首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Particulate dispersion into and within a 10- to 13-m tall pine forest was studied experimentally at Brookhaven National Laboratory using stained ragweed pollen and other tracers ranging from 14 to 54 m in diam. Seventy-two continuous point source releases lasting 20 to 40 min were made at various distances from within the forest edge to 60 m upwind and at heights of 1.75 to 14.0 m. In most experiments, differently colored ragweed pollen was released simultaneously from three locations. Thirty-six longer tests were made using pollen from area sources of ragweed and three with pollen from distant sources. All tests were made during the day with steady winds and unstable lapse rates outside the forest. The sampling network consisted of 119 rotoslide samplers mounted at heights from 0.5 to 21.0 m at 57 positions extending 100 m into the forest. Deposition was sampled by greased microscope slides at each sampling position. Meteorological measurements were taken in and near the forest.Data were classified by particle characteristics; by source type, distance and height; and by meteorological parameters. Isopleths were drawn on scale diagrams of the sampling grid to illustrate concentration patterns. Changes in centerline concentration, crosswind integrated concentration, mass flux, plume width, plume height, deposition, and deposition velocity were related to distance within the forest and other variables. Results were compared to those of similar releases over open terrain and those of previous forest dispersion studies elsewhere.The plume approaching the forest is broadened both vertically and horizontally by increased turbulence at the forest edge and flows mainly into the trunk space and above the forest. Lateral spread is slow within the forest, but vertical spreading beyond the entrance region is greater than in the open. Particles become mixed uniformly below the canopy while appreciable interchange takes place through this layer. Concentration within the forest decreases at a faster rate than in the open, but change in total mass flux within and above the forest is not significantly different. Loss of material takes place by impaction near the forest edge and in the tree tops and by deposition within the forest. Most loss takes place to the foliage rather than the ground, and larger particles are lost faster than smaller ones.This research was carried out under the auspices of the New York State Museum and Science Service and the U.S. Atomic Energy Commission and was partially supported by Research Grant No. R-800677 from the Division of Meteorology, U.S. Environmental Protection Agency.  相似文献   

2.
This paper considers the near-field dispersion of an ensemble of tracer particles released instantaneously from an elevated source into an adiabatic surface layer. By modelling the Lagrangian vertical velocity as a Markov process which obeys the Langevin equation, we show analytically that the mean vertical drift velocity w(t) is w()=bu *(1–e (1+)), where is time since release (nondimensionalized with the Lagrangian time scale at the source), b Batchelor's constant, and u *, the friction velocity. Hence, the mean height and mean depth of the ensemble are calculated. Although the derivation is formally valid only when 1, the predictions for w, mean height and mean depth are consistent in the downstream limit ( 1) with surface-layer Lagrangian similarity theory and with the diffusion equation. By comparing the analytical predictions with numerical, randomflight solutions of the Langevin equation, the analytical predictions are shown to be good approximations at all times, both near-field and far-field.  相似文献   

3.
The output of a large-eddy simulation was used to study the terms ofthe turbulent kinetic energy (TKE) budget for the air layers above andwithin a forest. The computation created a three-dimensional,time-dependent simulation of the airflow, in which the lowest third ofthe domain was occupied by drag elements and heat sources to representthe forest. Shear production was a principal source of TKE in theupper canopy, diminishing gradually above tree-top height and moresharply with depth in the canopy. The transfer of energy to subgridscales (dissipation) was the main sink in the upper part of the domainbut diminished rapidly with depth in the canopy. Removal ofresolved-scale TKE due to canopy drag was extremely important,occurring primarily in the upper half of the forest where the foliagedensity was large. Turbulent transport showed a loss at the canopytop and a gain within the canopy. These general features have beenfound elsewhere but uncertainty remains concerning the effects ofpressure transport. In the present work, pressure was calculateddirectly, allowing us to compute the pressure diffusion term. Wellabove the canopy, pressure transport was smaller than, and opposite insign to, the turbulent transport term. Near the canopy top andbelow, pressure transport acted in concert with turbulent transport toexport TKE from the region immediately above and within the uppercrown, and to provide turbulent energy for the lower parts of theforest. In combination, the transport terms accounted for over half ofthe TKE loss near the canopy top, and in the lowest two-thirds of thecanopy the transport terms were the dominant source terms in thebudget. Moreover, the pressure transport was the largest source ofturbulent kinetic energy in the lowest levels of the canopy, beingparticularly strong under convective conditions. These resultsindicate that pressure transport is important in the plant canopyturbulent kinetic energy budget, especially in the lowest portion ofthe stand, where it acts as the major driving force for turbulentmotions.  相似文献   

4.
Large-eddy simulation of turbulent flow above and within a forest   总被引:10,自引:22,他引:10  
A large-eddy simulation has been performed of an atmospheric surface layer in which the lower third of the domain is occupied by a drag layer and heat sources to represent a forest. Subgridscale processes are treated using second-order closure techniques. Lateral boundaries are periodic, while the upper boundary is a frictionless fixed lid. Mean vertical profiles of wind velocity derived from the output are realistic in their shape and response to forest density. Similarly, vertical profiles of Reynolds stress, turbulent kinetic energy and velocity skewness match observations, at least in a qualitative sense. The limited vertical extent of the domain and the artificial upper boundary, however, cause some departures from measured turbulence profiles in real forests. Instantaneous turbulent velocity and scalar fields are presented which show some of the features obtained by tower instrumentation in the field and in wind tunnels, such as the vertical coherence of vertical velocity and the slope of structures revealed by temperature patterns.  相似文献   

5.
A Lagrangian statistical-trajectory model based on a Markov chain relation is used to investigate vertical dispersion from elevated sources into the neutral planetary boundary layer. The model is fully two-dimensional, in that both vertical and longitudinal velocity fluctuations, and their correlation, are simulated explicitly. The best observational information currently available is used to characterize the mean and turbulent structure of the neutral boundary layer. In particular, a realistic vertical profile of the Lagrangian integral time scale is proposed, based partly on a review of direct measurements and partly on a comparison of the model predictions with published diffusion data. The model predictions are shown to agree well with a variety of dispersion observations. The model is used to study vertical diffusion as a function of release height H, friction velocity u* and surface roughness z 0 for downwind distances up to 10 km from the source. The equivalent Gaussian dispersion parameter Σ z is shown to decrease slightly with an increase in H, and to increase with increases in z 0 or u*. It is demonstrated that relationships valid in a field of homogeneous turbulence can be applied to vertical dispersion in the atmosphere if the release occurs above the region of strongest gradients in the mean and turbulent parameters. Scaling in terms of the standard deviation in elevation angle of the wind at the release point leads to a universal curve which provides accurate estimates of Σ z over a wide range of values of H, z 0 and the meteorological parameters.  相似文献   

6.
Turbulence statistics were measured in a natural black-spruce forest canopy in southeastern Manitoba, Canada. Sonic anemometers were used to measure time series of vertical wind velocity (w), and cup anemometers to measure horizontal wind speed (s), above the canopy and at seven different heights within the canopy. Vertical profiles were measured during 25 runs on eight different days when conditions above the canopy were near-neutral.Profiles of s and of the standard deviation ( w ) of w show relatively little scatter and suggest that, for this canopy and these stability conditions, profiles can be predicted from simple measurements made above the canopy. Within the canopy, a negative skewness and a high kurtosis of the w-frequency distributions indicate asymmetry and the persistence of large, high-velocity eddies. The Eulerian time scale is only a weak function of height within the canopy.Although w-power spectra above the canopy are similar to those in the free atmosphere, we did not observe an extensive inertial subrange in the spectra within the canopy. Also, a second peak is present that is especially prominent near the ground. The lack of the inertial subrange is likely caused by the presence of sources and sinks for turbulent kinetic energy within our canopy. The secondary spectral peak is probably generated by wake turbulence caused by form drag on the wide, horizontal spruce branches.  相似文献   

7.
Summary The three-dimensional mesoscale cloud-resolving model ARPS (Advanced Regional Prediction System) was used to investigate the dispersal of an inert seeding agent within a cumulonimbus (Cb) cloud developing from two different initial states. In this paper, we stress the influence vortices in the cloud have on seeding agent dispersion. If a strong directional ambient wind shear is present in the lowest layer, a vortex pair formed at the flanks of the simulated cloud. Following the velocity field, a considerable amount of the injected seeding agent would be thrown out to the rear of the cloud, where both updrafts associated with vortices and downdrafts occurred. After a short time the agent was present only in the cloud periphery. If the Cb cloud developed under conditions where directional ambient wind shear did not exist, seeding agent dispersion would be quite different. In this case, almost all the seeding agent was transported into the main updraft, while the residence time of the agent within the cloud was longer due to the weaker cloud dynamics. Therefore, we must pay attention to whether or not the cloud contains vortices when we make the decision where to seed. This is necessary in order to minimize the loss of seeding material.  相似文献   

8.
The influence of atmospheric stability on the behaviour of the third moment of flow velocities observed inside a deciduous forest canopy is examined. Results suggest that buoyancy plays a dominant role in dictating the magnitude of gusts observed inside tall vegetation. Furthermore, an examination of the turbulence recorded throughout leaf fall inside the same forest indicates that larger velocity skewnesses are observed inside a canopy in full leaf than inside a sparse canopy. The behaviour of the measured terms in the non-dimensionalized rate equation of the third moment of canopy flow velocities is also examined. Turbulent diffusion and turbulence gradient interaction terms are largest in stable conditions in the upper canopy layer while these are most important in unstable conditions in the lower canopy layer. In all stability regimes, the turbulent diffusion term is the main source of skewness. The turbulence gradient interaction term, the residual and buoyant production terms all contribute to destroy skewness in stable conditions.  相似文献   

9.
Ramp patterns of temperature and humidity occur coherently at several levels within and above a deciduous forest as shown by data gathered with up to seven triaxial sonic anemometer/thermometers and three Lyman-alpha hygrometers at an experimental site in Ontario, Canada. The ramps appear most clearly in the middle and upper portion of the forest. Time/height cross-sections of scalar contours and velocity vectors, developed from both single events and ensemble averages of several events, portray details of the flow structures associated with the scalar ramps. Near the top of the forest they are composed of a weak ejecting motion transporting warm and/or moist air out of the forest followed by strong sweeps of cool and/or dry air penetrating into the canopy. The sweep is separated from the ejecting air by a sharp scalar microfront. At approximately twice the height of the forest, ejections and sweeps are of about equal strength.In the middle and upper parts of the canopy, sweeps conduct a large proportion of the overall transfer between the forest and the lower atmosphere, with a lesser contribution from ejections. Ejections become equally important aloft. During one 30-min run, identified structures were responsible for more than 75% of the total fluxes of heat and momentum at mid-canopy height. Near the canopy top, the transition from ejection of slow moving fluid to sweep bringing fast moving air from above is very rapid but, at both higher and lower levels, brief periods of upward momentum transfer occur at or immediately before the microfront.  相似文献   

10.
This is the first of a series of three papers describing experiments on the dispersion of trace heat from elevated line and plane sources within a model plant canopy in a wind tunnel. Here we consider the wind field and turbulence structure. The model canopy consisted of bluff elements 60 mm high and 10 mm wide in a diamond array with frontal area index 0.23; streamwise and vertical velocity components were measured with a special three-hot-wire anemometer designed for optimum performance in flows of high turbulence intensity. We found that:
  1. The momentum flux due to spatial correlations between time-averaged streamwise and vertical velocity components (the dispersive flux) was negligible, at heights near and above the top of the canopy.
  2. In the turbulent energy budget, turbulent transport was a major loss (of about one-third of local production) near the top of the canopy, and was the principal gain mechanism lower down. Wake production was greater than shear production throughout the canopy. Pressure transport just above the canopy, inferred by difference, appeared to be a gain in approximate balance with the turbulent transport loss.
  3. In the shear stress budget, wake production was negligible. The role of turbulent transport was equivalent to that in the turbulent energy budget, though smaller.
  4. Velocity spectra above and within the canopy showed the dominance of large eddies occupying much of the boundary layer and moving downstream with a height-independent convection velocity. Within the canopy, much of the vertical but relatively little of the streamwise variance occurred at frequencies characteristic of wake turbulence.
  5. Quadrant analysis of the shear stress showed only a slight excess of sweeps over ejections near the top of the canopy, in contrast with previous studies. This is a result of improved measurement techniques; it suggests some reappraisal of inferences previously drawn from quadrant analysis.
  相似文献   

11.
Comparison of turbulence statistics within three boreal forest canopies   总被引:5,自引:0,他引:5  
Three-dimensional sonic anemometers were used to measure velocities and temperatures within three natural boreal forest canopies. Vertical profiles of atmospheric turbulence statistics for a black spruce forest, a jack pine forest, and a trembling aspen forest, all located in southeastern Manitoba, were plotted and compared. The canopy structures were quite different, with total leaf-area indices of 2, 4 and 10, for the pine, aspen, and spruce forests, respectively.The profiles of the first and second moments differed among the canopies, where velocities decreased more rapidly in the top portions of the denser canopies. The velocity distributions were skewed and kurtotic within all canopies, and showed some differences among the canopies. Eulerian time scale profiles were generally similar among the canopies, and the vertical and streamwise time scale profiles were almost mirror images of each other. Eulerian length scale profiles showed some differences among canopies caused by differences in the velocity profiles. Ratios of vertical-to-horizontal time and length scales had a maximum in mid-canopy.Shear stress profiles were similar in the top parts of all canopies, and upward momentum fluxes were occasionally observed within the canopy trunk space. Countergradient heat fluxes were also observed sometimes. The countergradient fluxes and the skewed, kurtotic velocity distributions indicate the contribution of intermittent, large-scale eddies that are important for energy and mass transfer within canopies.  相似文献   

12.
13.
14.
This paper describes a wind-tunnel experiment on the dispersion of trace heat from an effectively planar source within a model plant canopy, the source height being h s = 0.80 h c , where h c is the canopy height. A sensor assembly consisting of three coplanar hot wires and one cold wire was used to make simultaneous measurements of the temperature and the streamwise and vertical velocity components. It was found that:
  1. The thermal layer consisted of two parts with different length scales, an inner sublayer (scaling with h s and h c ) which quickly reached streamwise equilibrium downstream of the leading edge of the source, and an outer sublayer which was self-preserving with a length scale proportional to the depth of the thermal layer.
  2. Below 2h c , the vertical eddy diffusivity for heat from the plane source (K HP ) was substantially less than the far-field limit of the corresponding diffusivity for heat from a lateral line source at the same height as the plane source. This shows that dispersion from plane or other distributed sources in canopies is influenced, near the canopy, by turbulence ‘memory’ and must be considered as a superposition of both near-field and far-field processes. Hence, one-dimensional models for scalar transport from distributed sources in canopies are wrong in principle, irrespective of the order of closure.
  3. In the budgets for temperature variance, and for the vertical and streamwise components of the turbulent heat flux, turbulent transport was a major loss between h s and h c and a principal gain mechanism below h s , as also observed in the budgets for turbulent energy and shear stress.
  4. Quadrant analysis of the vertical heat flux showed that sweeps and ejections contributed about equal amounts to the heat flux between h s and h c , though among the more intense events, sweeps were dominant. Below h s , almost all the heat was transported by sweeps.
  相似文献   

15.
Atmospheric turbulence was measured within a black spruce forest, a jack pine forest, and a trembling aspen forest, located in southeastern Manitoba, Canada. Drag coefficients (C d ) varied little with height within the pine and aspen canopies, but showed some height dependence within the dense spruce canopy. A constant C d of 0.15, with the measured momentum flux and velocity profiles, gave good estimates of leaf-area-index (LAI) profiles for the pine and aspen canopies, but underestimated LAI for the spruce canopy.Velocity spectra were scaled using the Eulerian integral time scales and showed a substantial inertial subrange above the canopies. In the bottom part of the canopies, the streamwise and cross-stream spectra showed rapid energy loss whereas the vertical spectra showed an apparent energy gain, in the region where the inertial subrange is expected. The temperature spectra showed an inertial subrange with the expected -2/3 slope at all heights. Cospectra of momentum and heat flux had slopes of about -1 in much of the inertial subrange. Possible mechanisms to explain some of the spectral features are discussed.  相似文献   

16.
A study of turbulent dispersion over hills for upstream, elevated sources was conducted, based on wind tunnel tracer gas (CO2) experiments over a gentle 2-D ridge and a 3-D circular hill, both having a cosine-square cross-section. The concentration measurements were made with four different source locations for each hill case (2-D or 3-D), and the study focused on dispersion parameters under the influence of the presence of the hills in order to provide a better understanding of the mechanisms involved.The wind tunnel measurements show that, in the case of gentle hills, the topographic impact on turbulent dispersion from upstream sources is only moderate and is more pronounced for the 3-D than for the 2-D hill. The perturbation in mean flow introduced by the hills, including streamline divergence/convergence, is shown to dominate the changes in the dispersion due to the hills in this case. The plume spread, both in the lateral and the vertical, is enhanced over the upwind hill foot and reduced over the hill top in response to the mean flow slow-down and speed-up at these places, and is further enhanced or reduced due to streamline divergence/convergence in the vertical over the hills as well as in the horizontal over the 3-D hill. These results are also compared with cases of turbulent dispersion over more steep hills (Snyder and Britter, 1987).  相似文献   

17.
An experiment is reported in which heat was released as a passive tracer from an elevated lateral line source within a model plant canopy, with h s = 0.85 h c (h s and h c being the source and canopy heights, respectively). A sensor assembly consisting of three coplanar hot wires and one cold wire was used to measure profiles of mean temperature % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaana% aabaGaeqiUdehaaiaacMcaaaa!390C!\[(\overline \theta )\], temperature variance (Σθ 2), vertical and streamwise turbulent heat fluxes, and third moments of wind and temperature fluctuations. Conclusions were:
  1. Despite the very heterogeneous flow within the canopy, the observed dispersive heat flux (due to spatial correlation between time-averaged temperature and vertical velocity) was small. However, there is evidence from the plume centroid (which was lower than h s at the source) of systematic recirculating motions within the canopy.
  2. The ratio % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiabeI7aXjaab2gacaqGHbGaaeiEaaqabaGccaGGVaWaa0aa% aeaacqaH4oqCaaWaaSbaaSqaaiaab2gacaqGHbGaaeiEaaqabaaaaa!41DF!\[\sigma _{\theta {\text{max}}} /\overline \theta _{{\text{max}}} \] (of maximum values on vertical profiles) decreased from 1 near the source to an asymptotic value of 0.4 far downstream, in good agreement with previous experimental and theoretical work for concentration fluctuations in the surface layer well above the canopy.
  3. The eddy diffusivity for heat from the line source (K HL ) increased, downstream of the source, to a nearly constant ‘far-field’ vertical profile. Within the canopy, the far-field K HL was an order of magnitude larger than K HP , the equivalent diffusivity for a plane source; well above the canopy, the two were equal. The time scale defined by (far-field K HL )/(vertical velocity variance) was independent of height within the canopy.
  4. Budgets for temperature variance, vertical heat flux and streamwise heat flux are remarkably similar to the equivalent budgets for an elevated line source in the surface layer well above the canopy, except in the lower part of the canopy in the far field, where vertical transport is much more important than in the surface layer.
  5. A random flight simulation of the mean height and depth of the temperature plume was generally in good agreement with experiment. However, details of the temperature and streamwise turbulent heat flux profiles were not correct, suggesting that the model formulation needs to be improved.
  相似文献   

18.
Summary Temporal and spatial variations of albedo in a mid-latitude alpine tundra are assessed in order to develop a classification of surface cover mapping units which is useful for surface climate simulations. The largest temporal changes in albedo result from alterations in moisture conditions at the tundra surface associated with snowpack ripening and precipitation. Surface albedo varies under high atmospheric transmission conditions (clear skies) from 0.168 to 0.205; under low transmission conditions (cloudy) there was little variation in the surface albedo with the solar zenith angle and the value of the albedo was approximately equal to that under clear skies when 45° >z > 30°.Spatial variation of albedo within commonly used alpine surface cover mapping units is large, due to the roughness and heterogeneity of the tundra surface. Small differences between mean albedo among vegetated units (mean values range from 0.15 to 0.19) and large ranges of values within units (average 25% of the mean value) preclude differentiation of the commonly used surface cover mapping units (except snow) on the basis of shortwave reflectivity. Aggregation of the vegetated surface cover units based on height and density of plants yields three classes (krummholz, dense low vegetation, and sparse low vegetation) for which differences between mean albedo among all combinations of pairs of mapping units (4 units, 3 vegetative plus snow) are statistically significant.
Zusammenfassung Zeitliche und räumliche Unterschiede der Albedo einer alpinen Tundra der mittleren Breiten werden herangezogen, um eine kartographische Klassifikation der Oberflächendecke zu entwickeln, die für klimatische Simulationen von Nutzen sein kann.Die auffälligsten zeitlichen Schwankungen der Albedo resultieren aus einer Veränderung der Feuchtigkeitsbedingungen an der Tundraoberfläche in Verbindung mit der Alterung der Schneedecke und Niederschlag. Die Oberflächenalbedo schwankt bei starker atmosphärischer Transmission (klarer Himmel) von 0.168 bis 0.205; bei geringer atmosphärischer Transmission (wolkig) zeigt sich nur wenig Veränderung der Oberflächenalbedo, wobei der Sonnenzenithwinkel und der Albedowert bei 45° >z > 30° in etwa den Werten bei klarem Himmel gleichen.Die räumliche Variation der Albedo innerhalb der üblicherweise herangezogenen kartographischen Einheiten der alpinen Oberflächendecke ist aufgrund der Rauhigkeit und Heterogenität der Tundraoberfläche groß. Bei Vergleich der Vegetationseinheiten untereinander zeigen sich nur geringfügige Unterschiede der durchschnittlichen Albedo (die Durchschnittswerk bewegen sich zwischen 0.15 und 0.19), während die Bandbreite der Werte innerhalb der jeweiligen Einheiten (im Durchschnitt 25% des Mittelwerts) hoch ist. Dies verhindert eine Differenzierung der allgemein angewandten kartographischen Klassifizierung der Oberflächendecke (Schnee ausgenommen) auf der Grundlage kurzwelliger Reflektivität.Eine Einteilung der Vegetationseinheiten hinsichtlich Höhe und Pflanzendichte ergibt drei Klassen (Krummholz, dichter Niederbewuchs und spärlicher Niederbewuchs), wobei die Unterschiede der Albedomittelwerte aller paarweisen Kombinationen der kartographischen Einheiten (4 Einheiten: 3 Vegetationstypen und Schnee) statistische Signifikanz aufweisen.


With 3 Figures  相似文献   

19.
It is well known that if turbulent mass convection is modelled as diffusion, errors result unless trajectories from the source (ath) to the point of observation (z p ) comprise many statistically-independent segments (Taylor, 1921). We show that this is not guaranteed merely by the Lagrangian timescale () at the source being small (e.g., source at ground), but that a better criterion istmax[(h), (z p )], wheret is a typical travel time toz p .  相似文献   

20.
The role of local heat sources in synoptic activity within the polar basin   总被引:1,自引:0,他引:1  
Abstract

A quasi‐geostrophic model of the atmosphere is used to determine the significance of the surface enthalpy flux in synoptic activity within the Polar Basin. Of primary interest is whether the enthalpy flux from open water in the seasonal sea‐ice zone is the predominant contributing mechanism or whether the advective fields of vorticity and thickness are controlling factors. This is of importance in discussions of the feedback processes between the atmosphere, cryosphere and ocean.

For a case selected in the Laptev Sea near the end of the fall period of ice growth, the surface enthalpy flux is as significant a contribution to synoptic activity as the vorticity advection is. The enthalpy flux is a relatively insignificant factor at this time in the Beaufort Sea, however, because of the smaller area of open water and the lower wind speeds associated with the weaker synoptic systems in this region. It is also relatively insignificant at both locations at the beginning of the fall freeze‐up interval and in June, during the melt period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号