共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Inversion for elastic parameters in weakly anisotropic media 总被引:1,自引:0,他引:1
Xuyao Zheng 《Geophysical Journal International》2004,159(3):1077-1089
3.
We propose approximate equations for P -wave ray theory Green's function for smooth inhomogeneous weakly anisotropic media. Equations are based on perturbation theory, in which deviations of anisotropy from isotropy are considered to be the first-order quantities. For evaluation of the approximate Green's function, earlier derived first-order ray tracing equations and in this paper derived first-order dynamic ray tracing equations are used.
The first-order ray theory P -wave Green's function for inhomogeneous, weakly anisotropic media of arbitrary symmetry depends, at most, on 15 weak-anisotropy parameters. For anisotropic media of higher-symmetry than monoclinic, all equations involved differ only slightly from the corresponding equations for isotropic media. For vanishing anisotropy, the equations reduce to equations for computation of standard ray theory Green's function for isotropic media. These properties make the proposed approximate Green's function an easy and natural substitute of traditional Green's function for isotropic media.
Numerical tests for configuration and models used in seismic prospecting indicate negligible dependence of accuracy of the approximate Green's function on inhomogeneity of the medium. Accuracy depends more strongly on strength of anisotropy in general and on angular variation of phase velocity due to anisotropy in particular. For example, for anisotropy of about 8 per cent, considered in the examples presented, the relative errors of the geometrical spreading are usually under 1 per cent; for anisotropy of about 20 per cent, however, they may locally reach as much as 20 per cent. 相似文献
The first-order ray theory P -wave Green's function for inhomogeneous, weakly anisotropic media of arbitrary symmetry depends, at most, on 15 weak-anisotropy parameters. For anisotropic media of higher-symmetry than monoclinic, all equations involved differ only slightly from the corresponding equations for isotropic media. For vanishing anisotropy, the equations reduce to equations for computation of standard ray theory Green's function for isotropic media. These properties make the proposed approximate Green's function an easy and natural substitute of traditional Green's function for isotropic media.
Numerical tests for configuration and models used in seismic prospecting indicate negligible dependence of accuracy of the approximate Green's function on inhomogeneity of the medium. Accuracy depends more strongly on strength of anisotropy in general and on angular variation of phase velocity due to anisotropy in particular. For example, for anisotropy of about 8 per cent, considered in the examples presented, the relative errors of the geometrical spreading are usually under 1 per cent; for anisotropy of about 20 per cent, however, they may locally reach as much as 20 per cent. 相似文献
4.
Véronique Farra 《Geophysical Journal International》2005,161(2):309-324
5.
6.
7.
Reflection coefficients for weak anisotropic media 总被引:1,自引:0,他引:1
Matthias Zillmer Dirk Gajewski Boris M. Kashtan 《Geophysical Journal International》1997,129(2):389-398
The interaction of plane elastic waves with a plane boundary between two anisotropic elastic half-spaces is investigated. The anisotropy dealt with in this study is of a general type. Explicit expressions for energy-related reflection and transmission coefficients are derived. They represent an approximation which is valid for a small deviation of the elastic parameters from isotropy.
Classical perturbation theory is applied on a 6times6 non-symmetric real eigenvalue problem to calculate first-order corrections for the polarization and stress of the plane waves. The explicit solution of the isotropic problem is used as a reference case. Degenerate perturbation theory is used to consider the splitting of the isotropic S -wave into two anisotropic qS-waves. The boundary conditions for two half-spaces in welded contact lead to a 6times6 system of linear equations. A correction to the isotropic solution is calculated by linearization. The resultant coefficients are functions of horizontal slowness, Lamé parameters and densities of the reference media, and of the perturbation of the elasticity tensors from isotropy. 相似文献
Classical perturbation theory is applied on a 6times6 non-symmetric real eigenvalue problem to calculate first-order corrections for the polarization and stress of the plane waves. The explicit solution of the isotropic problem is used as a reference case. Degenerate perturbation theory is used to consider the splitting of the isotropic S -wave into two anisotropic qS-waves. The boundary conditions for two half-spaces in welded contact lead to a 6times6 system of linear equations. A correction to the isotropic solution is calculated by linearization. The resultant coefficients are functions of horizontal slowness, Lamé parameters and densities of the reference media, and of the perturbation of the elasticity tensors from isotropy. 相似文献
8.
Václav Vavryuk 《Geophysical Journal International》2003,152(2):318-334
9.
10.
Weak-contrast reflection/transmission coefficients in weakly anisotropic elastic media: P-wave incidence 总被引:1,自引:0,他引:1
Václav Vavryuk 《Geophysical Journal International》1999,138(2):553-562
We present approximate displacement and energy PP and PS reflection/transmission coefficients for weak-contrast interfaces in general weakly anisotropic elastic media. The coefficients were obtained by applying first-order perturbation theory and then expressed in a compact and relatively simple form. The formulae can be used for arbitrary orientations of the incidence plane and interface, without the need to transform the elasticity parameters to a local Cartesian coordinate system. The accuracy of the approximate formulae is illustrated for the PS reflection coefficient for two synthetic models. For these models, we also study the possibility of using the approximate PP reflection coefficient in the inverse problem. 相似文献
11.
12.
13.
Matthias Zillmer Boris Kashtan & Dirk Gajewski 《Geophysical Journal International》1998,132(3):643-653
Wave propagation in weakly anisotropic inhomogeneous media is studied by the quasi-isotropic approximation of ray theory. The approach is based on the ray-tracing and dynamic ray-tracing differential equations for an isotropic background medium. In addition, it requires the integration of a system of two complex coupled differential equations along the isotropic ray.
The interference of the qS waves is described by traveltime and polarization corrections of interacting isotropic S waves. For qP waves the approach leads to a correction of the traveltime of the P wave in the isotropic background medium.
Seismograms and particle-motion diagrams obtained from numerical computations are presented for models with different strengths of anisotropy.
The equivalence of the quasi-isotropic approximation and the quasi-shear-wave coupling theory is demonstrated. The quasi-isotropic approximation allows for a consideration of the limit from weak anisotropy to isotropy, especially in the case of qS waves, where the usual ray theory for anisotropic media fails. 相似文献
The interference of the qS waves is described by traveltime and polarization corrections of interacting isotropic S waves. For qP waves the approach leads to a correction of the traveltime of the P wave in the isotropic background medium.
Seismograms and particle-motion diagrams obtained from numerical computations are presented for models with different strengths of anisotropy.
The equivalence of the quasi-isotropic approximation and the quasi-shear-wave coupling theory is demonstrated. The quasi-isotropic approximation allows for a consideration of the limit from weak anisotropy to isotropy, especially in the case of qS waves, where the usual ray theory for anisotropic media fails. 相似文献
14.
Quasi-shear wave coupling in weakly anisotropic 3-D media 总被引:2,自引:0,他引:2
15.
16.
Focal mechanisms in anisotropic media 总被引:8,自引:0,他引:8
Václav Vavryuk 《Geophysical Journal International》2005,161(2):334-346
17.
Xuyao Zheng 《Geophysical Journal International》2007,170(1):468-478
A procedure is proposed to obtain symmetry properties of weakly anisotropic (WA) elastic media by giving 15 WA parameters of qP wave in an arbitrary Cartesian coordinate system. The 15 WA parameters, which linearly depend on 21 elastic elements, form a complete set to determine the symmetry planes in WA materials. The procedure is based on the eigenvalue problems of two matrices. One of the matrices consists of the Voigt and dilatational matrices, and the other is an acoustic tensor defined by an irreducible, completely symmetric and traceless, fourth-rank tensor resulting from decomposition of the fourth-rank elastic tensor. If the eigenvectors are taken as the axes of a new coordinate system (called symmetry Cartesian coordinate system), the transformation of WA parameters from an arbitrary Cartesian coordinate system to a symmetry Cartesian coordinate system can reduce the number of distinct WA parameters of elastic materials except in triclinic medium. 相似文献
18.
Shear wave splitting in three-dimensional anisotropic media 总被引:1,自引:0,他引:1
Sébastien Chevrot Noémie Favier Dimitri Komatitsch 《Geophysical Journal International》2004,159(2):711-720
19.
M. D. Sharma 《Geophysical Journal International》2008,174(3):971-977
Out of the four waves in an anisotropic poroelastic medium, two are termed as quasi-transverse waves. The prefix 'quasi' refers to their polarizations being nearly, but not exactly, perpendicular to direction of propagation. In this composite medium, unlike perfectly elastic medium, the propagation of a longitudinal wave along a phase direction may not be accompanied by transverse waves. The existence of a transverse wave in anisotropic poroelastic media is ensured by the two equations restricting the choice of elastic coefficients of porous aggregate as well as fluid–solid coupling. Necessary and sufficient conditions for the existence of transverse waves along the coordinate axes and in the coordinate planes for general anisotropy are discussed. The discussion is extended to the case of orthotropic materials and existence for few specific phase directions is also explored. The conditions for the transverse waves decided on the basis of their apparent polarizations, that is, particle motion being perpendicular to ray direction, are also discussed. For a particular numerical model, the existence of these apparent transverse waves is solved numerically for phase directions in coordinate planes. For general directions of phase propagation, the existence of these transverse waves is checked graphically for the chosen numerical model. 相似文献