首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 599 毫秒
1.
The global structures of annual oscillation (AO) and semiannual oscillation (SAO) of stratospheric ozone are examined by applying spherical harmonic analysis to the ozone data obtained from the Nimbus-7 solar backscattered UV-radiation (SBUV) measurements for the period November 1978 to October 1980. Significant features of the results are: (1) while the stratospheric ozone AO is prevalent only in the polar regions, the ozone SAO prevails both in the equatorial and polar stratospheres; (2) the vertical distribution of the equatorial ozone SAO has a broad maximum of the order of 0.5 (mixing ratio in g/g) and the maximum appears earlier at high altitude (shifting from May [and November] at 0.3 mb [60 km] to November [and May] at 40 mb); (3) above the 40 km level, the maximum of the polar ozone SAO shifts upward towards later phase with altitude with a rate of approximately 10 km/month in both hemispheres; (4) vertical distributions of the polar ozone AOs and SAOs show two peaks in amplitude with a minimum (nodal layer) in between and a rapid phase change with altitude takes place in the respective nodal layers; and (5) the heights of the ozone AO- and SAO-peaks decrease with latitude. The main part of AOs and SAOs of stratospheric ozone including hemispheric asymmetries is ascribable to: (i) temperature dependent ozone photochemistry in the upper stratosphere and mesosphere, (ii) variations of radiation field in the lower stratosphere affected by the annual cycle of solar illumination and temperature in the upper stratosphere and (iii) meridional ozone transport by dynamical processes in the lower stratosphere.  相似文献   

2.
Ozone depression in the polar stratosphere during the energetic solar proton event on 4 August 1972 was observed by the backscattered ultraviolet (BUV) experiment on the Nimbus 4 satellite. Distinct asymmetries in the columnar ozone content, the amount of ozone depressions and their temporal variations above 4 mb level (38 km) were observed between the two hemispheres. The ozone destroying solar particles precipitate rather symmetrically into the two polar atmospheres due to the geomagnetic dipole field These asymmetries can be therefore ascribed to the differences mainly in dynamics and partly in the solar illumination and the vertical temperature structure between the summer and the winter polar atmospheres. The polar stratosphere is less disturbed and warmer in the summer hemisphere than the winter hemisphere since the propagation of planetary wave from the troposphere is inhibited by the wind system in the upper troposphere, and the air is heated by the prolonged solar insolation. Correspondingly, the temporal variations of stratospheric ozone depletion and its recovery appear to be smooth functions of time in the (northern) summer hemisphere and the undisturbed ozone amount is slighily, less than that of its counterpart. On the other hand, the tempotal variation of the upper stratospheric ozone in the winter polar atmosphere (southern hemisphere) indicates large amplitudes and irregularities due to the disturbances produced by upward propagating waves which prevail in the polar winter atmosphere. These characteristic differences between the two polar atmospheres are also evident in the vertical distributions of temperature and wind observed by balloons and rocker soundings.  相似文献   

3.
The atmospheric influence on the Earths, rotation can be described by the effective atmospheric angular momentum (EAAM) functions. In this study we focus on the analysis of short period variations of the equatorial components of the zonal EAAM excitation functions 1 and 2 and their influence on similar variations of polar motion. The global objective analysis data of the Japanese Meteorological Agency for the period 1986–1992 were used to compute the EAAM excitation functions in different latitude belts. Time- and latitude-variable amplitude spectra of variations of these functions with periods shorter than 150 days, containing pressure, pressure with the inverted barometric correction, and wind terms were computed. The spectra show distinct latitude and time variations of the prograde and retrograde oscillations which reach their maxima mainly in mid-latitudes. Prograde and retrograde oscillations with periods of about 40–60 days and about 110–120 days are seen in the spectra of pressure terms of the equatorial components of the zonal EAAM excitation functions. Additionally, correlation coefficients and cross-spectra between variations of the geodetic polar motion and equatorial components of the zonal EAAM excitation functions were computed to identify the latitude belts of the globe over which atmospheric circulation changes are correlated mostly with short period variations of the polar motion excitation functions. The correlation coefficients vary in time and latitude and reach maximum values in the northern latitudes from 50°N to 60°N. In the cross-spectra between the polar motion excitation functions and pressure terms of the zonal EAAM excitation functions there are peaks of common prograde oscillations with the periods around 20, 30, 40–50, 60 and 80–150 days and of common retrograde oscillations around 20, 30, 40 and 50–70 days.Paper presented at the IERS Workshop in Paris, March 1994  相似文献   

4.
The altitude profiles of particulate extinction in the upper troposphere and lower stratosphere (UTLS) obtained from SAGE-II in the latitude region 0–30°N over the Indian longitude sector (70–90°E) are used to study the latitudinal variation of its annual pattern in this region during the volcanically quiescent period of 1998–2003. The SAGE-II data is compared with the lidar measurements from Gadanki (13.5°N, 79.2°E) when the satellite had an overhead occultation pass over a small geographical grid centered at this location. The particulate optical depth (τp) in the UT region shows a general decrease with increase in latitude and a pronounced summer–winter contrast with relatively low values during winter and high values during summer. In general, these variations are in accordance with the latitudinal variation of convective available potential energy (CAPE) and thunderstorm activity, which are good representative indices of tropospheric convection. While the particulate extinction (and τp) in the 18–21 km (LS1) region is relatively low in the equatorial region up to 15°N, it shows an increase in the off-equatorial region, beyond 15°N. While the annual variation of τp in the LS1 region is almost insignificant near the equator, it is rather well pronounced in latitude region between 10 and 15°N with relatively high values during winter and low values during summer. Beyond 20°N, this shows a prominent peak during summer. At a higher altitude, the 21–30 km (LS2) region, the latitude variation of τp shows a different pattern with high values near the equator and low values in the off-equatorial region confirming the existence of a stratospheric aerosol reservoir. Low values of τp at lower regime (LS1) near the equator could be due to rapid transport of particulates from the near equatorial region to higher latitudes, while the equatorial high at upper regime (LS2) could be due to lofting and subsequent accumulation.  相似文献   

5.
The 1964 Prince William Sound earthquake (March 28, 1964;M w =9.2) caused crustal deformation over an area of approximately 140,000 km2 in south central Alaska. In this study geodetic and geologic measurements of this surface deformation were inverted for the slip distribution on the 1964 rupture surface. Previous seismologic, geologic, and geodetic studies of this region were used to constrain the geometry of the fault surface. In the Kodiak Island region, 28 rectangular planes (50 by 50 km each) oriented 218°N, with a dip varying from 8o nearest the Aleutian trench to 9o below Kodiak Island, define the rupture surface. In the Prince William Sound region 39 planes with variable dimensions (40 by 50 km near the trench, 64 by 50 km inland) and orientation (218°N in the west and 270°N in the east) were used to approximate the complex faulting. Prior information was introduced to constrain offshore dip-slip values, the strike-slip component, and slip variation between adjacent planes. Our results suggest a variable dip-slip component with local slip maximums occurring near Montague Island (up to 30 m), further to the east near Kayak Island (up to 14 m), and trenchward of the northeast segment of Kodiak Island (up to 17m). A single fault plane dipping 30°NW, corresponding to the Patton Bay fault, with a slip value of 8 m modeled the localized but large uplift on Montague Island. The moment calculated on the basis of our geodetically derived slip model of 5.0×1029 dyne cm is 30% less than the seismic moment of 7.5×1029 dyne cm calculated from long-period surface waves (Kanamori, 1970) but is close to the seismic moment of 5.9×1029 dyne cm obtained byKikuchi andFukao (1987).  相似文献   

6.
The research on climate change in polar regions, especially on the role of polar in the global climate system, has gain unprecedented level of interest. It has been the key scientific issue of the International Polar Year program (IPY, 2007―2008). In this paper, we dealt with the debate upon the breakup time of the stratospheric polar vortex in boreal spring. An observational study of the relation between strato- spheric polar vortex breakup and the extra-tropical circulation was performed. The mean breakup date―when the winter westerly at the core of polar jet turns to summer easterly―is about April 10. The breakup time has large interannual variation with a time span of about 2 months. It also has a long-term trend with the 1990s and 2000s witnessing more and more late breakups of polar vortex. Composite of wind speed at the core of polar jet for the extremely early and late breakup years shows that late years have two periods of westerly weakening while early breakup years have only one. The first weakening in the late years happens in middle January with wind speed dropping sharply from more than 40 m s?1 to about 15 m s?1. This is accompanied with anomalous activities of planetary waves in both strato- sphere and troposphere; while the second weakening in the late breaking years is mainly the results of diabatic heating with very weak wave activities. In early breakup years, the transition from westerly to easterly is rapid with wind speed dropping from more than 30 m s?1 to less than ?10 m s?1 within a month. This evolution is associated with a strong bidirectional dynamical coupling of the stratosphere and troposphere. The circulation anomalies at low troposphere are also analyzed in the extremely early and late breakup years. It shows that there are significant differences between the two kinds of extreme years in the geopotential height and temperature composite analysis, indicating the dynamical cou- pling of stratosphere and troposphere with the evolution of stratospheric polar vortex.  相似文献   

7.
Characterization of gravity wave(GW)parameters for the stratosphere is critical for global atmospheric circulation models.These parameters are mainly determined from measurements.Here,we investigate variation in inertial GW activity with season and latitude in the lower stratosphere(18-25 km)over China,using radiosonde data with a high vertical resolution over a 2-year period.Eight radiosonde stations were selected across China,with a latitudinal range of 22°-49°N.Analyses show that the GW energy in the lower stratosphere over China has obvious seasonal variation and a meridional distribution,similar to other regions of the globe.The GW energy is highest in winter,and lowest in summer;it decreases with increasing latitude.Velocity perturbations with longitude and latitude are almost the same,indicating that GW energy is horizontally isotropic.Typically,85%of the vertical wavelength distribution is concentrated between elevations of 1 and 3 km,with a mean value of 2 km;it is almost constant with latitude.Over 80%of all the horizontal wavelengths occur in the range 100-800 km,with a mean value of 450km;they show a weak decrease with increasing latitude,yielding a difference of about 40 km over the 22°-49°N range.The ratio of horizontal wavelength over vertical wavelength is about 200:1,which implies that inertial GWs in the lower stratosphere propagate along nearly horizontal planes.Ratios of their intrinsic frequency to the Coriolis parameter decrease with increasing latitude;most values are between 1 and 2,with a mean value of 1.5.Study of the propagation directions of GW energy shows that upward fractions account for over 60%at all stations.In contrast,the horizontal propagation direction is significantly anisotropic,and is mainly along prevailing wind directions;this anisotropy weakens with increasing latitude.  相似文献   

8.
Sources and sinks of atmospheric methane   总被引:7,自引:0,他引:7  
In 1972 average mixing ratio of methane in the troposphere was 1.41 ppm and 1.3 ppmv for the northern and southern hemisphere, respectively, which corresponds to a total amount of 4×1015 g of CH4 present in the atmosphere. Most is of recent biologic origin.14C analyses show that no more than 20 percent is released by fossil sources. The various ecosystems producing CH4 are discussed and the total annual production is estimated to lie between 5.5×1014 g/yr and 11×1014 g/yr. The corresponding turnover times for atmospheric CH4 range from 4 to 7 yrs. The destruction of CH4 takes place mainly in the troposphere, most probably through the reaction of CH4 + OH CH3 + H2O. About 10 percent of the CH4 is destroyed in the stratosphere. The CH4 cycle contributes on the order of 1 percent to the atmospheric carbon cycle.  相似文献   

9.
Calculating the global mass exchange between stratosphere and troposphere   总被引:1,自引:0,他引:1  
Large-scale cross-tropopause mass fluxes are diagnosed globally from 1979 to 1989 for Northern Hemisphere winter conditions (December, January, and February). Results of different methods of approaches with regard to the definition of the tropopause and the way to calculate the mass fluxes are compared and discussed. The general pattern of the mass exchange from the tropopause into the stratosphere and vice versa agrees fairly well when using different methods, but the absolute values can differ up to 100%.An inspection of the temporal development of the mass fluxes for solstice conditions indicates a complex picture. Whereas a permanent significant downward flux from the stratosphere into the troposphere is detected for latitude regions nearly between 25°N and 40°N and between 30°S and 50°S (initiated by the poleward branches of the Hadley cells), a non-uniform behaviour is observed at higher latitude bands. Periods of strong mass exchange from the troposphere into the stratosphere are disrupted by periods of an opposite mass exchange. A comparison of the stratoshere-troposphere (ST) exchange with the exchange at higher altitudes through surfaces, quasi-parallel to the tropopause, excludes a general connection. Only a few strong upward directed ST mass exchange events have counterparts at higher altitudes. The composition of the stratosphere may be influenced directly by the ST exchange only in a thin layer above the tropopause.  相似文献   

10.
Nicolet  M.  Peetermans  W. 《Pure and Applied Geophysics》1973,106(1):1400-1416
The vertical distribution of the methane concentration in the stratosphere is related to its dissociation by two simultaneous daytime reactions with excited oxygen atoms O(1D) and with OH radicals and depends on the stratospheric eddy diffusion coefficient.Dissociation of CH4 in the lower stratosphere leads to the production of CO molecules while in the upper stratosphere thepphotodissociation of CO2 molecules is an additional process to the CO production.In the upper stratosphere (40±10 km) there is an equilibrium between the formation and destruction processes of carbon monoxide which leads to a minimum of its mixing ratio. There is an increase of the CO mixing ratio in the troposphere and mesosphere compared with that of the stratosphere.The vertical distribution of the CO mixing ratio is closely related to the eddy diffusion coefficient in the whole stratosphere but the absolute values of the hydroxyl radical concentration also determine the values of the CO mixing ratio.  相似文献   

11.
The CUTLASS Finland HF radar has been operational since February 1995. The radar frequently observes backscatter during the midnight sector from a latitude range 70–75° geographic, latitudes often associated with the polar cap. These intervals of backscatter occur during intervals of substorm activity, predominantly in periods of relatively quiet magnetospheric activity, with Kp during the interval under study being 2-and KP for the day being only 8-. During August 1995 the radar ran in a high time resolution mode, allowing measurements of line-of-sight convection velocities along a single beam with a temporal resolution of 14s, and measurement of a full spatial scan of line-of-sight convection velocities every four minutes. Data from such scans reveal the radar to be measuring return flow convection during the interval of substorm activity. For three intervals during the period under study, a reduction in the spatial extent of radar backscatter occurred. This is a consequence of D region HF absorption and its limited extent in the present study is probably a consequence of the high latitude of the substorm activity, with the electrojet centre lying between 67° and 71° geomagnetic latitude. The high time resolution beam of the radar additionally demonstrates that the convection is highly time dependent. Pulses of equatorward flow exceeding 600 m s–1 are observed with a duration of 5 min and a repetition period of 8 min. Their spatial extent in the CUTLASS field of view was 400–500 km in longitude, and 300–400 km in latitude. Each pulse of enhanced equatorward flow was preceded by an interval of suppressed flow and enhanced ionospheric Hall conductance. The transient features are interpreted as being due to ionospheric current vortices associated with field aligned current pairs. The relationship between these observations and substorm phenomena in the magnetotail is discussed.  相似文献   

12.
—The 4-season (12-month) running means of temperatures at five atmospheric levels (surface, 850–300 mb, 300–100 mb, 100–50 mb, 100–30 mb) and seven climatic zones (60°N–90°N, 30°N–60°N, 10°N–30°N, 10°N–10°S, 10°S–30°S, 30°S–60°S, 60°S–90°S) showed QBO (Quasi-biennial Oscillation), QTO (Quasi-triennial Oscillation) and larger periodicities. For stratosphere and tropopause, the temperature variations near the equator and North Pole somewhat resembled the 50mb low latitude zonal winds, mainly due to prominent QBO. For troposphere and surface, the temperature variations, especially those near the equator, resemble those of eastern equatorial Pacific sea-surface temperatures, mainly due to prominent QTO. In general, the temperature trends in the last 35 years show stratospheric cooling and tropospheric warming. But the trends are not monotonic. For example, the surface trends were downward during 1960–70, upward during 1970–82, downward during 1982–85 and upward thereafter. Models of green-house warming should take these non-uniformities into account.  相似文献   

13.
The NASA/Goddard Space Flight Center two-dimensional (GSFC 2D) photochemical transport model has been used to study the influence of thermospheric NO on the chemical balance of the middle atmosphere. Lower thermospheric NO sources are included in the GSFC 2D model in addition to the sources that are relevant to the stratosphere. A time series of hemispheric auroral electron power has been used to modulate the auroral NO production in the auroral zone. A time series of the Ottawa 10.7-cm solar flux index has been used as a proxy to modulate NO production at middle and low latitudes by solar EUV and soft X-rays. An interhemispheric asymmetry is calculated for the amounts of odd nitrogen in the polar stratosphere. We compute a <∼3% enhancement in the odd nitrogen (NOy=N, NO, NO2, NO3, N2O5, BrONO2, ClONO2, HO2NO2, and HNO3) budget in the north polar stratosphere (latitude > 50°) due to thermospheric sources, whereas we compute a <∼8% enhancement in the NOy budget in the south polar stratosphere (latitude > 50°).  相似文献   

14.
Starting with the average actual distribution of ozone (Dütsch [15]) and temperature in the stratosphere, we have calculated the solar intensity as a function of wavelength and the instantaneous rates (molecules cm–3 sec–1) for each Chapman reaction and for each of several reactions of the oxides of nitrogen. The calculation is similar to that ofBrewer andWilson [5]. These reaction rates were calculated independently in each volume element in spherical polar coordinates defined by R=1 km from zero to 50, =5° latitude, and ø=15° longitude (thus including day and night conditions). Calculations were made for two times: summer-winter (January 15) and spring-fall (March 22). As input data we take observed solar intensities (Ackerman [1]) and observed, critically evaluated. constants for elementary chemical and photochemical reactions; no adjustable parameters are employed. (These are not photochemical equilibrium calculations.) According to the Chapman model, the instantaneous, integrated, world-wide rate of formation of ozone from sunlight is about five times faster than the rate of ozone destruction, and locally (lower tropical stratosphere) the rate of ozone formation exceeds the rate of destruction by a factors as great as 1000. The global rates of increase of ozone are more than 50 times faster thanBrewer andWilson's [5] estimate of the average annual transfer rate of ozone to the troposphere. The rate constants of the Chapman reactions are believed to be well-enough known that it is highly improbable that these discrepancies are, due to erroneous rate constants. It is concluded that something else besides neutral oxygen species is very important in stratospheric ozone photochemistry. The inclusion of a uniform concentration of the oxides of nitrogen (NOx as, NO and NO2) averaging 6.6×10–9 mole fraction gives a balance between global ozone formation and destruction rates. The inclusion of a uniform mole fraction of NOx at 28×10–9 also gives a global balance. These calculations support the hypethesis (Crutzen [10],Johnston [24]) that the oxides of nitrogen are the most important factor in the global, natural ozone balance. Several authors have recently evaluated the natural source strength of NOx in the stratosphere; the projected fleets of supersonic transports would constitute an artificial source of NOx about equal to the natural value, thus promising more or less to double an active natural stratospheric ingredient.  相似文献   

15.
Summary The anisotropy of the Cs137 gamma-ray absorption coefficient has been investigated in layered models and several rock samples. It was found that in contrast to other petrophysical parameters the gamma-ray absorption coefficient is characterized by a relatively small coefficient of anisotropy (3–5%). Therefore, the possible effect of the anisotropy can be neglected in the measurements of for rocks as it is usually below current observational errors.  相似文献   

16.
Quasi-biennial oscillation (QBO) is a predominant phenomenon in the tropical stratosphere and troposphere. The possible interactions between the stratospheric QBO and tropospheric biennial oscillation (TBO) over the Indian monsoon region as well as the equatorial region is investigated using the zonal wind data of 23 vertical levels (1000–1 hpa) from 1960–2002. The structure of lower stratosphere and troposphere are entirely different over the equator and India. In biennial scales, both the stratosphere and troposphere over the Indian region are closely related and winter season QBO is a good predictor of Indian summer monsoon rainfall.  相似文献   

17.
A meridional scanning OI 630.0-nm dayglow photometer was operated from Ahmedabad (17.2°N dip lat.) scanning a region towards the south in the upper atmosphere extending over \sim5° in latitude from 10.2°N to 15.2°N dip latitude. From the spatial and temporal variabilities of the dayglow intensity in the scanning region we show for the first time, evidence for the passage of the crest of the equatorial ionization anomaly (EIA) in the daytime by means of a ground-based optical technique. The relationship between the daytime eastward electric field over the dip equator in the same longitude zone as inferred from the equatorial electrojet strength and the evolutionary pattern of EIA is clearly demonstrated. The latter as inferred from the dayglow measurements is shown to be consistent with our present understanding of the electrodynamical processes in the equatorial region. The present results reveal the potential of this ground-based optical technique for the investigation of ionospheric/thermospheric phenomena with unprecedented spatial and temporal resolution.  相似文献   

18.
The theoretical aspects of the transfer of angular momentum between atmosphere and Earth are treated with particular emphasis on analytical solutions. This is made possible by the consequent usage of spherical harmonics of low degree and by the development of large-scale atmospheric dynamics in terms of orthogonal wave modes as solutions of Laplace's tidal equations.An outline of the theory of atmospheric ultralong planetary waves is given leading to analytical expressions for the meridional and height structure of such waves. The properties of the atmospheric boundary layer, where the exchange of atmospheric angular momentum with the solid Earth takes place, are briefly reviewed. The characteristic coupling time is the Ekman spin-down time of about one week.The axial component of the atmospheric angular momentum (AAM), consisting of a pressure loading component and a zonal wind component, can be described by only two spherical functions of latitude : the zonal harmonicP 2 0 (), responsible for pressure loading, and the spherical functionP 1 1 () simulating supperrotation of the zonal wind. All other wind and pressure components merely redistributeAAM internally such that their contributions toAAM disappear if averaged over the globe. It is shown that both spherical harmonics belong to the meridional structure functions of the gravest symmetric Rossby-Haurwitz wave (0, –1)*. This wave describes retrograde rotation of the atmosphere within the tropics (the tropical easterlies), while the gravest symmetric external wave mode (0, –2) is responsible for the westerlies at midlatitudes. Applying appropriate lower boundary conditions and assuming that secular angular momentum exchange between solid Earth and atmosphere disappears, the sum of both waves leads to an analytical solution of the zonal mean flow which roughly simulates the observed zonal wind structure as a function of latitude and height. This formalism is used as a basis for a quantitative discussion of the seasonal variations of theAAM within the troposphere and middle atmosphere.Atmospheric excitation of polar motion is due to pressure loading configurations, which contain the antisymmetric functionP 2 1 () exp(i) of zonal wavenumberm=1, while the winds must have a superrotation component in a coordinate system with the polar axis within the equator. The Rossby-Haurwitz wave (1, –3)* can simulate well the atmospheric excitation of the observed polar motion of all periods from the Chandler wobble down to normal modes with periods of about 10 days. Its superrotation component disappears so that only pressure loading contributes to polar motion.The solar gravitational semidiurnal tidal force acting on the thermally driven atmospheric solar semidiurnal tidal wave can accelerate the rotation rat of the Earth by about 0.2 ms per century. It is speculated that the viscous-like friction of the geomagnetic field at the boundary between magnetosphere and solar wind may be responsible for the westward drift of the dipole component of the internal geomagnetic field. Electromagnetic or mechanical coupling between outer core and mantle may then contribute to a decrease of the Earth's rotation rate.  相似文献   

19.
The new LIMA/ice model is used to study interhemispheric temperature differences at the summer upper mesosphere and their impact on the morphology of ice particle related phenomena such as noctilucent clouds (NLC), polar mesosphere clouds (PMC), and polar mesosphere summer echoes (PMSE). LIMA/ice nicely reproduces the mean characteristics of observed ice layers, for example their variation with season, altitude, and latitude. The southern hemisphere (SH) is slightly warmer compared to the NH but the difference is less than 3 K at NLC/PMC/PMSE altitudes and poleward of 70N/S. This is consistent with in situ temperature measurements by falling spheres performed at 69N and 68S. Earth's eccentricity leads to a SH mesosphere being warmer compared to the NH by up to approximately 85 km and fairly independent of latitude. In general, NH/SH temperature differences in LIMA increase with decreasing latitude and reach at 50. The latitudinal variation of NH/SH temperature differences is presumably caused by dynamical forcing and explains why PMSE are basically absent at midlatitudes in the SH whereas they are still rather common at similar colatitudes in the NH. The occurrence frequency and brightness of NLC and PMC are larger in the NH but the differences decrease with increasing latitude. Summer conditions in the SH terminate earlier compared to NH, leading to an earlier weakening and end of the ice layer season. The NLC altitude in the SH is slightly higher by 0.6–1 km, whereas the NLC altitudes itself depend on season in both hemispheres. Compared to other models LIMA/ice shows smaller interhemispheric temperature differences but still generates the observed NH/SH differences in ice layer characteristics. This emphasizes the importance of temperature controlling the existence and morphology of ice particles. Interhemispheric differences in NLC/PMC/PMSE characteristics deduced from LIMA/ice basically agree with observations from lidars, satellites, and radars.  相似文献   

20.
A spectral analysis of the 12-month running averages of several atmospheric parameters for 40 years (1951–1990) indicated prominent QBO (Quasi-Biennial Oscillations) and QTO (Quasi-Triennial Oscillations). The 50 mb tropical wind has a very prominent QBO peak atT=2.33 years, which was well reflected in N. Pole 30 mb temperature but not in average surface air temperatures of Northern and Southern Hemispheres. The 50 mb wind had no prominent QTO; but sea-surface temperatures showed prominent QTO at 3.6 years as well as peaks at 4.8 years (also shown by N. Pole 30 mb temperature) which matched very well with similar peaks in the Pacific SST and SO (Southern Oscillation) index. Specific humidity in the lower troposphere (1000 and 700 mb) and temperature at 300 mb obtained by radiosondes in the western Pacific for 15 years (1974–1988) showed mainly a biennial oscillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号