaline and more enriched in incompatible elements.The model proposed for the origin and evolution of the Walvis Ridge involves an initial stage of eruption in which the magma was essentially a mixture of enriched and depleted end-member sources, with the N-MORB component being small. The dredged basalts and Site 525, which represent either later-stage eruptives or those close to the hot spot plume, probably result from mixing of the enriched mantle source with variable amounts and variable low degrees of partial melting of the depleted mantle source. As the volcano leaves the hot spot, these late-stage eruptives continue for some time. The change from tholeiitic to alkalic volcanism is probably related either to evolution in the plumbing system and magma chamber of the individual volcano, or to changes in the depth of origin of the enriched mantle source melt, similar to processes in Hawaiian volcanoes.  相似文献   

11.
The increased production and price of rare earth elements(REEs) are indicative of their importance and of growing global attention. More accurate and practical exploration procedures are needed for REEs, and for other geochemical resources. One such procedure is a multivariate approach. In this study, five classifiers, including multilayer perceptron(MLP), Bayesian, k-Nearest Neighbors(KNN), Parzen, and support vector machine(SVM),were applied in supervised pattern classification of bulk geochemical samples based on REEs, P, and Fe in the Kiruna type magnetite-apatite deposit of Se-Chahun,Central Iran. This deposit is composed of four rock types:(1) High anomaly(phosphorus iron ore),(2) Low anomaly(metasomatized tuff),(3) Low anomaly(iron ore), and(4)Background(iron ore and others). The proposed methods help to predict the proper classes for new samples from the study area without the need for costly and time-consuming additional studies. In addition, this paper provides a performance comparison of the five models. Results show that all five classifiers have appropriate and acceptable performance. Therefore, pattern classification can be used for evaluation of REE distribution. However, MLP and KNN classifiers show the same results and have the highest CCRs in comparison to Bayesian, Parzen, and SVM classifiers. MLP is more generalizable than KNN and seems to be an applicable approach for classification and predictionof the classes. We hope the predictability of the proposed methods will encourage geochemists to expand the use of numerical models in future work.  相似文献   

12.
Rare earth elements (REEs) have been successfully used as a sediment tracer, but the REE technique has never been used for studying sediment sources for a multi‐year period. A nearly four‐year field experiment was conducted on a small agricultural watershed near Coshocton, OH, USA, to assess the applicability of the REE technique for a multi‐year period and to evaluate the relative contributions of sediment sources in the watershed. Tracer depletion and tracer enrichment ratio (ratio of the tracer concentrations in sediment to the concentrations in the soil in the areas of application) were evaluated to examine the applicability and accuracy of the technique. A minimum of 91 per cent of the mass of the applied elements was still available on any individual morphological element at the end of the experimental period. The tracer enrichment ratio varied from 0·4 to 2·3, and it was not significantly related to time. The relative contributions of six morphological elements within the watershed were evaluated as proportions to total sediment yield. The relative contribution of the lower channel was significantly increased as a function of the amount of sediment yield, while that of the lower backslope was significantly decreased. The relative contribution of the lower channel significantly decreased as a function of cumulative sediment yield, while the contributions of the shoulder and the upper backslope significantly increased. Our results showed that the REE technique can be used to track sediment sources for a relatively long period with two limitations or potential sources of error associated with a selective depletion of tracers and a contamination of downslope areas with tagged sediments from upslope areas. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Based on a δ18O chronology,rare earth elements(REE) and other typical elements in sediments from core MD06-3047 in the western Philippine Sea were analyzed to constrain the provenances of the sediments and investigate quantitative changes in the Asian eolian input to the study area over the last 700 ka.Among the competing processes that might affect REE compositions,sediment provenance is the most important one.Provenance analysis suggests that the study sediments have two provenance end-members;local volcanic sources are dominant,and eolian dust from the Asian continent has a smaller contribution.During glacial periods,eolian input to the western Philippine Sea was enhanced.In contrast,material supply from local volcanics increased during interglacial periods.Changes in eolian input to the study area were probably related to the strength of the East Asian winter monsoon(EAWM) as well as aridity in the Asian continent on an orbital time scale,and were partly influenced by local control factors on shorter time scales.Therefore,we propose that the present study expands the application of the REE-based method for quantitatively estimating the eolian component from the mid-latitude northern Pacific to the low-latitude western Pacific.Additionally,the study preliminarily confirms the influence of EAWM-transported eolian material on sedimentation in the western Philippine Sea since 700 ka.  相似文献   

14.
We present rare earth element (REE) data for fresh and altered tholeiitic basalts sampled during a dredging transect at 23°N in the Atlantic Ocean and covering a time span of 0 to 57 million years. These data have been used to evaluate the behavior of the REE during low-temperature weathering processes. Compositional trends from altered basalt interiors to palagonitized rinds in individual pillow samples indicate significant mobility of the light REE: some elements are enriched by four orders of magnitude in rinds relative to interiors. The heavy REE show no selective mobilization and can be used in a normalization procedure which indicates that the light REE are enriched in altered interiors relative to fresh interiors of the basalts. Cerium behaves anomalously and accords with either its abundance in seawater or its fractionation from seawater during the formation of ferromanganese deposits.These results indicate that REE data from fresh glassy or crystalline basalt samples only may be used with confidence in petrological models.  相似文献   

15.
A study of the REE behaviour in alteration zones of the Buena Esperanza subvolcanic CuAg deposit, located in the Coastal Range of northern Chile, reveals that the elements are mobile in the rocks during alteration. The ore-forming process developed in three different stages of alteration-mineralization.

The hydrothermal alteration of the early and middle stages affected basaltic fragments of a breccia pipe. La and Ce were leached from the rock fragments located at the bottom and at the middle part of the breccia pipe and partly redeposited at the top during alteration. Sm, Eu and Tb were released selectively and the heavy REE behaved as relatively immobile elements. Sericite is the most important alteration mineral for fixing the REE during this stage. The incoming fluids had low REE contents.

The late stage of hydrothermal alteration happened simultaneously with the intrusion of a gabbroic volcanic neck, affecting mainly these subvolcanic rocks. REE patterns of samples from the top and bottom of the alteration zone exhibit roughly parallel trends, but are systematically enriched in REE in comparison to unaltered samples. This enrichment seems to be more intensive at the top of the altered area coinciding with the enrichment of Rb, K and Cu in these rocks. Epidote plays the most important role for fixing this hydrothermal input of REE during the latest stage of alteration.  相似文献   


16.
Fumarolic encrustations and natrocarbonatite lava from the active crater of Oldoinyo Lengai volcano, Tanzania, were sampled and analysed. Two types of encrustation were distinguished on the basis of their REE content, enriched (~ 2800–5600 × [REEchondrite]) and depleted (~ 100–200 × [REEchondrite]) relative to natrocarbonatite (1700–1900 × [REEchondrite]. REE-enriched encrustations line the walls of actively degassing fumaroles, whereas REE-depleted encrustations occur mainly along cracks in and as crusts on cooling natrocarbonatite lava flows; one of the low REE encrustation samples was a stalactite from the wall of a possible fumarole. The encrustations are interpreted to have different origins, the former precipitating from volcanic gas and the latter from meteoric/ground water converted to steam by the heat of the overlying lava flow(s). REE-profiles of encrustations and natrocarbonatite are parallel, suggesting that there was no preferential mobilization of specific REE by either volcanic vapour or meteoric water vapour. The elevated REE-content of the first group of encrustations suggests that direct REE-transport from natrocarbonatite to volcanic vapour is possible. The REE trends observed in samples precipitating directly from the volcanic vapour cannot be explained by dry volatility based on the available data as there is no evidence in the encrustation compositions of the greatly enhanced volatility predicted for Yb and Eu. The observed extreme REE-fractionation with steep La/Sm slopes parallel to those of the natrocarbonatite reflects solvation and complexation reactions in the vapour phase that did not discriminate amongst the different REE or similar transport of REE in both the natrocarbonatite magma and its exsolving vapour. The low concentrations of REE in the encrustations produced by meteoric vapour suggest that the temperature was too low or that this vapour did not contain the ligands necessary to permit significant mobilization of the REE.  相似文献   

17.
Vertical profiles of dissolved rare earth elements (REEs) were obtained in the Bay of Bengal and the Andaman Sea. The REE concentrations at various depths in the Bay of Bengal are the highest in the Indian Ocean. This is attributable ultimately to the large outflow of the Ganges–Brahmaputra and Irrawaddy rivers, but the dissolved REE flux to surface waters alone cannot explain the large and near-constant REE enrichment throughout the entire water column. The underlying fan sediments serve as not a source but a sink for dissolved REE(III)s. Absence of excess 228Ra in the deep waters suggests that lateral input of dissolved REEs from slope sediments is also small in these regions. Partial (<0.3%) dissolution of detrital particles, which are carried by the rivers and lateral surface currents and subsequently settle through the water column, appears to be a predominant source for the dissolved REEs. Vertical profiles showing an almost linear increase with depth are common features for the light and middle REEs everywhere, but their concentration levels are variable from basin to basin and from element to element. This suggests that their oceanic distributions respond quickly to the variation of particle flux and its REE composition through reversible exchange equilibrium with suspended and sinking particles much like the case for Th. The relative importance of the vertical geochemical processes of reversible scavenging over the horizontal basin-scale ocean circulation with passive regeneration like nutrients decreases systematically from the light to the heavy REEs. Using a model, the mean oceanic residence times of REEs in the Bay of Bengal are estimated to range from 37 years for Ce to 140–1510 years for the strictly trivalent REEs. In the deep water of the Andaman Sea, isolated from the Bay of Bengal by the Andaman–Nicobar Ridge (maximum sill depth of ∼1800 m), the REE concentrations are almost uniform presumably due to rapid vertical mixing. The REE(III) concentrations are similar to that of ∼1250 m depth water in the Bay of Bengal, consistent with other oceanographic properties. However, the REE composition of the deep water appears to be altered slightly by preferential scavenging of the light REE(III) at the bottom boundary of the basin.  相似文献   

18.
Soil secondary minerals are important scavengers of rare earth elements(REEs) in soils and thus affect geochemical behavior and occurrence of REEs. The fractionation of REEs is a common geochemical phenomenon in soils but has received little attention, especially fractionation induced by secondary minerals. In this study, REEs(La to Lu and Y) associated with soil-abundant secondary minerals Fe-, Al-, and Mn-oxides in 196 soil samples were investigated to explore the fractionation and anomalies of REEs related to the minerals. The results show right-inclined chondrite-normalized REE patterns for La–Lu in soils subjected to total soil digestion and partial soil extraction. Light REEs(LREEs) enrichment features were negatively correlated with a Eu anomaly and positively correlated with a Ce anomaly. The fractionation between LREEs and heavy REEs(HREEs) was attributed to the high adsorption affinity of LREEs to secondary minerals and the preferred activation/leaching of HREEs.The substantial fractions of REEs in soils extracted byoxalate and Dithionite-Citrate-Bicarbonate buffer solutions were labile(10 %–30 %), which were similar to the mass fraction of Fe(10 %–20 %). Furthermore, Eu was found to be more mobile than the other REEs in the soils, whereas Ce was less mobile. These results add to our understanding of the distribution and geochemical behavior of REEs in soils, and also help to deduce the conditions of soil formation from REE fractionation.  相似文献   

19.
Analytical procedures in the determination of iodine-129 (half-life: 1.6×107 y) have been studied using accelerator mass spectrometry (AMS), with special references to the separation procedures of iodine from soil samples for the AMS measurement. Iodine was successfully volatilized from soil samples by pyrohydrolysis at 1000 °C and collected in a trap solution. Iodine was purified from the matrix by solvent extraction. Finally, it was precipitated as silver iodide to make a target for AMS. In order to obtain information on the 129I/127I ratio in a chemical blank (or iodine carrier), we have determined the ratios in several iodine reagents and found that the ratios fell in a narrow range around 1.7×10−13. The detection limit for soil sample (1 g material) by the present method was about 0.01 mBq/kg or 4×10−11 as the ratio of stable iodine (129I/127I ratio), i.e. these values were much better than that by neutron activation analysis (NAA) used in our previous studies. We have applied this method in the analysis of soil samples collected from different places in Japan. We could successfully determine 129I in soil samples with low 129I concentrations, which could not be detected by NAA. Sample size necessary for the soil analysis by AMS was only about 0.5 g or less, whereas about 100 g of the sample were required for NAA [Muramatsu, Y., Ohmomo, Y., 1986. Iodine-129 and iodine-127 in environmental samples collected from Tokaimura/ Ibaraki, Japan. Sci. Total Environ. 48, 33-43]. Using this method, new data were obtained for the 129I levels in 20 soil samples collected from background areas far from nuclear facilities, and the ranges were 1.4×10−5−4.5×10−3 Bq/kg as 129I concentrations and 3.9×10−11−2.2×10−8 as 129I/127I ratios. These values are useful in understanding the 129I levels in Japanese environments. Higher 129I concentrations were observed in forest soils than those in field and rice paddy soils should be related to the interception effect of atmospheric 129I due to tree canopies. Relatively high 129I/127I ratios found in rice paddy soils could be explained by their low stable iodine concentrations which were caused by the desorption of stable iodine from the rice paddies during the cultivation.  相似文献   

20.
REE, Y, Rb, Sr, Cs, Ba, Pb, Th, U, Zr, Hf, and Sn are reported for a basalt, low-Si andesite, andesite, high-K andesite, dacite and rhyolite from the calc-alkaline volcanic belt of Calimani-Harghita Mountains (Rumenian Carpathians). The basalt, low-Si andesite and andesite show identical chondrite-normalized REE patterns with fractionated light REE (La-Sa) and unfractionated heavy REE (Gd-Yb). The dacite shows similar pattern but lower ΣREE. The high-K andesite and rhyolite have a distinctively different REE pattern strongly fractionated for both light and heavy REE. These differences point to different genetical mechanism for the high-K andesite-rhyolite and basalt-low-Si andesite-andesite-dacite magmas. The high-K andesite and rhyolite magmas are believed to represent primary melts of an undergoing oceanic slab; the basalt, low-Si andesite, andesite and dacite magmas are considered to be produced by partial melting of garnet pyroxenite bodies derived by reaction between the primary melts of the undergoing oceanic slab and the peridotitic mantle overlying the Benioff zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号