首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Shipboard and shore‐based investigation on siliceous and calcareous microfossil biostratigraphy, magneto‐stratigraphy and tephrostratigraphy identified numerous datum events from the sedimentary sequences of Sites 1150 and 1151 drilled on the forearc basin of northern Japan by the Ocean Drilling Program Leg 186. Some 83 datum events were selected to construct new age–depth models for the sites. Based on the reliable magneto‐stratigraphy from the Pleistocene to the Upper Miocene, which were correlated to the standard geomagnetic polarity timescale, and on excellent records of diatom and radiolarian biostratigraphy throughout the sequences, the shipboard age model was revised. Major revisions referred to stratigraphic position of the Miocene–Pliocene boundary that has been shifted more than 200 m downward in each sequence. The age–depth relations of the forearc sites represent drastic changes in the sedimentation rate—extremely high (40 cm/k.y. on average) in the Early Pliocene and low (less than 2 cm/k.y. on average) in the Middle Miocene—and several hiatuses exist throughout the sequence. The drastic changes can be related mostly to changes in diatom sedimentation and the tectonics of the Japanese Island Arc. Local ages for some foraminiferal, calcareous nannofossil and radiolarian bioevents are estimated from the age–depth models at each site. These newly calibrated bioevents and biozones as well as established diatom biostratigraphy are incorporated into the updated magneto‐biochronologic timescale, which will contribute to an improvement in biochronologic accuracy of Neogene sediments in northern Japan and adjacent areas.  相似文献   

2.
Detailed radiolarian biostratigraphy in the Plio-Pleistocene was analyzed by using samples from IODP Site U1340 that was drilled to a core depth of 604 m in the southern Bering Sea. A total of 227 species belonging to 102 genera were identified. Based on the distributions of the radiolarian index species at Site U1340, five radiolarian zones since the Pliocene were established in the southern Bering Sea for the first time, and 25 radiolarian bioevents were recognized. Their ages were estimated on the basis of the age-depth plot that was constructed by the synthetical datum of the effective biostratigraphic and magnetostratigraphic events. The radiolarian zones at Site U1340 were systematically compared with those in its adjacent regions since the late Early Pliocene, which further improved and interpreted the biostratigraphic datum as well as their correlations in the middle-high latitude of the North Pacific. In addition, the comparative results of radiolarian zones show that Botryostrobus aquilonaris Zone emended in this paper is equivalent to the upper part of the same zone defined by Hays, 1970, and Druppatractus irregularis-Dorydruppa bensoni Zone as well as Spongodiscus sp. Zone, newly proposed in this paper, are well correlated with Cycladophora sakaii Zone and Stylatractus universus Zone in the subarctic North Pacific, respectively.  相似文献   

3.
Hiroki Hayashi 《Island Arc》2004,13(1):318-331
Abstract The present paper describes the general outline of Neogene paleoceanographic changes in the northwestern Pacific by means of planktonic foraminiferal assemblages. Planktonic foraminiferal fossils occur commonly in the upper Miocene to lower Pleistocene sediments of Hole 1151A, Ocean Drilling Program Leg 186 in the forearc basin off northeast Japan, with the exception of 11 barren intervals. These barren intervals are explained as a result of dissolution under organic decomposing processes. Three assemblages of planktonic foraminifers were identified by Q‐mode cluster analysis. The succession of the assemblages can be divided into four paleoceanographic stages: (i) warm‐temperate Tortonian; (ii) cold‐temperate Messinian to lower Pliocene; (iii) warm climatic optimum in the middle part of the Pliocene; and (iv) strong glacial–interglacial oscillation of the upper Pliocene to the lower Pleistocene. Three short warming events—namely, the late Miocene climatic optimum 3, the Miocene–Pliocene boundary and the middle Pliocene events—and a short cooling event of the late Miocene could be determined in the studied section of Site 1151.  相似文献   

4.
Abstract The Japan Trench forearc offshore Honshu Island in northeast Japan, where the 130‐m.y.‐old Pacific oceanic plate is presently subducted, was drilled during the Ocean Drilling Program Leg 186. Results from mechanical and sedimentological studies of claystones recovered from Sites 1150 and 1151 in the overlying erosional forearc wedge are reported in the present study. Although many physical properties are similar in the seismic (Site 1150) and aseismic portion (Site 1151) of the shallow forearc, Site 1150 displayed a higher abundance of open fractures, two prominent fault zones and enigmatic pore fluid signatures in the claystones. The abundance of weak mineral phases, together with high smectite contents (from X‐ray diffraction), control the low friction coefficients of 0.33–0.39 of the claystones in ring‐shear experiments. Results from triaxial testing proposed overall low magnitudes of in situ effective vertical stress, with somewhat lower values at Site 1150 than at Site 1151. Similarly, samples from Site 1150 displayed slightly higher pore fluid pressures than those at Site 1151. The high sediment porosities, which are in part also a result of intact diatom tests (from scanning electron microscope), together with the anomalous fluid signatures and elevated pore fluid pressures, could very likely result from upward migration and influx of deep‐seated waters. Dewatering reactions at depth result in enhanced pore fluid pressure transients along out‐of‐sequence thrusts and consequently lower effective stress. At depths greater than that of Leg 186 drilling, elevated pressure–temperature conditions trigger mineral transformation and cementation, which result in increasing friction, unstable sliding and seismic rupture. Such earthquakes could have repeatedly disaggregated the consolidated claystone fabrics at the seismic site, and could be responsible for differences in yield strength and cementation when compared to the aseismic Site 1151.  相似文献   

5.
We established a high-resolution calcareous nannofossil biostratigraphy for the late Pliocene–Pleistocene by analyzing a 242 m-thick, continuous sedimentary succession from Ocean Drilling Program Site 1146, Hole A, in the South China Sea (SCS). A total of 14 calcareous nannofossil datums were detected in the SCS succession. They are, in descending order: first occurrence (FO) of Emiliania huxleyi, last occurrence (LO) of Pseudoemiliania lacunosa, LO of Reticulofenestra asanoi, FO of Gephyrocapsa parallela, FO of R. asanoi, LO of large Gephyrocapsa spp., FO of large G. spp., FO of Gephyrocapsa oceanica, FO of Gephyrocapsa caribbeanica, LO of Calcidiscus macintyrei, LO of Discoaster brouweri, LO of Discoaster pentaradiatus, LO of Discoaster surculus, and LO of Discoaster tamalis. The FO of E. huxleyi was not precisely detected due to poor preservation and dissolution of nannofossils in the underlying strata. We refined the previous calcareous nannofossil biostratigraphy in the SCS by identifying Gephyrocapsa species and four evolutionary extinction events of the genus Discoaster. The proposed calcareous nannofossil biostratigraphy correlates with those reported in other terrestrial and marine areas/sites and global benthic foraminiferal δ18O records. The age–depth curves based on nannofossil biostratigraphy indicate a significant increase in the sedimentation rates at the LO of R. asanoi (0.91–0.85 Ma). The timing of this increase corresponds to reef expansion in the Ryukyu Islands linked to a stepwise increase in Kuroshio Current intensity. This timing is broadly coeval with a sea surface temperature increase of ∼2 °C in the northwestern Pacific due to expansion of the Western Pacific Warm Pool towards the north and south subtropical regions. This can be explained by increased weathering and erosion of terrestrial areas in glacial periods and increased rainfall causing higher sediment transport in interglacial periods, which were both linked to Middle Pleistocene Transition-related climatic changes.  相似文献   

6.
Mahito  Watanabe  Yukio  Yanagisawa 《Island Arc》2005,14(2):91-101
Abstract   Refined numerical ages of the diatom biohorizons of the Early to Middle Miocene (11–18 Ma) period in the Neogene North Pacific are presented based on the direct correlation between biostratigraphy and magnetostratigraphy at Site 887 on the Patton–Murray Seamount in the northeastern Pacific. Sampling intervals of 0.02–0.04 my allowed the determination of the ages of the biohorizons to be more precise than previous studies. The secondary biohorizons established in the northwestern Pacific have been proven to be useful also in the northeastern Pacific, and are linked to magnetostratigraphy directly for the first time. The refined diatom biochronology established in this study will provide a vital basis for the study of the Neogene marine sediments of the middle- to high-latitude North Pacific, which rarely yield calcareous microfossils. Denticulopsis praedimorpha var. prima n. var. is described.  相似文献   

7.
Upper Devonian carbonates of the Toc Tat Formation in the Si Phai Pass area of Dong Van District, northern Vietnam were deposited in carbonate platform, slope, and basin environments. These carbonates yield abundant conodonts indicative of the Palmatolepis nasuta, Pa. linguiformis and Pa. triangularis zones, the Frasnian–Famennian stage boundary being identified by the first occurrence of Pa. triangularis. Two positive carbon isotope excursions are recognized, the lower excursion peaking in the interval of the lower to middle Pa. nasuta Zone, whilst the upper excursion peaks just above the local Frasnian–Famennian boundary. Based on the biostratigraphy, these excursions equate to the Lower and Upper Kellwasser events. Locally, tentaculitoid taxa (Nowakia, Styliolina, Homoctenus, and Metastyliolina?) are abundant in the interval of the Pa. nasuta Zone, but show a drastic decline in abundance before the Lower Kellwasser Event, and only two taxa survived into the Famennian.  相似文献   

8.
Superposition of paleomagnetic polarity logs of seven chronologically overlapping piston cores from the central equatorial Pacific, using the established tropical radiolarian zonation as a stratigraphic reference, produced a nearly continuous correlation of magnetic and radiolarian events ranging from late Pleistocene to earliest Miocene. Twenty magnetic polarity epochs, and possibly as many as 30 polarity events, occur during this time span. Epoch 16 (reversed polarity) appears to be the longest interval ( 14.8–17.6m.y. B.P.) among these Neogene magnetostratigraphic units. The middle/late Miocene boundary is shown to fall within latest Epoch 11 (normal) and its approximate age is between 10.5 and 11 m.y. B.P. The early/middle Miocene boundary occurs within the top of Epoch 16 at a suggested age of about 15 m.y. B.P.  相似文献   

9.
Abstract   The lithology of shallow-water carbonates collected from 19 sites on 16 seamounts in six areas of the northwestern Pacific Ocean using the Deep-sea Boring Machine System are described. The areas include the Amami Plateau, Daito Ridge, Oki-Daito Ridge, Urdaneta Plateau, Kyushu-Palau Ridge and Ogasawara Plateau. Chronological constraint is provided by calcareous nannofossil biostratigraphy, planktonic foraminiferal biostratigraphy, larger foraminiferal biostratigraphy and strontium (Sr) isotope stratigraphy. Large amounts of shallow-water carbonates accumulated on the seamounts during the Oligocene, a relatively cool period, whereas limited carbonate deposits formed during the Early Miocene, a relatively warm period. This might indicate that deposition of shallow-water carbonates on seamounts in the northwestern Pacific Ocean was not necessarily controlled by climatic conditions, but was related to volcanism and tectonics that served as foundations for reef/carbonate-platform formation. Remarkable differences in biotic composition exist between Cretaceous and Cenozoic shallow-water carbonates. Late Cretaceous shallow-water carbonates are distinguished by the occurrence of rudists, solenoporacean algae and microencrusters. Middle Eocene to Early Oligocene shallow-water carbonates are dominated by Halimeda or nummulitid and discocyclinid larger foraminifers. Scleractinian corals became common from the Oligocene onward. Nongeniculate coralline algae and larger foraminifers were common to abundant throughout the Eocene to the Pleistocene. The replacement of major carbonate producers in the shallow-water carbonate factory during post-Cretaceous time is in accordance with previous studies and is considered to reflect a shift in seawater chemistry.  相似文献   

10.
M. Umeda 《Island Arc》1998,7(4):637-646
Five radiolarian zones, from the Upper Silurian to Middle Devonian, are discriminated from the tuffaceous successions of the Joryu and Nakahata Formations of the Yokokurayama Group of the Yokokurayama area and the Konomori area in the Kurosegawa Belt, Southwest Japan. The definition of the zones is based on the first appearance biohorizon of the characteristic species. The zones are the Pseudospongoprunum sagittatum, Futobari solidus, Trilonche (?) sp. A, Glanta fragilis and Protoholoeciscus hindea zones, in ascending order. The preliminary age assignments for the zones are discussed on the basis of the comparison with other previous documented faunas. The age determination of the formations suggests the presence of unconformities and the episodic sedimentation of the tuffaceous strata in the Yokokurayama Group.  相似文献   

11.
The dating of radiolarian biostratigraphic zones from the Silurian to Devonian is only partially understood. Dating the zircons in radiolarian‐bearing tuffaceous rocks has enabled us to ascribe practical ages to the radiolarian zones. To extend knowledge in this area, radiometric dating of magmatic zircons within the radiolarian‐bearing Hitoegane Formation, Japan, was undertaken. The Hitoegane Formation is mainly composed of alternating beds of tuffaceous sandstones, tuffaceous mudstones and felsic tuff. The felsic tuff and tuffaceous mudstone yield well‐preserved radiolarian fossils. Zircon grains showing a U–Pb laser ablation–inductively coupled plasma–mass spectrometry age of 426.6 ± 3.7 Ma were collected from four horizons of the Hitoegane Formation, which is the boundary between the Pseudospongoprunum tauversi to Futobari solidus–Zadrappolus tenuis radiolarian assemblage zones. This fact strongly suggests that the boundary of these assemblage zones is around the Ludlowian to Pridolian. The last occurrence of F. solidus is considered to be Pragian based on the reinterpretation of a U–Pb sensitive high mass‐resolution ion microprobe (SHRIMP) zircon age of 408.9 ± 7.6 Ma for a felsic tuff of the Kurosegawa belt, Southwest Japan. Thus the F. solidus–Z. tenuis assemblage can be assigned to the Ludlowian or Pridolian to Pragian. The present data also contribute to establishing overall stratigraphy of the Paleozoic rocks of the Fukuji–Hitoegane area. According to the Ordovician to Carboniferous stratigraphy in this area, Ordovician to Silurian volcanism was gradually reduced to change the sedimentary environment into a tropical lagoon in the early Devonian. And the quiet Carboniferous environment was subsequently interrupted, throwing it once more into the volcanic conditions in the Middle Permian.  相似文献   

12.
Abstract Fluids and sediments from Deep Sea Drilling Project/Ocean Drilling Program Legs (56, 57, 87 and 186) along a transect extending from the subducting plate, across the midslope and upper slope of the Japan Trench forearc were analyzed for B and B isotopes in order to assess their composition and fluid–sediment interaction. At the reference Site 436 on the subducting plate, changes in B contents and B isotopes are controlled by the lithology and diagenesis only. The midslope Sites 440 and 584 showed stronger variations in the B geochemistry, which can be related to diagenesis and tectonic dewatering along faults. The strongest changes in the B geochemistry were observed on the upper slope Sites 1150 and 1151, where profound down‐hole freshening (chlorinities as low as ~310 mmol) coincides with a B enrichment (up to 9.3 × seawater concentration). The B isotope pore fluid profile of Site 1150 displayed a bimodal variation with depth, first increasing to values more positive than seawater, then shifting to lower signatures typical for deep‐seated fluids, whereas Site 1151 showed a constant B decrease with depth. Sites 1150 and 1151 sediments showed B increases with depth to values as high as ~164 p.p.m. and isotopic compositions ranging from ~+4 to ?9‰. A linear decrease in Bsolid/Bfluid ratio, suggests that B geochemistry of the upper slope sites is controlled by fluid–rock interaction and deep‐seated fluid flow, whereas constant Bsolid/Bfluid ratios were observed at the reference site on the incoming plate. This fluid overprint is probably caused by normal faults in the sediment cover which might be interconnected to deep thrusts in the underlying Cretaceous accreted wedge. This suggests that the erosive Japan Trench margin is characterized by back‐flux of deep‐seated, B‐enriched fluids into the ocean, which is facilitated by extensional normal faulting as a result of tectonic erosion and subsidence.  相似文献   

13.
Abundant Triassic radiolarian fossils were obtained from varicolored bedded cherts exposed in the Buruocang section near Jinlu village, Zedong, southern Tibet. The radiolarian‐bearing rocks represent fragmented remnants of the Neotethys oceanic sediments belonging to the mélange complex of the east part of the Yarlung‐Tsangpo Suture Zone. Two new middle Late Anisian radiolarian assemblages recognized from this section named Oertlispongus inaequispinosus and Triassocampe deweveri, respectively, are compared with those known from Europe, Far East Russia, Japan, and Turkey. These Anisian radiolarian fossils are the first reported in southern Tibet and the oldest radiolarian record within the Yarlung‐Tsangpo Suture Zone. They improve time constraints for the evolution of Neotethys in southern Tibet.  相似文献   

14.
Masao  Kametaka  Hiromi  Nagai  Sizhao  Zhu  Masamichi  Takebe 《Island Arc》2009,18(1):108-125
The biostratigraphy of the Middle Permian Gufeng Formation in the northeastern Yangtze platform is examined based on radiolarians. This study is concentrated on the Anmenkou section in the Chaohu area of Anhui Province, China. The Gufeng Formation is divided into the Phosphate Nodule-bearing Mudstone Member (PNMM) and the Siliceous Rock Member (SRM) in ascending order. The former primarily consists of mudstone including abundant phosphate nodules, and the latter consists mainly of alternating beds of chert, siliceous mudstone and mudstone, with intercalations of porous chert. Ammonoids in the mudstone of the lower PNMM are Wordian. Chert, siliceous mudstone and mudstone of the SRM include abundant radiolarians with sponge spicule assemblages suggestive of the Wordian–Capitanian. Albaillellaria are predominant in the lower SRM, while Entactinaria and Spumellaria are predominant in the middle and upper SRM. These radiolarians correspond to three radiolarian assemblage zones: Pseudoalbaillella longtanensis – Pseudoalbaillella fusiformis , Follicucullus monacanthus , and Follicucullus scholasticus – Ruzhencevispongus uralicus . The assemblage of radiolarians and sponge spicule fauna suggests a depositional depth of 150–500 m. The radiolarian fauna of the Gufeng Formation is considered to be representative of the relatively shallow, tropical radiolarian fauna of the Middle Permian eastern Paleotethys.  相似文献   

15.
The stratigraphy and radiolarian age of the Mizuyagadani Formation in the Fukuji area of the Hida‐gaien terrane, central Japan, represent those of Lower Permian clastic‐rock sequences of the Paleozoic non‐accretionary‐wedge terranes of Southwest Japan that formed in island arc–forearc/back‐arc basin settings. The Mizuyagadani Formation consists of calcareous clastic rocks, felsic tuff, tuffaceous sandstone, tuffaceous mudstone, sandstone, mudstone, conglomerate, and lenticular limestone. Two distinctive radiolarian faunas that are newly reported from the Lower Member correspond to the zonal faunas of the Pseudoalbaillella u‐forma morphotype I assemblage zone to the Pseudoalbaillella lomentaria range zone (Asselian to Sakmarian) and the Albaillella sinuata range zone (Kungurian). In spite of a previous interpretation that the Mizuyagadani Formation is of late Middle Permian age, it consists of Asselian to Kungurian tuffaceous clastic strata in its lower part and is conformably overlain by the Middle Permian Sorayama Formation. An inter‐terrane correlation of the Mizuyagadani Formation with Lower Permian tuffaceous clastic strata in the Kurosegawa terrane and the Nagato tectonic zone of Southwest Japan indicates the presence of an extensive Early Permian magmatic arc(s) that involved almost all of the Paleozoic non‐accretionary‐wedge terranes in Japan. These new biostratigraphic data provide the key to understanding the original relationships among highly disrupted Paleozoic terranes in Japan and northeast Asia.  相似文献   

16.
Northwestern Ilocos Norte in Luzon, Philippines, exposes cherts, peridotite and a variety of metamorphic rocks including chlorite schist, quartzo‐feldspathic schist, muscovite schist and actinolite schist. These rocks are incorporated within a tectonic mélange, the Dos Hermanos Mélange, which is thrust onto the turbidite succession of the Eocene Bangui Formation and capped by the Upper Miocene Pasuquin Limestone. The radiolarian assemblages constrain the stratigraphic range of the cherts to the uppermost Jurassic to Lower Cretaceous. Stratigraphically important species include Eucyrtidiellum pyramis (Aita), Hiscocapsa acuta (Hull), Protunuma japonicus (Matsuoka & Yao), Archeodictyomitra montisserei (Squinabol), Hiscocapsa asseni (Tan), Cryptamphorella conara (Foreman) and Pseudodictyomitra carpatica (Lozyniak). The radiolarian biostratigraphic data provide evidence for the existence of a Mesozoic basinal source from which the cherts and associated rocks were derived. Crucial to determining the origin of these rocks is their distribution and resemblance with known mélange outcrops in Central Philippines. The mélange in the northwestern Ilocos region bears similarities in terms of age and composition with those noted in the western part of the Central Philippines, particularly in the islands of Romblon, Mindoro and Panay. The existence of tectonic mélanges in the Central Philippines has been attributed to the Early to Middle Miocene arc–continent collision. This event involved the Philippine Mobile Belt and the Palawan Microcontinental Block, a terrane that drifted from the southeastern margin of mainland Asia following the opening of the South China Sea. Such arc–continent collision event could also well explain the existence of a tectonic mélange in northwestern Luzon.  相似文献   

17.
The Tremadocian is the first stage of the Ordovician System and is subdivided into two parts in general. The Upper Tremadocian, spanning a temporal interval of ca. 8 Ma, yields graptolite faunas crucial for biostratigraphic division and correlation in high resolution. Relatively complete successions of Upper Tremadoc graptolite zones have been proposed in Scandinavia, and North and South America. In South China, the coeval graptolite strata are widespread in deep water facies, but the successions of graptolite zones recognized so far are quite incomplete and thus very difficult to be correlated with those in other countries. In recent years, we have sampled bed by bed the Nanba section in the Yiyang area, Hunan Province and, below the Tetragraptus approximatus Zone, identified four Upper Tremadoc graptolite zones in descending order: the Hunnegraptus copiosus Zone, the Araneograptus murrayi Zone, the Aorograptus victoriae Zone and the Adelograptus tenellus Zone. To date, the Nanba section is the only section in China that presents a relatively complete and globally comparable succession of Upper Tremadoc graptolite zones. Therefore, this study not only confirms the existence of some Upper Tremadoc graptolite zones that were never found before in China, but also facilitates a highly resolved division and correlation for the Upper Tremadoc graptolite strata in China. Supported by National Natural Science Foundation of China (Grant No. 40472014)  相似文献   

18.
The Baguio Mineral District exposes rock formations that evince the geological and tectonic evolution of this district from a subduction‐related marginal basin to an island arc setting. Available onshore and offshore data are consistent with an Early (onset phase) to Middle (developed phase) Miocene arc polarity reversal from the east (termination of subduction along the proto‐East Luzon Trough) to the west (initiation of subduction along the Manila Trench). Geophysical modeling and geochemical data calculation showed a 30 ± 5 km crustal thickness for the mineral district. Subduction‐related multiple arc magmatism and ophiolite accretion contributed to crustal thickening. Recent information on the Oligo–Miocene Zigzag and Klondyke formations in the mineral district reveal that the marginal basin, where these rocks were deposited, has received eroded materials from adjacent terrains characterized by siliceous lithologies. Furthermore, adakitic rocks, high permeable zones and extensional zones which are exploration markers applied to identify possible mineralization targets, are prevalent in the mineral district. The geological evolution that the district had undergone mimics the evolution of island arcs worldwide in general and northern Luzon in particular.  相似文献   

19.
A well-preserved, abundant radiolarian fauna was obtained from three sections: the Dongpan, Liuqiao, and Paibi sections, in southern Guangxi, South China. Sixteen species belonging to Albaillella and Neoalbaillella, including seven undetermined species, are recognized. On the basis of stratigraphic distribution of these species, two radiolarian zones, the Albaillella triangularis Zone and the Albaillella yaoi Zone, are established. The correlation between radiolarian zones and conodont zones is suggested based on the discovery of coexisting conodonts. Albaillella triangularis and Albaillella yaoi zones correspond to Neogondolella postwangi and Neogondolella yini zones respectively.  相似文献   

20.
Alternating chert–clastic sequences juxtaposed with limestone blocks, which are units typical of accretionary complexes, constitute the Buruanga peninsula. New lithostratigraphic units are proposed in this study: the Unidos Formation (Jurassic chert sequence), the Saboncogon Formation (Jurassic siliceous mudstone–terrigenous mudstone and quartz‐rich sandstone), the Gibon Formation (Jurassic(?) bedded pelagic limestone), the Libertad Metamorphics (Jurassic–Cretaceous slate, phyllite, and schist) and the Buruanga Formation (Pliocene–Pleistocene reefal limestone). The first three sedimentary sequences in the Buruanga peninsula show close affinity with the ocean plate stratigraphy of the North Palawan terrane in Busuanga Island: Lower–Middle Jurassic chert sequences overlain by Middle–Upper Jurassic clastics, juxtaposed with pelagic limestone. Moreover, the JR5–JR6 (Callovian to Oxfordian) siliceous mudstone of the Saboncogon Formation in the Buruanga peninsula correlates with the JR5–JR6 siliceous mudstone of the Guinlo Formation in the Middle Busuanga Belt. These findings suggest that the Buruanga peninsula may be part of the North Palawan terrane. The rocks of the Buruanga peninsula completely differ from the Middle Miocene basaltic to andesitic pyroclastic and lava flow deposits with reefal limestone and arkosic sandstone of the Antique Range. Thus, the previously suggested boundary between the Palawan microcontinental block and the Philippine Mobile Belt in the central Philippines, which is the suture zone between the Buruanga peninsula and the Antique Range, is confirmed. This boundary is similarly considered as the collision zone between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号