首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An algorithm for remote sensing of water color from space   总被引:3,自引:0,他引:3  
The ocean color algorithm proposed in this paper takes into account the effects of Rayleigh and aerosol scattering. The inherent reflectance and the diffuse transmittance of the Rayleigh atmosphere are expressed as functions of optical thickness and satellite measurement geometry with the aid of simple and accurate formulas. In the case of a turbid atmosphere, from which the aerosol optical thickness is unknown, the aerosol contribution is estimated with the aid of a measurement in a channel where the ocean is a blackbody (in the red or near infrared). If the relationship between the ocean color and the chlorophyll-like pigment concentration is assumed to be known at sea level, it is shown that the chlorophyll-like pigment concentration at an open ocean site can be determined from space to within a factor of 1.5 to 3 (uncertainty equal to 0.2 to 0.5 log interval), depending on the atmospheric turbidity.  相似文献   

2.
One of the measurable symptoms of man-induced climatic change is a global rise in mean sea-level. A review of the suggested mechanisms for sea-level rise is given, supported by a critical discussion of present predictions and predictive models. The data base on which these predictions are based is geographically inhomogeneous and particularly sparse in the Southern Hemisphere. Some preliminary work which has been done on the possible environmental impact of sea-level rise on coastal areas is described, but very little of this is for Southern Hemisphere countries. It is suggested that since the Southern Hemisphere has particular observational requirements because of a higher ratio of ocean to terrestrial areas, particular attention in international monitoring programmes be given to it. This has special relevance to sea-level measurements in hostile environments such as off Antarctica.  相似文献   

3.
国际Argo(Array for Real-time Geostrophic Oceanography)计划的实施,提供了前所未有的全球深海大洋0~2000 m水深范围内的海水温度和盐度观测资料,在大气和海洋科研业务中应用这一全新的资料,是深入认识大气和海洋变异、提高我国气候预测、海洋监测分析和预报能力的一个关键所在.通过开发非线性温—盐协调同化方案和利用同化高度计资料来调整模式的温度和盐度场,建立了可同化包括Argo等多种海洋观测资料的全球海洋资料变分同化系统,提高了对全球海洋的监测分析能力.实现了海洋资料同化系统与全球海气耦合模式的耦合,显著提高了短期气候预测水平.利用Argo资料改进了海洋动力模式中的物理过程参数化方案,有效提高了海洋模式对真实大洋的模拟能力和对厄尔尼诺/拉尼娜的预测能力.开发了利用Argo浮标漂流轨迹推算全球海洋表层和中层流的方法,提高了推算的全球表层流、中层流资料质量,有效弥补了洋流观测的匮乏.  相似文献   

4.
The production of sediments by carbonate-producing ecosystems is an important input for beach sediment budgets in coastal areas where no terrigenous input occurs. Calcifying organisms are a major source of bioclastic carbonate sediment for coastal systems. Increased levels of CO2 in the atmosphere are leading to an increase in the partial pressure of CO2 on ocean seawater, causing ocean acidification (OA), with direct consequences for the pH of ocean waters. Most studies of OA focus on its impact on marine ecosystems. The impact of OA on carbonate-producing ecosystems could be to reduce the amount of sediments supplied to temperate coastal systems. The aim of this study was to quantify the effect of the predicted OA on the long-term sediment budget of a temperate Mediterranean mixed carbonate beach and dune system. Based on projections of OA we estimated a fall of about 31% in the present bioclastic carbonate sediment deposition rate, with the biggest decreases seen in the dunes (? 46%). OA is also expected to affect the carbonate sediment reservoirs, increasing the dissolution of CaCO3and causing net sediment loss from the system (~ 50,000 t century?1). In the long-term, OA could also play a primary role in the response of these systems to sea-level rise. Indeed, the reduction in the quantity of carbonate sediments provided to the system may affect the speed with which the system is able to adapt to sea-level rise, by increasing wave run-up, and may promote erosion of dunes and subaerial beaches.  相似文献   

5.
The sunglint areas of the ocean in NOAA satellite visible imagery appear as long swaths that extend from the northern extremes of the North Temperate Zone to the southern extreme of the South Temperate Zone. Examples are shown of complex features apparent in the sunglint area of visible imagery that closely match ocean-related thermal features in the companion infrared imagery. Various interpretations of these features are discussed. Data from the first phase of the Grand Banks Experiment (June 1978) are presented which demonstrate that such sunglint features are related to the strong ocean frontal processes present in this area. Although some of the features may be associated with fog or mist, side-looking airborne radar imagery collected during the experiment confirms the presence of surface roughness variations. The observations strongly suggest that these roughness variations are due to changes in the stability of the atmospheric boundary layer caused by the different surface water temperatures present in the area. The results demonstrate the usefulness of NOAA visible imagery as a tool to aid in the understanding of synoptic ocean processes, and suggest an important application for satellite and airborne synthetic aperture radars in mapping the roughness changes associated with ocean current systems.  相似文献   

6.
From the viewpoint of earth system science, this paper discusses the observation capability of the second-generation of Chinese polar-orbiting, sun-synchronous operational meteorological satellite observation systems, Fengyun-3(FY-3), based on the function and performance test results from the FY-3 D satellite observation system in orbit. The FY-3 series of satellites have numerous remote sensing instruments and a wide range of imaging and sounding electromagnetic spectrometers onboard. These instruments can obtain reflectivity data for land surface, soil, vegetation,water body, snow cover, ocean color, and sea ice on earth's surface over a wide spectral range, as well as information on the absorption and scattering radiative transfer of molecules and particles(clouds and aerosols) in earth's atmosphere. All of these data can be used to retrieve physical and chemical information about the land, ocean, and atmosphere of the earth system. Comprehensive observation of the earth system by the FY-3 meteorological satellites is preliminarily realized.  相似文献   

7.
The regional ocean circulation in the coastal areas or China (including a part of the western Pacific Ocean, the South China Sea and the Bay of Bengal el al.) is simulated by using the improved Princeton Uni-versity ocean circulation model (POM). Compared with the modeling results obtained by the large-scale ocean general circulation model (OGCM), the basic ocean circulation features simulated by the regional ocean circulation model are in good agreement with that simulated by OGCM and some detailed character-istics such as the regional ocean circulation, sea temperature, salinity and free sea surface height have also been obtained which are in good accord with the observations. These results indicate that the regional ocean circulation model has good capability to produce the regional ocean circulation characteristics and it can be used to develop coupled regional ocean-atmospheric model systems.  相似文献   

8.
Mesoscale resolution ocean general circulation model (EGCM) experiments have been carried out under a variety of different model physical assumptions, and the different model systems often produce very different deep mean flow fields. The flat bottom, rectangular basin experiments exhibit two distinct types of deep mean flow, which are here called “corotating” and “counterrotating”. Counterrotating deep flow, in which two adjacent deep gyres, with circulation of opposite senses, underlie the upper ocean eastward jet and its recirculation, has been found only in models with adiabetic two-layer model physics. None of the more complex model systems exhibit counterrotating deep flows; this type of flow is apparently restricted to a particular range of forcing/dissipation parameter space and/or particular model physical assumptions.Since the deep flow in these EGCM systems is generally weak, geostrophic dynamics provides the basic deep flow interior balance and the mean vertical velocity field, through the lower layer vorticity equation, largely determines the deep interior flow. The dynamical constraints on the mean vertical velocity field introduced by different model physical equations are reviewed and the adiabatic quasi-geostrophic (QG) two-layer model system is shown to be strongly constrained in several respects. In particular, the idea that eddy and mean heat flux divergence (or “layer thickness flux divergence”) drive the mean vertical velocity does not generalize to more complicated dynamical systems in which there is the possibility of altering the mean vertical density profile and/or in which the horizontal flow can be divergent. As a consequence of the constraints, there can be no basin net vorticity input to the lower layer via vortex stretching in the QG system.Because of the adiabatic QG constraints and the particular parametric regime in which the published adiabatic QG EGCM experiments exist, a very plausible explanation can be found for the existence of the deep cyclonic circulation of the model subtropical gyre. It is this cyclonic circulation that causes these deep flows to differ so dramatically from those of the more physically complex model systems. Because all the published adiabatic QG experiments that have non-trivial deep flows exhibit the counterrotating behavior, and because available ocean data do not support the existence of such a gyre in the North Atlantic, it seems important to thoroughly understand the reasons for the existence or absence of the deep cyclonic circulations. If they are an invitable feature of adiabatic QG systems, these models may need to be treated with caution as tools for understanding the mean ocean circulation.  相似文献   

9.
10.
The present study focuses on the impact of ocean state (i.e., salinity and temperature) updates on the sea-ice analysis and short-term forecast in an assimilative sea ice–ocean coupled system. A relatively simple sea-ice assimilation scheme was applied to the sea ice–ocean coupled North Atlantic Nucleus for European Modelling of the Ocean (NEMO) system with a focus on the Canadian East Coast. In this assimilation scheme the ocean state was updated directly based on the correlations between the model's sea-ice concentration and the upper ocean salinity and temperature. These correlations were based on a limited time ensemble generated by applying random perturbations to the atmospheric forcing fields. High deviations in the sea-ice conditions were found along the ice edge, implying that the sea-ice edge position is sensitive to small atmospheric forcing variations. Assimilation runs with and without ocean state updates (i.e., sea-ice concentration nudging) were conducted and compared for the winter of 2002. Both continuous and intermittent assimilation schemes were examined. In a continuous sea-ice assimilation experiment, the ocean direct update is unnecessary. When the sea-ice updates are introduced intermittently the ocean state has to be altered to accommodate them, or they will be rapidly diminished by the model's dynamics. The correlations between sea-ice concentration and ocean salinity and temperature based on the first 15 days of January were used for corrections during the entire winter season when, in addition to thermodynamic processes, dynamic processes are responsible for, and even dominate, sea-ice evolution on the Labrador and Newfoundland shelves. This was an adequate choice as was demonstrated by the results of the study which showed that the experiments with ocean state adjustments generated more accurate short-term sea-ice forecasts.  相似文献   

11.
India’s polar orbiting satellite Oceansat-2 was launched by Indian Space Research Organisation on 23 September 2009 for applications pertaining to ocean studies and meteorology. The wind scatterometer aboard the Oceansat-2 satellite (OSCAT) covers 90 % of the global ocean within a day. In the present study, the OSCAT-derived wind fields are used to predict the genesis of tropical cyclones over the North Indian Ocean using a new technique based on data mining. The technique is based on the premise that there is some degree of similarity in low-level wind circulation among developing systems, which can be utilized to distinguish them from non-developing systems. This similarity of wind patterns has been measured quantitatively by computing the “matching index” between the given wind pattern and the wind signatures of developing systems available from the past observations. The algorithm is used to predict the tropical cyclogenesis of cyclones formed during the period 2009–11 in the North Indian Ocean. All the tropical disturbances that developed into tropical storms during the above period (2009–11), viz. PHYAN, WARD, LAILA, BANDU, PHET, GIRI, JAL, KEILA, FOUR, FIVE and THANE were predicted using the proposed method. The mean prediction lead time of the technique was 63 h. Probability of detection of the technique was 100 %, while the false alarm ratio was 2 %.  相似文献   

12.
The influences of horizontal advection and horizontal diffusion on the variability of sea surface salinity in stochastically forced systems are investigated. Basic ideas are developed using a two dimensional box model and then extended to a more realistic three dimensional ocean general circulation model. It is shown that, in the absence of advection and diffusion, the ocean response is essentially that predicted by Taylor's random walk model. Advection becomes important when the advective time scale is less than the response time of the mixed layer to the stochastic forcing. Advection of parcels from regions of upwelling into regions of downwelling limits their exposure time to the stochastic forcing and thus the maximum attainable variance in the system (variance increases linearly with time). Regions of upwelling and downwelling may be introduced through the thermohaline overturning circulation or by the wind driven Ekman transport, depending on the specific model configuration. Horizontal diffusion is found to be important when the diffusive time scale is less than the mixed layer response time. The primary role of diffusion is to reduce the effective stochastic forcing through rapid mixing of uncorrelated surface forcing events. Because sea surface salinity does not have a negative feedback with the atmosphere, it is more strongly influenced by weak horizontal processes than sea surface temperature (SST). Accurate knowledge of the stochastic forcing amplitude, decorrelation time, and length scale and distribution are critical to model the variance of sea surface salinity. Aspects of the ocean model which strongly influence the variability of sea surface salinity include the surface velocity, horizontal diffusivity, and the mixed layer depth. Implications on modeling of the ocean and coupled ocean-atmosphere systems are discussed.  相似文献   

13.
Despite recent advances in supercomputing, current general circulation models (GCMs) have significant problems in representing the variability associated with organized tropical convection. Furthermore, due to high sensitivity of the simulations to the cloud radiation feedback, the tropical convection remains a major source of uncertainty in long-term weather and climate forecasts. In a series of recent studies, it has been shown, in paradigm two-baroclinic-mode systems and in aquaplanet GCMs, that a stochastic multicloud convective parameterization based on three cloud types (congestus, deep and stratiform) can be used to improve the variability and the dynamical structure of tropical convection, including intermittent coherent structures such as synoptic and mesoscale convective systems. Here, the stochastic multicloud model is modified with a parameterized cloud radiation feedback mechanism and atmosphere-ocean coupling. The radiative convective feedback mechanism is shown to increase the mean and variability of the Walker circulation. The corresponding intensification of the circulation is associated with propagating synoptic scale systems originating inside of the enhanced sea surface temperature area. In column simulations, the atmosphere ocean coupling introduces pronounced low frequency convective features on the time scale associated with the depth of the mixed ocean layer. However, in the presence of the gravity wave mixing of spatially extended simulations, these features are not as prominent. This highlights the deficiency of the column model approach at predicting the behavior of multiscale spatially extended systems. Overall, the study develops a systematic framework for incorporating parameterized radiative cloud feedback and ocean coupling which may be used to improve representation of intraseasonal and seasonal variability in GCMs.  相似文献   

14.
The oceans moderate the rate and severity of climate change by absorbing massive amounts of anthropogenic CO2 but this results in large-scale changes in seawater chemistry, which are collectively referred to as anthropogenic ocean acidification. Despite its potentially widespread consequences, the problem of ocean acidification has been largely absent from most policy discussions of CO2 emissions, both because the science is relatively new and because the research community has yet to deliver a clear message to decision makers regarding its impacts. Here we report the results of the first expert survey in the field of ocean acidification. Fifty-three experts, who had previously participated in an IPCC workshop, were asked to assess 22 declarative statements about ocean acidification and its consequences. We find a relatively strong consensus on most issues related to past, present and future chemical aspects of ocean acidification: non-anthropogenic ocean acidification events have occurred in the geological past, anthropogenic CO2 emissions are the main (but not the only) mechanism generating the current ocean acidification event, and anthropogenic ocean acidification that has occurred due to historical fossil fuel emissions will be felt for centuries. Experts generally agreed that there will be impacts on biological and ecological processes and biogeochemical feedbacks but levels of agreement were lower, with more variability across responses. Levels of agreement were higher for statements regarding calcification, primary production and nitrogen fixation than for those about impacts on foodwebs. The levels of agreement for statements pertaining to socio-economic impacts, such as impacts on food security, and to more normative policy issues, were relatively low.  相似文献   

15.
Past changes in the density and momentum structure of oceanic circulation are an important aspect of changes in the Atlantic Meridional Overturning Circulation and consequently climate. However, very little is known about past changes in the vertical density structure of the ocean, even very extensively studied systems such as the North Atlantic. Here we exploit the physical controls on the settling depth of the dense Mediterranean water plume derived from the Strait of Gibraltar to obtain the first robust, observations-based, probabilistic reconstruction of the vertical density gradient in the eastern North Atlantic during the last 30,000?years. We find that this gradient was weakened by more than 50%, relative to the present, during the last Glacial Maximum, and that changes in general are associated with reductions in AMOC intensity. However, we find only a small change during Heinrich Event 1 relative to the Last Glacial Maximum, despite strong evidence that overturning was substantially altered. This implies that millennial-scale changes may not be reflected in vertical density structure of the ocean, which may be limited to responses on an ocean-overturning timescale or longer. Regardless, our novel reconstruction of Atlantic density structure can be used as the basis for a dynamical measure for validation of model-based AMOC reconstructions. In addition, our general approach is transferrable to other marginal sea outflow plumes, to provide estimates of oceanic vertical density gradients in other locations.  相似文献   

16.
Short gravity-capillary waves, the predominant radar scatterers under many oceanic and radar-viewing conditions, are modulated in amplitude, velocity and orientation by the larger-scale motions of the ocean surface. These modulations render the larger scales observable to microwave radar. The high data rate and advanced technology of modern radar systems make it possible to measure these modulations and, in some cases, to display them as images of the ocean surface. While the modulation of orientation and velocity are straightforward to understand, the amplitude modulation is a dynamic response of the equilibrium short gravity-capillary waves to larger scale driving forces including straining by orbital velocities of large waves. Microwave studies of the growth and equilibrium of short wind-generated waves are reviewed. It is shown that the response of these waves to straining can produce modulations in radar cross-section greater than those due to tilting but which are wind-speed dependent. The net modulation depends strongly on the direction as well as the magnitude of the wind speed. Quantitative determination of ocean wave-height spectra from measured modulations will therefore be a complicated procedure. Measurements of ocean waves with CW Doppler and Synthetic Aperture radars are discussed in the light of these findings.  相似文献   

17.
A climatology of Southern Hemisphere anticyclones   总被引:1,自引:0,他引:1  
A climatology of anticyclones generated by an objective automatic scheme applied to 15 years of once-daily Australian Bureau of Meteorology hemispheric analyses is presented. Contour maps of the anticyclone system density, positions of formation and dissipation together with other statistics are shown. The distribution of anticyclones through the hemisphere was found to be dominated by a mid latitude belt of high density, located in the band 25–42°S, typically 24° south of the time-mean subtropical ridge. Within this band the anticyclone density displays considerable structure with greater system numbers over the eastern parts of the three subtropical ocean basins in the vicinity of the three subtropical ocean time-mean anticyclones. During winter the system density displays a bifurcation in the New Zealand sector, with the highest density along the 30 and 45°S latitude bands. The movement of systems in the subtropical ocean basins was found to be in a general easterly direction with a weak equatorwards component, the transport of systems closely following the orientation of the belt of highest system density. In the vicinity of the African and South American continents, movement was more complex with east-south-east motion upstream, and east-north-east movement downstream, the net transport being such as to encourage a general steering of systems around the continental land masses more particularly during the warmer seasons. To highlight the dynamic role played by these systems and their cyclonic counterparts, we present a limited investigation of the response of Southern Hemisphere synoptic systems to variations of the broader atmospheric system and compare these findings to those obtained by more traditional analysis techniques.  相似文献   

18.
The present study attempts to identify the land - ocean contrast in cloud - aerosol relation during lightning and non-lightning days and its effect on subsequent precipitation pattern. The thermal hypothesis in view of Convective Available Potential Energy (CAPE) behind the land - ocean contrast is observed to be insignificant in the present study region. The result shows that the lightning activities are significantly and positively correlated with aerosols over both land and ocean in case of low aerosol loading whereas for high aerosol loading the correlation is significant but, only over land. The study attempts to comprehend the mechanism through which the aerosol and lightning interact using the concept of aerosol indirect effect that includes the study of cloud effective radius, cloud fraction and precipitation rate. The result shows that the increase in lightning activity over ocean might have been caused due to the first aerosol indirect effect, while over land the aerosol indirect effect might have been suppressed due to lightning. Thus, depending on the region and relation between cloud parameters it is observed that the precipitation rate decreases (increases) over ocean during lightning (non-lightning) days. On the other hand during non-lightning days, the precipitation rate decreases over land.  相似文献   

19.
Stochastic wind forcing of ocean gyre circulations is examined using the ideas of generalized linear stability theory applied to the barotropic vorticity equation of a idealized ocean. The barotropic vorticity equation is linearized about a time-evolving basic state flow, and the spatial patterns of stochastic surface wind stress curl that are optimal for increasing the variability of the ocean are computed. The most disruptive pattern of stochastic forcing is found to be insensitive to: measures of variance, the optimization time, the temporal decorrelation time of the stochastic forcing, the time evolution of the basic state flow, the stability of the basic state flow, basin size, gyre symmetry, and the presence of bathymetry. In addition, the most disruptive pattern of wind stress curl is reminiscent of that which would be associated with individual large-scale weather systems in the atmosphere, and changes in the amplitude of the atmospheric teleconnection patterns. The response of a nonlinear model to stochastic forcing described by the optimal patterns is examined, and the dynamics of the response discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号