首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Rolf Brahde 《Solar physics》1972,26(2):318-334
A numerical method for correction of stray light in solar observations has been developed. In particular a regular sunspot, where the circular contours of penumbra and umbra are projected as ellipses, has been studied. When a specified set of values for the stray light parameters is given, and also tentative values for the relative intensities of penumbra and umbra, the integration of stray light can be performed in any point. The result will be the observable intensity if the conditions were as given by these initial values.By means of limb observations the stray light parameters may be improved, and finally a variation of the penumbra- and umbra intensities in the computation, enables a determination of these quantities by comparison with observations.The method is tested on observations of the transit of Mercury, May 9, 1970. Calculation of isophotes with Mercury close to the limb shows the black drop phenomenon; which thus may be explained as an effect of stray light only.It is also shown that the Wilson effect on a sunspot cannot be produced by stray light alone.  相似文献   

2.
The method for correcting observed sunspot intensities for scattered light has been tested using the transit of Mercury. It is found that the correction method of Zwaan (1965), Staveland (1970) has an uncertainty (rms value) of 0.05 times the photospheric intensity. During good observing conditions the uncertainty is 0.02 (rms value) with the scanning speed used in this study. A simpler and quicker correction method is suggested.Observations during Mercury's occultation of a sunspot as well as measurements close to the solar limb are briefly described.  相似文献   

3.
Mercury's transit on the solar disk offers ideal conditions to determine the stray light level of instruments. We present here the results on the stray light level deduced from the observation of the Mercury transit on 2003 May 7th at the secondary focus of the THEMIS telescope with the broad-band and spectral channels of the IPM instrument. The scattered light in the broad-band channel is about 17% and about 25% in the spectral channel. The spread function was deduced for the two channels taking into account the observations on the limb and on Mercury's disk. The goal of this paper is to underline the limits of determining the spread function from limb measurements to correct disk observations. Indeed, we show that if a diaphragm is located in the optical path of scattering surfaces, then the spread function deduced from limb measurements can be underestimated compared to the one required for disk observations. The case is illustrated with the results of the IPM-THEMIS instrument. The spread function deduced from limb measurements is able to correct disk observations in the broad-band channel but not in the spectral channel, even if the two channels are illuminated through the same telescope configuration.  相似文献   

4.
During the third flyby of Mercury by the MESSENGER spacecraft, a dedicated disk-integrated photometric sequence was acquired with the wide-angle multispectral camera to observe Mercury's global photometric behavior in 11 spectral filters over as broad a range of phase angle as possible within the geometric constraints of the flyby. Extraction of disk-integrated measurements from images acquired during this sequence required careful accounting for scattered light and residual background effects. The photometric model fit to these measurements is shown to fit observed radiances at phase angles below 110°, possibly except where both solar incidence and emission angles are high (>70°). The complexity of the scattered light at wavelengths greater than 828 nm contributes to a less accurate photometric correction at these wavelengths. The model is used to correct the global imaging data set acquired at a variety of geometries to a common geometry of incidence angle=30°, emission angle=0°, and phase angle=30°, yielding a relatively seamless mosaic. The results here will be used to correct image mosaics of Mercury acquired in orbit.  相似文献   

5.
Presented here are analyses of the photometric measurements acquired by the imaging system on the MESSENGER spacecraft during its three flybys of Mercury, in particular the dedicated sequence of photometric measurements obtained during the third flyby. A concise, analytical approach is adopted for characterizing the effects of scattered light on the images. This approach works well for wavelengths shorter than 700 nm but breaks down at the longer wavelengths where the scattering behavior of the imaging system is more complex. Broadband spectral properties are commensurate with ground-based observations for spectra acquired at phase angles less than 110°; photometric corrections to a common illumination and viewing geometry provide consistent results for those phase angles. No phase reddening is apparent in the image-derived spectra. A bolometric albedo of 0.081 is derived over the wavelength range of the imaging system.  相似文献   

6.
A tenuous calcium atmosphere at Mercury, principally seen in the polar regions, was first observed in July, 1998, using the High Resolution Echelle Spectrograph (HIRES) at the W.M. Keck I telescope (Bida et al., Nature 404, 159, 2000). We report four years of observations of the calcium exosphere of Mercury, confirming the initial findings of a very tenuous atmosphere. These observations show a persistent but spatially variable blue shift, indicating an excess velocity toward the observer of up to 3 km s−1, with an average excess velocity of 2.2 km s−1 above the south pole. In addition, the line profiles reveal a hot corona at the equivalent of 12,000-20,000 K in a thermalized atmosphere, indicating a large range of motion with respect to the observer. The calcium is not confined to the polar-regions: rare and low Ca abundance is seen in the equatorial regions. Strong emission was seen anti-sunward on 3 May 2002. Apparent weak emission on the sunward hemisphere may be due to scattered light from the surface, or may indicate a high latitude source. We show that the likely source of the calcium is either impact vaporization in the form of CaO and clusters, which are subsequently photo-dissociated, or ion-sputtering of atoms, molecules and ions. The column abundance is somewhat, but not strongly, correlated with solar activity. We predict a very hot (probably escaping) oxygen component to the hermean exosphere.  相似文献   

7.
8.
《Planetary and Space Science》2007,55(11):1518-1529
Low-energy neutral atom (LENA) observations bring us important information on particle environments around celestial objects such as Mercury and the Moon. In this paper, we report on new development of an LENA instrument for planetary explorations. The instrument is light weight (2 kg), and capable of mass and energy discrimination with a large sensitivity. The performance of the instrument is investigated by numerical simulations. By using our new computer code, we calculated 3D particle trajectories including ionization, neutralization, surface scattering, and secondary electron creation. This enables us to obtain detailed performance characterization of LENA measurements. We also made trajectory tracing of photons entering the instrument to acquire photon rejection capability. This LENA instrument has been selected for both the Indian lunar exploration mission Chandrayaan-1 and European–Japanese Mercury exploration mission BepiColombo.  相似文献   

9.
The magnetic field of Mercury and the structure and dynamics of Mercury's magnetosphere, which will be studied by the spacecraft orbiting Mercury, are strongly influenced by the interaction of the solar wind with Mercury. In order to understand the internal magnetic field, it will be necessary to correct the observations of the external field for the distortions produced by the solar wind. Understanding of the solar wind interaction with Mercury is essential for understanding the structure and dynamics of the magnetosphere and phenomena such as magnetic storms. Helios 1 and 2 made a number of passes in the region traversed by the orbit of Mercury, and each pass provided a sample of the solar wind environment of Mercury. This paper reviews the plasma and magnetic field observations from Helios that provide a general basis for interpreting the observations of Mercury that will be made by orbiting spacecraft. The variables that govern the structure and dynamics of the magnetospheres of Mercury and Earth are approximately 5–10 times larger at Mercury than at Earth. Thus, the solar wind interaction with Mercury will be much stronger than the interaction with Earth. Moreover, the solar wind at Mercury is probably more variable than that at Earth. There is a clear need for measurements of the solar wind during the approach of spacecraft to Mercury and while they are in orbit around Mercury.  相似文献   

10.
Petrova  E. V.  Jockers  K.  Kiselev  N. N. 《Solar System Research》2001,35(5):390-399
Optical observations of comets and atmosphereless celestial bodies show that a change of sign of the linear polarization of scattered light from negative to positive at phase angles less than 20° is typical of the cometary coma, as well as of the regolith of Mercury, the Moon, planetary satellites, and asteroids. To explain a negative branch of polarization, this research suggests a unified approach to the treatment of cometary-dust particles and regolith grains as aggregate forms. A composite structure of aggregate particles resulting in the interaction of composing structural elements (monomers) in the light-scattering process is responsible for the negative polarization at small phase angles, if the monomer sizes are comparable to the wavelength. The characteristics of single scattering of light calculated for aggregates of this kind turned out to be close to the properties observed for cometary dust. Unlike the cometary coma, the regolith is an optically semi-infinite medium, where the interaction between particles is significant. To find the reflectance characteristics of regolith, the radiative-transfer equation should be solved for a regolith layer. In this case, the interaction between scatterers can be modeled to a certain extent by representing the regolith grains as aggregate structures consisting of several or many elements. Although real regolith grains are much larger than the particles considered here, laboratory measurements have shown that it is precisely the surface irregularities comparable to the wavelength that cause a negative branch of polarization. The main observed features of the phase and spectral dependence of the linear polarization of light scattered from comets and atmosphereless celestial bodies, which are due to the difference of the elementary scatterers in composition, size, and structure, can be successfully explained using the aggregate model of particles.  相似文献   

11.
December 1–3, 1999, observations of the planet Mercury were carried out at the Abastumani Astrophysical Observatory of the Republic of Georgia by the short exposure method with the aid of a charge-coupled device (CCD) camera. The materials of these observations are presented in this paper. It is shown that the reduction of the exposure down to 10 ms eliminates the image blurring caused by the atmospheric instability and considerably improves resolution. As regards the image distortions, they can be eliminated only by selecting acceptable images from a sufficiently large number of pictures obtained. The short exposure method allows one to obtain new results from the ground-based observations of Mercury.  相似文献   

12.
The short exposure method proved to be very productive in ground-based observations of Mercury. Telescopic observations with short exposures, together with computer codes for the processing of data arrays of many thousands of original electronic photos, make it possible to improve the resolution of images from ground-based instruments to almost the diffraction limit. The resulting composite images are comparable with images from spacecrafts approaching from a distance of about 1 million km. This paper presents images of the hemisphere of Mercury in longitude sectors 90°–180°W, 215°–350°W, and 50°–90°W, including, among others, areas not covered by spacecraft cameras. For the first time a giant S basin was discovered in the sector of longitudes 250°–290°W, which is the largest formation of this type on terrestrial planets. Mercury has a strong phase effects. As a result, the view of the surface changes completely with the change in the planetary phase. But the choice of the phase in the study using spacecrafts is limited by orbital characteristics of the mission. Thus, ground-based observations of the planet provide a valuable support.  相似文献   

13.
Albregtsen  F.  Maltby  P. 《Solar physics》1981,74(1):147-151
We draw attention to the possibility of distinguishing between different sunspot theories by observing: (i) The umbra/photosphere intensity ratio as a function of spot size and (ii) the morphology and time evolution of sunspot inhomogeneities such as umbral dots. In arguing the need for space observations of sunspot intensities we discuss the corrections for stray light for ground based and space observations.The opportunity to use the November 13, 1986 Mercury transit as an in situ calibration event is pointed out.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

14.
We took electronic photographs of Mercury on the side of the planet that was not photographed from the Mariner-10 spacecraft in 1973–1975 by the millisecond-exposure method in ground-based observations. Based on these photographs, we synthesized resolved images of the surface of unknown regions of the planet. The capabilities of the method are limited by the small angular size of the planetary disk (only 7.3 arcsec at average quadrature), specific difficulties of Mercury’s ground-based observations, their very limited duration, and the laboriousness of the subsequent computer-aided observational data processing. The millisecond-exposure method is complex, but a sufficient number of primary electronic photographs can be taken under good seeing conditions for the subsequent synthesis of Mercurian images with a resolution of no worse than the diffraction limit. A giant basin about 2000 km in diameter and other large structures are distinguished in the synthesized images of the planet. In the regions where radar data are available, these structures can be identified with previously found ones. In some measure, the synthesized images allow the relief of the longitude sector 210°–290° W to be reconstructed on Mercury. It can be asserted with caution that the large relief features are distributed asymmetrically over the surface of Mercury, much as observed on other terrestrial planets, the Moon, and many satellites of giant planets.  相似文献   

15.
The results of planetary observations performed with a new CCD detector are presented. The available firmware for collecting a great number of electronic images and the high quantum efficiency of the employed CCD make it possible to observe objects the visibility of which is limited by the short duration of astronomical phenomena. Among such tasks are, for instance, the taking of a large number of images of Mercury by the short exposure method. With a high quantum efficiency of the light detector, short exposure makes it possible to appreciably reduce the blurring of astronomical images caused by the atmospheric instability. This study was performed at the Abastumani Astrophysical Observatory of the Republic of Georgia early in November 2001.  相似文献   

16.
Measurements of the disk-integrated reflectance spectrum of Mercury and the Moon have been obtained by the MESSENGER spacecraft. A comparison of spectra from the two bodies, spanning the wavelength range 220-1450 nm, shows that the absolute reflectance of Mercury is lower than that of the nearside waxing Moon at the same phase angle with a spectral slope that is less steep at visible and near-infrared wavelengths. We interpret these results and the lack of an absorption feature at a wavelength near 1000 nm as evidence for a Mercury surface composition that is low in ferrous iron within silicates but is higher in the globally averaged abundance of spectrally neutral opaque minerals than the Moon. Similar conclusions have been reached by recent investigations based on observations from both MESSENGER and Mariner 10. There is weak evidence for a phase-reddening effect in Mercury that is slightly larger in magnitude than for the lunar nearside. An apparent absorption in the middle-ultraviolet wavelength range of the Mercury spectrum detected from the first MESSENGER flyby of Mercury is found to persist in subsequent observations from the second flyby. The current model of space weathering on the Moon, which also presumably applies to Mercury, does not provide an explanation for the presence of this ultraviolet absorption.  相似文献   

17.
Astrometric and photometric observations of major planets, their satellites and asteroids have been made with the 26-in. refractor of the Pulkovo observatory during the period from 1995 to 2006. The CCD (ST6) and photographic observations were carried out. Accurate relative position of satellites of Jupiter and Saturn have been derived. The positions of Saturn have been calculated using the theoretically predicted coordinates of satellites relative to the planet without measurements of the photographic images of the planet. Also the observations of Hale-Bopp comet and Mercury transit have been made. The 26-in. refractor has been included into the international campaign PHEMU-2003: photometric CCD observations of mutual occultations and eclipses of Galilean satellites. The light curves of the events have been obtained and parameters of the events have been determined.  相似文献   

18.
J Warell 《Icarus》2004,167(2):271-286
A comparison of the photometric properties of Mercury and the Moon is performed, based on their integral phase curves and disk-resolved image data of Mercury obtained with the Swedish Vacuum Solar Telescope. Proper absolute calibration of integral V-band magnitude observations reveals that the near-side of the Moon is 10-15% brighter than average Mercury, and 0-5% brighter for the “bolometric” wavelength range 400-1000 nm. As shown, this is supported by recent estimates of their geometric albedos. Hapke photometric parameters of their surfaces are derived from identical approaches, allowing a contrasting study between their surface properties to be performed. Compared to the average near-side Moon, Mercury has a slightly lower single-scattering albedo, an opposition surge with smaller width and of marginally smaller amplitude, and a somewhat smoother surface with similar porosity. The width of the lobes of the single-particle scattering function are smaller for Mercury, and the backward scattering anisotropy is stronger. In terms of the double Henyey-Greenstein b-c parameter plot, the scattering properties of an average particle on Mercury is closer to the properties of lunar maria than highlands, indicating a higher density of internal scatterers than that of lunar particles. The photometric roughness of Mercury is well constrained by the recent study of Mallama et al. (2002, Icarus 155, 253-264) to a value of about 8°, suggesting that the surfaces sampled by the highest phase angle observations (Borealis, Susei, and Sobkou Planitia) are lunar mare-like in their textural properties. However, Mariner 10 disk brightness profiles obtained at intermediate phase angles indicate a surface roughness of about twice this value. The photometric parameters of the Moon are more difficult to constrain due to limited phase angle coverage, but the best Hapke fits are provided by rather small surface roughnesses. Better-calibrated, multiple-wavelength observations of the integral and disk-resolved brightnesses of both bodies, and obtained at higher phase angle values in the case of the Moon, are urgently needed to arrive at a more consistent picture of the contrasting light scattering properties of their surfaces.  相似文献   

19.
With a view to the further development of the short exposure method with a CCD detector, new observations of the planet Mercury were carried out at the Abastumany Astrophysical Observatory, Republic of Georgia, from October 30 to November 8, 2001. Comparison with the previous data, as well as the results of data processing based on newly developed algorithms, points to considerable progress achieved in the technique for observing Mercury. In some cases, under very favorable atmospheric conditions, the resolution attained is close to the diffraction limit of the astronomic instrument used. For the first time, topographic features on Mercury's surface were reliably resolved. Features with linear sizes as small as 120 km are successfully identified in the disk center.  相似文献   

20.
The results of investigations of the surface relief of Mercury with a classical photometric method are reported. A subject of the photometric method is the intensity of light reflected by the surface of the planet. The main data for the photometric study are the high-resolution images of Mercury received from the MESSENGER space station during its first flyby over Mercury. The images of the surface of Mercury were downloaded from the NASA web-site (http://messenger.jhuapl.edu) and converted to a digital form for photometric measurements. The reflectance characteristics of the surface were calculated according to the model of a three-dimensional scattering phase function (Shevchenko, 1979; 2004a; 2006). From the photometric processing of the space-borne images, the reflectance of four morphologic types of the surface structure of Mercury was determined. With the Hapke model of the bidirectional reflectance (Hapke, 2001), the structural inhomogeneity of the regions of the morphologic forms with centimeter-sized rough-ness was estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号