首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 416 毫秒
1.
The Leverburgh Belt and South Harris Igneous Complex in South Harris (northwest Scotland) experienced high-pressure granulite facies metamorphism during the Palaeoproterozoic. The metamorphic history has been determined from the following mineral textures and compositions observed in samples of pelitic, quartzofeldspathic and mafic gneisses, especially in pelitic gneisses from the Leverburgh Belt: (1) some coarse-grained garnet in the pelitic gneiss includes biotite and quartz in the inner core, sillimanite in the outer core, and is overgrown by kyanite at the rims; (2) garnet in the pelitic gneiss shows a progressive increase in grossular content from outer core to rims; (3) the AlVI/AlIV ratio of clinopyroxene from mafic gneiss increases from core to rim; (4) retrograde reaction coronas of cordierite and hercynite+cordierite are formed between garnet and kyanite, and orthopyroxene+cordierite and orthopyroxene+plagioclase reaction coronas develop between garnet and quartz; (5) a P–T path is deduced from inclusion assemblages in garnet and from staurolite breakdown reactions to produce garnet+sillimanite and garnet+sillimanite+hercynite with increasing temperature; and (6) in sheared and foliated rocks, hydrous minerals such as biotite, muscovite and hornblende form a foliation, modifying pre-existing textures. The inferred metamorphic history of the Leverburgh Belt is divided into four stages, as follows: (M1) prograde metamorphism with increasing temperature; (M2) prograde metamorphism with increasing pressure; (M3) retrograde decompressional metamorphism with decreasing pressure and temperature; and (M4) retrograde metamorphism accompanied by shearing. Peak P–T conditions of the M2 stage are 800±30 °C, 13–14 kbar. Pressure increasing from M1 to M2 suggests thrusting of continental crust over the South Harris belt during continent–continent collision. The inferred P–T path and tectonic history of the South Harris belt are different from those of the Lewisian of the mainland.  相似文献   

2.
Abstract Sapphirine-bearing rocks occur in three conformable, metre-size lenses in intrusive quartzo-feldspathic orthogneisses in the Curaçà valley of the Archaean Caraiba complex of Brazil. In the lenses there are six different sapphirine-bearing rock types, which have the following phases (each containing phlogopite in addition): A: Sapphirine, orthopyroxene; B: Sapphirine, cordierite, orthopyroxene, spinel; C: Sapphirine, cordierite; D: Sapphirine, cordierite, orthopyroxene, quartz; E: Sapphirine, cordierite, orthopyroxene, sillimanite, quartz; F: Sapphirine, cordierite, K-feldspar, quartz. Neither sapphirine and quartz nor orthopyroxene and sillimanite have been found in contact, however. During mylonitization, introduction of silica into the three quartz-free rocks (which represent relict protolith material) gave rise to the three cordierite and quartz-bearing rocks. Stable parageneses in the more magnesian rocks were sapphirine–orthopyroxene and sapphirine–cordierite. In more iron-rich rocks, sapphirine–cordierite, sapphirine-cordierite–sillimanite, cordierite–sillimanite, sapphirine–cordierite–spinel–magnetite and quartz–cordierite–orthopyroxene were stable. The iron oxide content in sapphirine of the six rocks increases from an average of 2.0 to 10.5 wt % (total Fe as FeO) in the order: C,F–A,D–B,E. With increase in Fe there is an increase in recalculated Fe2O3 in sapphirine. The four rock types associated with the sapphirine-bearing lenses are: I: Orthopyroxene, cordierite, biotite, quartz, feldspar tonalitic to grandioritic gneiss; II: Biotite, quartz, feldspar gneiss; III: Orthopyroxene, clinopyroxene, hornblende, plagioclase meta-norite; IV: Biotite, orthopyroxene, quartz, feldspar, garnet, cordierite, sillimanite granulite gneiss. The stable parageneses in type IV are orthopyroxene–cordierite–quartz, garnet–sillimanite–quartz and garnet–cordierite–sillimanite. Geothermobarometry suggests that the associated host rocks equilibrated at 720–750°C and 5.5–6.5 kbar. Petrogenetic grids for the FMASH and FMAFSH (FeO–MgO–Al2O3–Fe2O3–SiO2–H2O) model systems indicate that sapphirine-bearing assemblages without garnet were stabilized by a high Fe3+ content and a high XMg= (Mg/ (Mg+Fe2+)) under these P–T conditions.  相似文献   

3.
Sapphirine occurs in the orthopyroxene-cordierite and feldspar-sillimanite granulites in the Sipiwesk Lake area of the Pikwitonei granulite terrain, Manitoba (97°40W, 55°05N). The orthopyroxene-cordierite granulites have extremely high Al2O3 (24.5 wt%) and MgO (24.6 wt%) contents and contain sapphirine (up to 69.2 wt% Al2O3), aluminous orthopyroxene (up to 8.93 wt% Al2O3), cordierite, spinel, phlogopite, and corundum. Sapphirine forms coronas mantling spinel and corundum. Corona sapphirine is zoned and its composition varies through the substitution (Mg, Fe, Mn) Si=2 Al as a function of the phases with which it is in contact. Textural and chemical relationships of sapphirine with coexisting phases indicate that spinel + cordierite reacted to form orthopyroxene + sapphirine under conditions of increasing pressure. Moreover, decreasing core to rim variation of Al2O3 in orthopyroxene porphyroblasts suggests decreasing temperature during sapphirine formation. On the basis of experimentally determined P-T stability of the assemblage enstatite + sapphirine + cordierite, and the Al content of hypothetical Fe2+-free orthopyroxene associated with sapphirine and cordierite, metamorphic temperatures and pressures are estimated to be 860–890° C and 3.0–11.2 kbar.In the feldspar-sillimanite granulites, sapphirine occurs as a relict phase mantled by sillimanite and/or by successive coronas of sillimanite and garnet. These textural relations suggest the reaction sapphirine + garnet + quartz = orthopyroxene + sillimanite with decreasing temperature. Compositions of minerals in the assemblage garnet-orthopyroxene-sillimanite-plagioclase-quartz, indicate metamorphic P-T conditions of 780–880° C and 9±1 kb.The metamorphic conditions estimated in this study suggest that the sapphirine bearing granulites in the Sipiwesk Lake area represent Archean lower crustal rocks. Their formation might be related to the crustal thickening processes in this area as suggested by Hubregtse (1980) and Weber (1983).  相似文献   

4.
Highly magnesian and aluminous migmatitic gneisses from Mather Peninsula in the Rauer Group, Eastern Antarctica, preserve ultrahigh temperature (UHT) metamorphic assemblages that include orthopyroxene+sillimanite±quartz, garnet+sillimanite±quartz and garnet+orthopyroxene±sillimanite. Garnet that ranges up to XMg of 71.5 coexists with aluminous orthopyroxene that shows zoning from cores with 7.5–8.5 wt% Al2O3 to rims with up to 10.6 wt% Al2O3 adjacent to garnet. Peak PT conditions of 1050 °C and 12 kbar are retrieved from Fe–Mg–Al thermobarometry involving garnet and orthopyroxene, in very good agreement with independent constraints from petrogenetic grids in FeO–MgO–Al2O3–SiO2 and related chemical systems. Sapphirine, orthopyroxene and cordierite form extensive symplectites and coronas on the early phases. The specific reaction textures and assemblages involving these secondary phases correlate with initial garnet XMg , with apparent higher-pressure reaction products occurring on the more magnesian garnet, and are interpreted to result from an initial phase of ultrahigh temperature near-isothermal decompression (UHT-ITD) from 12 to 8 kbar at temperatures in excess of 950 °C. Later textures that involved biotite formation and then partial breakdown, along with garnet relics, to symplectites of orthopyroxene+cordierite or cordierite+spinel may reflect hydration through back-reaction with crystallizing melts on cooling below 900–850 °C, followed by ITD from 7 to 8 kbar to c. 5 kbar at temperatures of 750–850 °C. The tectonic significance of this P–T history is ambiguous as the Rauer Group records the effects of Archean tectonothermal events as well as high-grade events at 1000 and 530 Ma. Late-stage biotite formation and subsequent ITD can be correlated with the P–T history preserved in the Proterozoic components of the Rauer Group and hence with either 1000 or 530 Ma collisional orogenesis. However, whether the preceding UHT-ITD history reflects a temporally unrelated event (e.g. Archean) or is simply an early stage of either the late-Proterozoic or Pan-African tectonism, as recently deduced for similar UHT rocks from other areas of the East Antarctica, remains uncertain.  相似文献   

5.
The investigated area around Sarvapuram represents a part of the Karimnagar granulite terrane of the Eastern Dharwar Craton, India. Garnet–bearing gneiss is hosted as enclaves, pods within granite gneiss and charnockite. It is largely made up of garnet, orthopyroxene, cordierite, biotite, plagioclase, K–feldspar, sillimanite and quartz. The peak metamorphic stage is represented by the equilibrium mineral assemblage i.e. garnet, orthopyroxene, cordierite, biotite, plagioclase, sillimanite and quartz. Breakdown of the garnet as well as preservation of the orthopyroxene–cordierite symplectite, formation of cordierite with the consumption of the garnet + sillimanite + quartz represents the decompressional event. The thermobarometric calculations suggest a retrograde P–T path with a substantial decompression of c. 3.0 kbar. The water activity(XH2 O) conditions obtained with the win TWQ program for core and symplectite compositions from garnet–bearing gneiss are 0.07–0.14 and 0.11–0.16 respectively. The quantitative estimation of oxygen fugacity in garnet–bearing gneiss reveal log f O2 values ranging from-11.38 to-14.05. This high oxidation state could be one of the reasons that account for the absence of graphite in these rocks.  相似文献   

6.
A sequence of psammitic and pelitic metasedimentary rocks from the Mopunga Range region of the Arunta Inlier, central Australia, preserves evidence for unusually low pressure (c. 3 kbar), regional‐scale, upper amphibolite and granulite facies metamorphism and partial melting. Upper amphibolite facies metapelites of the Cackleberry Metamorphics are characterised by cordierite‐andalusite‐K‐feldspar assemblages and cordierite‐bearing leucosomes with biotite‐andalusite selvages, reflecting P–T conditions of c. 3 kbar and c. 650–680 °C. Late development of a sillimanite fabric is interpreted to reflect either an anticlockwise P–T evolution, or a later independent higher‐P thermal event. Coexistence of andalusite with sillimanite in these rocks appears to reflect the sluggish kinematics of the Al2SiO5 polymorphic inversion. In the Deep Bore Metamorphics, 20 km to the east, dehydration melting reactions in granulite facies metapelites have produced migmatites with quartz‐absent sillimanite‐spinel‐cordierite melanosomes, whilst in semipelitic migmatites, discontinuous leucosomes enclose cordierite‐spinel intergrowths. Metapsammitic rocks are not migmatised, and contain garnet–orthopyroxene–cordierite–biotite–quartz assemblages. Reaction textures in the Deep Bore Metamorphics are consistent with a near‐isobaric heating‐cooling path, with peak metamorphism occurring at 2.6–4.0 kbar and c. 750800 °C. SHRIMP U–Pb dating of metamorphic zircon rims in a cordierite‐orthopyroxene migmatite from the Deep Bore Metamorphics yielded an age of 1730 ± 7 Ma, whilst detrital zircon cores define a homogeneous population at 1805 ± 7 Ma. The 1730 Ma age is interpreted to reflect the timing of high‐T, low‐P metamorphism, synchronous with the regional Late Strangways Event, whereas the 1805 Ma age provides a maximum age of deposition for the sedimentary precursor. The Mopunga Range region forms part of a more extensive low‐pressure metamorphic terrane in which lateral temperature gradients are likely to have been induced by localised advection of heat by granitic and mafic intrusions. The near‐isobaric Palaeoproterozoic P–T–t evolution of the Mopunga Range region is consistent with a relatively transient thermal event, due to advective processes that occurred synchronous with the regional Late Strangways tectonothermal event.  相似文献   

7.
Contact aureoles of the anorthositic to granitic plutons of the Mesoproterozoic Nain Plutonic Suite (NPS), Labrador, are particularly well developed in the Palaeoproterozoic granulite facies, metasedimentary, Tasiuyak gneiss. Granulite facies regional metamorphism (MR), c. 1860 Ma, led to biotite dehydration melting of the paragneiss and melt migration, leaving behind biotite‐poor, garnet–sillimanite‐bearing quartzofeldspathic rocks. Subsequently, Tasiuyak gneiss within a c. 1320 Ma contact aureole of the NPS was statically subjected to lower pressure, but higher temperature conditions (MC), leading to a second partial melting event, and the generation of complex mineral assemblages and microstructures, which were controlled to a large extent by the textures of the MR assemblage. This control is clearly seen in scanning electron microscopic images of thin sections and is further supported by phase equilibria modelling. Samples collected within the contact aureole near Anaktalik Brook, west of Nain, Labrador, mainly consist of spinel–cordierite and orthopyroxene–cordierite (or plagioclase) pseudomorphs after MR sillimanite and garnet, respectively, within a quartzofeldspathic matrix. In addition, some samples contain fine‐grained intergrowths of K‐feldspar–quartz–cordierite–orthopyroxene inferred to be pseudomorphs after osumulite. Microstructural evidence of the former melt includes (i) coarse‐grained K‐feldspar–quartz–cordierite–orthopyroxene domains that locally cut the rock fabric and are inferred to represent neosome; (ii) very fine‐ to medium‐grained cordierite–quartz intergrowths interpreted to have formed by a reaction involving dissolution of biotite and feldspar in melt; and (iii) fine‐scale interstitial pools or micro‐cracks filled by feldspar interpreted to have crystallized from melt. Ultrahigh temperature (UHT) conditions during contact metamorphism are supported by (i) solidus temperatures >900 °C estimated for all samples, coupled with extensive textural evidence for contact‐related partial melting; (ii) the inferred (former) presence of osumilite; and (iii) titanium‐in‐quartz thermometry indicating temperatures within error of 900 °C. The UHT environment in which these unusual textures and minerals were developed was likely a consequence of the superposition of more than one contact metamorphic event upon the already relatively anhydrous Tasiuyak gneiss.  相似文献   

8.
A high-grade metamorphic complex is exposed in Filchnerfjella (6–8°E), central Dronning Maud Land. The metamorphic evolution of the complex has been recovered through a study of textural relationships, conventional geothermobarometry and pseudosection modelling. Relicts of an early, high-P assemblage are preserved within low-strain mafic pods. Subsequent granulite facies metamorphism resulted in formation of orthopyroxene in rocks of mafic, intermediate to felsic compositions, whereas spinel + quartz were part of the peak assemblage in pelitic gneisses. Peak conditions were attained at temperatures between 850–885 °C and 0.55–0.70 GPa. Reaction textures, including the replacement of amphibole and garnet by symplectites of orthopyroxene + plagioclase and partial replacement of garnet + sillimanite + spinel bearing assemblages by cordierite, indicate that the granulite facies metamorphism was accompanied and followed by decompression. The observed assemblages define a clock-wise P-T path including near-isothermal decompression. During decompression, localized melting led to formation of post-kinematic cordierite-melt assemblages, whereas mafic rocks contain melt patches with euhedral orthopyroxene. The granulite facies metamorphism, decompression and partial crustal melting occurred during the Cambrian Pan-African tectonothermal event.  相似文献   

9.
Static heating during intrusion of the Makhavinekh Lake Pluton (MLP) caused replacement of garnet in the adjacent country rocks (Tasiuyak Gneiss) by coronal assemblages of orthopyroxene + cordierite. Thermometry based on Al solubility in orthopyroxene, applied to relict garnet and neighbouring orthopyroxene, preserves a temperature gradient from 700 to 900 °C at distances between 5750 and 20 m from the intrusion, reaffirming the robustness of this thermometry technique. Intracrystalline and intergranular variations of Al zoning in orthopyroxene are well‐preserved, suggesting that little diffusional modification of Al growth zoning occurred. Maximum Al2O3 in orthopyroxene ranges from c. 2.0 wt% at 5750 m from the intrusion to a maximum of 4.3 wt% at the contact. Individual orthopyroxene grains show decreasing Al from core to rim in samples < 500 m from the intrusion, while those at greater distances show an increase from core to rim. These features are interpreted with the aid of numerical models for conductive heat flow in the aureole. Coronas in samples close to the intrusion grew at high temperatures and along T‐t paths dominated by cooling, so maximum Al content in orthopyroxene in these samples occurs in the cores of grains that grew during the earliest stages of garnet consumption. In contrast, the corona‐forming reactions in rocks further from the contact proceeded along prograde heating paths, so maximum Al content in orthopyroxene occurs in the rims of grains that grew during the final stages of garnet consumption. These results document the ability of Al‐in‐orthopyroxene thermometry to preserve a detailed record of thermal histories in contact‐metamorphic granulites; they suggest that similar intracrystalline and intergranular variations of Al zoning in orthopyroxene in regional granulites may also preserve portions of both the prograde and peak‐T evolution.  相似文献   

10.
Some granulites from the Amessmessa area (south In Ouzzal unit, Hoggar) contain the peak assemblage gedrite+garnet+sillimanite+quartz that was used to estimate the P–T conditions of metamorphism. The rocks developed symplectites and corona textures by the breakdown of the primary paragenesis to orthopyroxene, cordierite and spinel. The successive parageneses formed in separate microdomains according to a clockwise P–T path. Geothermometry, geobarometry and phase diagram calculations indicate that the textures formed by decompression and cooling from 7–9 kbar and 850–900°C to 3.5–4.5 kbar and 700–800°C. This P–T evolution is consistent with low to medium aH2O, between 0.4 and 0.7, and is similar to the metamorphic conditions deduced in Al–Mg granulites from the north of In Ouzzal.  相似文献   

11.
Based on a consistent set of empirical interatomic potentials, static structure energy calculations of various Al/Si configurations in the supercell of Mg-cordierite and Monte Carlo simulations the phase transition between the orthorhombic and hexagonal modifications of cordierite (Crd) is predicted at 1623 K. The temperature dependences of the enthalpy, entropy, and free energy of the Al/Si disorder were calculated using the method of thermodynamic integration. The simulations suggest that the commonly observed crystallization of cordierite in the disordered hexagonal form could be related to a tendency of Al to occupy T1 site, which is driven by local charge balance. The increase in the Al fraction in the T1 site over the ratio of 2/3(T1): 1/3(T2), that characterizes the ordered state, precludes formation of the domains of the orthorhombic phase. This intrinsic tendency to the crystallization of the metastable hexagonal phase could have significantly postponed the formation of the association of orthorhombic cordierite and orthopyroxene over the association of quartz and garnet in metapelites subjected to granulite facies metamorphism. The textures of local metasomatic replacement (the formation of Crd + Opx Or Spr + Crd symplectites between the grains of garnet and quartz) indicate the thermodynamic instability of the association of Qtz + Grt at the moment of the metasomatic reaction. This instability could have been caused by the difficulty of equilibrium nucleation of orthorhombic cordierite.  相似文献   

12.
Interpretations based on quantitative phase diagrams in the system CaO–Na2O–K2O–TiO2–MnO–FeO–MgO–Al2O3–SiO2–H2O indicate that mineral assemblages, zonations and microstructures observed in migmatitic rocks from the Beit Bridge Complex (Messina area, Limpopo Belt) formed along a clockwise P–T path. That path displays a prograde P–T increase from 600 °C/7.0 kbar to 780 °C/9–10 kbar (pressure peak) and 820 °C/8 kbar (thermal peak), followed by a P–T decrease to 600 °C/4 kbar. The data used to construct the P–T path were derived from three samples of migmatitic gneiss from a restricted area, each of which has a distinct bulk composition: (1) a K, Al‐rich garnet–biotite–cordierite–sillimanite–K‐feldspar–plagioclase–quartz–graphite gneiss (2) a K‐poor, Al‐rich garnet–biotite–staurolite–cordierite–kyanite–sillimanite–plagioclase–quartz–rutile gneiss, and (3) a K, Al‐poor, Fe‐rich garnet–orthopyroxene–biotite–chlorite–plagioclase–quartz–rutile–ilmenite gneiss. Preservation of continuous prograde garnet growth zonation demonstrates that the pro‐ and retrograde P–T evolution of the gneisses must have been rapid, occurring during a single orogenic cycle. These petrological findings in combination with existing geochronological and structural data show that granulite facies metamorphism of the Beit Bridge metasedimentary rocks resulted from an orogenic event during the Palaeoproterozoic (c. 2.0 Ga), caused by oblique collision between the Kaapvaal and Zimbabwe Cratons. Abbreviations follow Kretz (1983 ).  相似文献   

13.
High‐pressure granulites are generally characterized by the absence of orthopyroxene. However, orthopyroxene is reported in a few high‐pressure, felsic–metapelitic granulites, such as the Huangtuling felsic high‐pressure granulite in the North Dabie metamorphic core complex in east‐central China, which rarely preserves the high‐pressure granulite facies assemblage of garnet + orthopyroxene + biotite + plagioclase + K‐feldspar + quartz. To investigate the effects of bulk‐rock composition on the stability of orthopyroxene‐bearing, high‐pressure granulite facies assemblages in the NCKFMASHTO (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) system, a series of PTX pseudosections based on the melt‐reintegrated composition of the Huangtuling felsic high‐pressure granulite were constructed. Calculations demonstrate that the orthopyroxene‐bearing, high‐pressure granulite facies assemblages are restricted to low XAl [Al2O3/(Na2O + CaO + K2O + FeO + MgO + Al2O3) < 0.35, mole proportion] or high XMg [MgO/(MgO + FeO) > 0.85] felsic–metapelitic rock types. This study also reveals that the XAl values in the residual felsic–metapelitic, high‐pressure granulites could be significantly reduced by a high proportion of melt loss. We suggest that orthopyroxene‐bearing, high‐pressure granulites occur in residual overthickened crustal basement under continental subduction–collision zones and arc–continent collision belts.  相似文献   

14.
The present study from the Sausar Mobile Belt (SMB) in the southern part of the Central Indian Tectonic zone (CITZ) demonstrates how microdomainal compositional variation of a single garnet porphyroblast in a metapelite granulite sample records the different segments of a near complete P-T path of metamorphic evolution. The microdomainal variation is ascribed to the preservation of growth zoning and heterogeneous distribution of diverse inclusion mineral assemblages. Subsequent mineral reactions under changing P/T conditions were controlled by this compositional heterogeneity. Four stages of metamorphic evolution have been deciphered. An early prograde stage (Mo) is implied by the rare presence of staurolite-biotite-quartz and in places of kyanite inclusion assemblages in other metapelite samples, together with the growth zoning preserved in garnet. The peak metamorphism (M1) at ~9.5 kbar, ~850 °C is consistent with the biotite dehydration melting that produced garnet-K-feldspar and granitic leucosomes. This was followed by near isothermal decompression (M2) at ~6 kbar, ~825 °C, during which different garnet segments behaved as separate microscale bulk compositions and decomposed both internally and externally to produce different retrograde mineral assemblages. In the quartz-bearing domain of almandine-rich and grossular-rich garnet core, grossular components in garnet reacted with included sillimanite and quartz to produce coronal plagioclase (XAn=0.90). By contrast, grossular-rich garnet in quartz-absent domain reacted with included sillimanite to produce layered spinelss {XMg (Mg/Mg+Fe2+) = 0.23–0.26}, XAl (Al/Al+Fe3+)=0.71–0.81}-plagioclase (XAn=0.91)-cordierite {XMg (Mg/Mg+Fe2+) = 0.80–0.83} coronas both in the core and inner rim region of garnet. During post-decompression cooling, reactions occurred at about 600 °C (M3), whereby quartz-bearing, sillimanite-absent microdomains of pyrope-rich, grossular-poor garnet outer rim decomposed to form relatively magnesian assemblages of cordierite-anthophyllite and cordierite-biotite-quartz. M2 spinelss decomposed to polyphase domains of spinel-magnetite±högbomite at this stage. Collating the textural and geothermobarometric results, a clockwise P-T path has been deduced. The deduced P-T loop is consistent with a model of crustal thickening due to continental collision, followed by rapid vertical thinning, which appears to be the general feature of the Sausar Mobile Belt. Using model calculations of the preserved growth and diffusion zoning in garnet, we demonstrate rather short-lived nature of this collision orogeny (in the order of 40–60 Ma).Editorial responsibility: W. Schreyer  相似文献   

15.
Sapphirine granulite occurring as lenses in charnockite at Anantagiri,Eastern Ghat, India, displays an array of minerals which developedunder different P-T-X conditions. Reaction textures in conjunctionwith mineral chemical data attest to several Fe-Mg continuousreactions, such as
  1. spinel+rutile+quartz+MgFe–1=sapphirine+ilmenite
  2. cordierite=sapphirine+quartz+MgFe–1
  3. sapphirine+quartz=orthopyroxene+sillimanite+MgFe–1
  4. orthopyroxene+sapphirine+quartz=garnet+MgFe–1
  5. orthopyroxene+sillimanite=garnet+quartz+MgFe–1
  6. orthopyroxene+sillimanite+quartz+MgFe–1=cordierite.
Calculated positions of the reaction curves in P-T space, togetherwith discrete P-T points obtained through geothermobarometryin sapphirine granulite and the closely associated charnockiteand mafic granulite, define an anticlockwise P-T trajectory.This comprises a high-T/P prograde metamorphic path which culminatedin a pressure regime of 8?3 kb above 950?C, a nearly isobariccooling (IBC) path (from 950?C, 8?3 kb, to 675?C, 7?5kb) anda terminal decompressive path (from 7?5 to 4?5 kb). Spinel,quartz, high-Mg cordierite, and sapphirine were stabilized duringthe prograde high-T/P metamorphism, followed by the developmentof orthopyroxene, sillimanite, and garnet during the IBC. Retrogradelow-Mg cordierite appeared as a consequence of decompressionin the sapphirine granulite. Deformational structures, reportedfrom the Eastern Ghat granulites, and the available geochronologicaldata indicate that prograde metamorphism could have occurredat 30001?00 and 2500?100 Ma during a compressive orogeny thatwas associated with high heat influx through mafic magmatism. IBC ensued from Pmax and was thus a direct consequence of progrademetamorphism. However, in the absence of sufficient study onthe spatial variation in P-T paths and the strain historiesin relation to time, the linkage between IBC and isothermaldecompression (ITD) has remained obscure. A prolonged IBC followedby ITD could be the consequence of one extensional mechanismwhich had an insufficient acceleration at the early stage, orITD separately could be caused by an unrelated extensional tectonism.The complex cooled nearly isobarically from 2500 Ma. It sufferedrapid decompression accompanied by anorthosite and alkalinemagmatism at 1400–1000 Ma.  相似文献   

16.
Mineral textures in metapelitic granulites from the northern Prince Charles Mountains, coupled with thermodynamic modelling in the K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (KFMASHTO) model system, point to pressure increasing with increasing temperature on the prograde metamorphic path, followed by retrograde cooling (i.e. an anticlockwise P–T path). Textural evidence for the increasing temperature part of the path is given by the breakdown of garnet and biotite to form orthopyroxene and cordierite in sillimanite‐absent rocks, and through the break‐down of biotite and sillimanite to form spinel, cordierite and garnet in more aluminous assemblages. This is equated to the advective addition of heat from the regional emplacement of granitic and charnockitic magmas dated at c. 980 Ma. A subsequent increase in pressure, inferred from the break‐down of spinel and quartz to sillimanite, cordierite and garnet in aluminous rocks, is attributed to crustal thickening related to upright folding dated at 940–910 Ma. The terrane attained peak metamorphic temperatures of c. 880 °C at pressures of c. 6.0–6.5 kbar during this event. Subsequent cooling is inferred from the localised breakdown of cordierite and garnet to form biotite and sillimanite that developed in the latter stages of the same event. The textural observations described are interpreted via the application of P–T and P–T–X pseudosections. The latter show that most rock compositions preserve only fragments of the overall P–T path; a result of different rock compositions undergoing mineral assemblage changes, or changes in mineral modal abundance, on different sections of the P–T path. The results also suggest that partial melting during granulite facies metamorphism, coupled with melt loss and dehydration, initiated a switch from pervasive ductile, to discrete ductile/brittle deformation, during retrograde cooling.  相似文献   

17.
东喜马拉雅地区高压麻粒岩岩石学研究及构造意义   总被引:17,自引:2,他引:15       下载免费PDF全文
 将该区内的高喜马拉雅结晶岩划分为南部的角闪岩相岩石和北部的中低压麻粒岩相岩石,后者沿那木拉逆冲断层向南推覆于前者之上。高压麻粒岩相岩石仅以残余产出于后者,主要包括石榴石蓝晶石片麻岩和石榴石透辉石岩。前者的峰期矿物组合为石榴石+蓝晶石+三元长石+石英+金红石;后者的峰期组合为石榴石(铁铝榴石10±钙铝榴石>80)+透辉石+石英+方柱石+榍石(Al2O3为4%-4.5%).变质温压估计结果表明高压麻粒岩相岩石形成于大约1.7-1.8GPa,890℃,然后经历了近等温降压变质作用至0.5±0.1GPa,850±50℃。它们的原岩可能是大理岩及泥质岩。这表明在区内曾存在一高压麻粒岩带,那木拉冲断层可能是高喜马拉雅结晶岩内的一条重要的构造界线。  相似文献   

18.
Abstract Metapelitic and charnockitic granulites exposed around Chilka Lake in the northern sector of the Eastern Ghats, India, preserve a multi-stage P—T record. A high-T decompression from above 10 kbar to 8 kbar around 1100°C has been determined from Mg-rich metapelites (XMg>0.60) with quartz-cordierite-orthopyroxene-sillimanite and cordierite—orthopyroxene—sapphirine—spinel assemblages. Between this and a second decompression to 6.0 kbar, isobaric cooling from 830 to 670°C at 8 kbar is evident. These changes are registered by the rim compositions of orthopyroxene and garnet in charnockites and metapelites with an orthopyroxene—quartz—garnet—plagioclase—cordierite assemblage, and are further supported by the garnet + quartz ± orthopyroxene + cordierite and biotite-producing reactions in sapphirine-bearing metapelites. Another indication of isobaric cooling from 800 to 650°C at 6.0 kbar is evident from rim compositions of orthopyroxene and garnet in patchy charnockites. Two sets of P—T values are obtained from metapelites with a quartz—plagioclase—garnet—sillimanite—cordierite assemblage: garnet and plagioclase cores yield 6.2 kbar, 700°C and the rims 5 kbar, 650°C, suggesting a third decompression. The earliest deformation (F1) structures are preserved in the larger charnockite bodies and the metapelites which retain the high P—T record. The effects of post-crystalline F2 deformation are observed in garnet megacrysts formed during or prior to F1 in some metapelites. Fold styles indicate a compressional regime during F1 and an extensional regime during F2. These lines of evidence and two phases of cooling at different pressures point to a discontinuity after the first cooling, and imply reworking. Two segments of the present P—T path replicate parts of the P—T paths suggested for four other granulite terranes in the Eastern Ghats, and the sense of all the paths is the same. This, plus the signature of three phases of deformation identified in the Eastern Ghats, suggests that the Chilka Lake granulites could epitomize the metamorphic evolution of the Eastern Ghats.  相似文献   

19.
Pan‐African high‐pressure granulites occur as boudins and layers in the Lurio Belt in north‐eastern Mozambique, eastern Africa. Mafic granulites contain the mineral assemblage garnet + clinopyroxene + plagioclase + quartz ± magnesiohastingsite. Garnet porphyroblasts are zoned with increasing almandine and spessartine contents and decreasing grossular and pyrope contents from core (Alm46Prp32Grs21Sps2) to rim (Alm52Prp26Grs19Sps3). This pattern is interpreted as a retrograde diffusion zoning with the preserved core chemistry representing the peak metamorphic composition. Mineral reaction textures occur in the form of monomineralic and composite plagioclase ± orthopyroxene ± amphibole ± biotite ± magnetite coronas around garnet porphyroblasts. Thermobarometry indicates peak metamorphic conditions of up to 1.57 ± 0.14 GPa and 949 ± 92 °C (stage I), corresponding to crustal depths of ~55 km. Zircon yielded an U–Pb age of 557 ± 16 Ma, inferred to date crystallization of zircon during peak or immediately post‐peak metamorphism. Formation of plagioclase + orthopyroxene‐bearing coronas surrounding garnet indicates a near‐isothermal decompression of the high‐pressure granulites to lower pressure granulite facies conditions (stage II). Development of plagioclase + amphibole‐coronas enclosing the same garnet porphyroblasts shows subsequent cooling into amphibolite facies conditions (stage III). Symplectitic textures of the corona assemblages indicate rapid decompression. The high‐pressure granulite facies metamorphism of the Lurio Belt, followed by near‐isothermal decompression and subsequent cooling, is in accordance with a long‐lived tectonic history accompanied by high magmatic activity in the Lurio Belt during the late Neoproterozoic–early Palaeozoic East‐African–Antarctic orogeny.  相似文献   

20.
Garnet-biotite (-cordierite) phase relations in high-grade gneisses of the south coast of Western Australia reflect at least two metamorphic episodes. Chemical uniformity of the interiors of garnet and cordierite grains suggest thorough equilibration during a major phase of metamorphism. Narrow Mg-depleted rims on garnet grain boundaries in contact with biotite or cordierite, and complementary Mg-enriched rims on contiguous cordierites are the result of subsequent retrograde re-equilibration. The absence of reaction zoning in biotites suggests more complete retrograde modification of this mineral.Comparison between granulite and amphibolite facies garnet-biotite pairs shows that Mn contents of both minerals are higher, and Ti contents of the biotites are lower, in the lower-grade rocks. These differences, although not entirely unrelated to grade, are more directly controlled by variations in host rock chemistry and modal amounts of garnet and biotite.Partitioning of Mg, Fe2+ and Mn between garnet and biotite is fairly uniform, with no clear differences between granulite and amphibolite facies pairs. Application of the Mg-Fe2+ distributions to the geothermometers devised by Perchuk, Thompson, and Goldman & Albee yields variable T estimates of 600–680°C, 580–780°C, and 475–715°C respectively, for the main metamorphism. These estimates are low compared with the T indicated for the granulite facies rocks by other evidence (i.e. > 750°C at 5 kb PT). The Mg-Fe2+ distributions between contiguous garnet-biotite rims suggest that retrograde re-equilibration occurred at least 20–140°C below the T of the main metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号