首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 773 毫秒
1.
基于新疆阿勒泰地区5个国家气象站的逐日平均气温、 最高气温和最低气温气象数据, 利用一元线性回归、 9 a滑动平均等方法分析了该地区近52年极端气温的时空变化规律。结果表明: (1)阿勒泰地区平均气温、 平均最高气温、 平均最低气温均显著上升, 上升速率为0.40、 0.29、 0.58 ℃·(10a)-1; 秋、 冬季上升幅度最大。(2)极端最高气温、 最低气温极高值、 暖昼、 暖夜以不同的速率上升(增加), 分别为0.19 ℃·(10a)-1、 0.58 ℃·(10a)-1、 1.45 d·(10a)-1、 3.37 d·(10a)-1。气温日较差以-0.29 ℃·(10a)-1的速率下降; 生长季长度呈上升趋势, 增加速率为3.31 d·(10a)-1。暖日、 暖夜在四季均呈上升趋势。除极端最高气温和生长季长度外, 其他指数均有50%以上的站点呈上升趋势。(3)极端最低气温、 最高气温极低值分别以0.68、 0.48 ℃·(10a)-1的速率上升; 冷昼、 冷夜、 冰日、 霜日均呈下降趋势, 减少速率分别为-1.57、 -3.69、 -1.79、 -4.40 d·(10a)-1。仅冷夜、 霜日两个指数在所有站点显著下降。(4)冷指数的减小幅度大于暖指数的增大幅度, 夜指数的减小幅度大于昼指数的增大幅度。  相似文献   

2.
1961-2010年西藏季节性冻土对气候变化的响应   总被引:10,自引:8,他引:2  
利用西藏1961-2010年17个站点最大冻土深度、 土壤解冻日期等资料, 采用气候倾向率、 累积距平、 信噪比和R/S分析等方法, 分析了近50 a西藏季节性冻土的年际和年代际变化特征, 预估了未来50 a和100 a最大冻土深度变化. 结果表明: 近50 a林芝最大冻土深度以1.4 cm·(10a)-1的速度增大, 其他站点均呈减小趋势, 为-0.7~-21.3 cm·(10a)-1, 以那曲减幅最大. 近30 a来大部分站点最大冻土深度减幅更大, 为-0.92~-37.2 cm·(10a)-1, 并随着海拔升高, 最大冻土深度减幅在加大. 近40 a来当雄、 江孜和林芝土壤解冻日期表现为推迟趋势, 为2.1~5.2 d·(10a)-1, 其他站点呈提早趋势, 平均每10 a提早1.8~12.7 d. 在10 a际尺度变化上, 近40 a大部分站点年最大冻土深度呈逐年代变浅趋势, 土壤解冻日趋于提早. 那曲、 安多和泽当年最大冻土深度分别在1984、 1987年和1979年发生了突变, 从一个相对偏深期跃变为一个相对偏浅期. 近40 a来各站点年最大冻土深度的Hurst值均大于0.5, 说明未来大部分站点年最大冻土深度仍将变薄. 如果未来气候按升温率0.044 ℃·a-1变化, 50 a后西藏最大冻土深度减小1.1~77.3 cm, 未来100 a可能减小1.2~91.4 cm; 气候按升温率0.052 ℃·a-1变化, 50 a后最大冻土深度减小2.1~155 cm, 未来100 a可能减小2.5~183 cm. 最大冻土深度变浅显然与气温、 地温的显著升高直接有关.  相似文献   

3.
杜军  牛晓俊  袁雷  次旺顿珠 《冰川冻土》2020,42(3):1017-1026
利用羌塘国家级自然保护区边缘5个气象站1971 - 2017年逐月平均气温、 平均最高气温、 平均最低气温、 降水量和逐年最大冻土深度等气象资料, 以及卫星遥感资料, 采用线性回归、 相关系数等方法, 分析了自然保护区气候(气温、 降水等)、 水体(湖泊、 冰川)和植被等生态环境因子的变化。结果表明: 近47年自然保护区年平均气温以0.46 ℃·(10a)-1的速率显著升高, 明显高于同期全球和亚洲地表温度的升温率。四季平均气温升温率为0.37 ~ 0.55 ℃·(10a)-1, 升幅在冬季最大、 夏季最小。年降水量呈明显的增加趋势, 增幅为11.0 mm·(10a)-1, 主要表现在春、 夏两季。近43年(1975 - 2017年)色林错面积呈显著增加趋势, 平均增长率为38.48 km2·a-1。1973 - 2017年, 普若岗日冰川面积整体上趋于减少, 平均每年减少2.11 km2; 自然保护区年最大冻土深度变化率为-35.7 cm·(10a)-1。1999 - 2013年保护区NDVI增幅达25.3%, 平均每10年增加0.0184, 植被覆盖度明显增加。总之, 近47年自然保护区表现为气候暖湿化、 冰川退缩、 湖泊扩涨、 冻土退化、 植被覆盖增加的变化特征, 而冰川变化引发的水资源时空分布和水循环过程的变化, 无疑将给高原社会经济发展带来深刻影响。  相似文献   

4.
基于甘肃省及周边地区46个气象站点的气温和降水年值、月值数据,对数据进行均一化检验和订正后,采用气候倾向率法、Mann-Kendall 非参数检验法对甘肃近50a气候变化时空特征进行了分析。结果表明:甘肃省平均气温、平均最低气温、平均最高气温、极端最高气温、极端最低气温均升温明显,其中以最低气温升温最为显著。气温的季节变化空间差异较大,空间上四季最低气温和极端最低气温升温最显著,春、冬季平均最低气温升温最显著;夏、秋季极端最低气温升温最为显著。降水变化的区域差异大,降水气候倾向率最小值达-22.2mm·(10a)-1,最大值14.1 mm·(10a)-1,乌鞘岭以东表现为减少趋势,以西增加。河西地区气温突变时间为1986年,早于河东气温突变时间(1993年)。甘肃气候变化时空差异明显,乌鞘岭是近50a甘肃气候转型分异的一条重要分界线。  相似文献   

5.
丹丹  春喜  刘美萍  刘月 《冰川冻土》2013,35(4):874-882
以季风边缘区的霍林河流域为研究对象, 利用研究区周缘9个气象站台1951-2010年的逐月气象数据, 通过对气温和降水量进行趋势分析、Mann-Kendall检验以及相关分析, 探讨流域气候变化过程、特征及周期. 结果表明: 在1951-2010年年均气温上升2.3 ℃, 其倾向率为0.38 ℃·(10a)-1, 总体呈上升的趋势. 其中, 春季气温升幅最为明显, 倾向率为0.50 ℃·(10a)-1. 同时, 年均气温以1986年为跃点, 发生突变, 突变后的1987-2010年平均气温比突变前1951-1986年气温高1.3 ℃, 并存在6~8 a和15 a的周期律. 年降水量近60 a来减少了83.9 mm, 其倾向率为-13.98 mm·(10a)-1, 呈下降的趋势. 其中, 夏季降水量的下降最为明显, 倾向率为-11.41 mm·(10a)-1. 年降水量以1998年为跃点发生突变, 突变后的1999-2010年降水量比突变前1951-1998年下降76 mm. 并存在4 a和8~9 a的振荡周期. 流域气温变化与北极涛动呈正相关, 而降水量与夏季风指数呈负相关.  相似文献   

6.
利用1961 - 2015年吉林省46个气象站的气象数据, 采用气候诊断分析方法, 研究了吉林省季节冻土区年冻融指数的时空变化特征及其与经度、 纬度、 海拔的关系。结果表明: 吉林省冻结指数呈由北向南逐渐降低, 融化指数由西向东逐渐降低的趋势分布。1961 - 2015年冻结指数呈显著下降趋势, AFI(空气冻结指数)和SFI(地表冻结指数)气候倾向率分别为-48.7 ℃·d·(10a)-1和-166.8 ℃·d·(10a)-1。融化指数显著上升, ATI(空气融化指数)和STI(地表融化指数)分别以57.0 ℃·d·(10a)-1和93.7 ℃·d·(10a)-1的气候倾向率显著上升。SFIATISTI分别于2001年、 1994年和1997年发生了突变。20世纪60、 70年代冻结指数异常偏高, 融化指数异常偏低。吉林省年冻融指数的变化趋势在未来整体上依然延续下去, 即冻结指数为下降趋势, 融化指数为上升趋势。冻结指数受纬度影响最大, 随着纬度的升高而上升, 融化指数受海拔影响最大, 随着海拔的升高而显著下降。冻结指数气候倾向率随着海拔的升高而上升, 融化指数气候倾向率随着纬度的升高而上升。  相似文献   

7.
基于新疆96个气象站1961-2010年的逐日平均气温和冻土深度资料,使用线性趋势分析、Mann-Kendall检测以及基于ArcGIS的混合插值法,对新疆冬季负积温和季节性最大冻土深度的时空变化及其相互关系进行了分析. 结果表明:50 a来,新疆冬季负积温绝对值总体以51.5 ℃·d·(10a)-1的倾向率减少,并于1985年发生了突变. 受其影响,最大冻土深度以-3.5 cm·(10a)-1的倾向率减小,也于1988年发生了突变. 就全疆平均而言,1961-2010年,负积温每减少100 ℃·d,最大冻土深度将减小4.6 cm.但这种影响区域性差异显著,最大冻土深度减小量呈现"南疆小,北疆和天山山区大"的格局.南疆大部最大冻土深度对负积温变化的响应相对较敏感,一般为-3.0~-12.7 cm·(100℃·d)-1;北疆和天山山区响应的敏感性较小,多为0.0~-4.9 cm·(100℃·d)-1,其成因很可能是北疆和天山山区冬季积雪较南疆厚,较厚的积雪所具有的低导热性和较大的容积热容减小了气候变暖对冻土热状况的影响.负积温减少、最大冻土深度变浅将改变土壤的水热物理性状,加剧土壤干化、草场退化以及土地的荒漠化,对新疆脆弱的生态环境产生更加不利的影响.因此,应根据最大冻土深度对负积温变化响应的实际,采取趋利避害的技术措施积极应对.  相似文献   

8.
大兴安岭区域未来气候变化趋势及其对湿地的影响   总被引:1,自引:1,他引:1  
基于未来2种排放情景下的RCM-PRECIS输出的大兴安岭区域气温与降水量预测数据,采用Mann-Kendall(简称M-K)非参数检验法和线性倾向率法,分析大兴安岭区域2015-2050年气候变化趋势及其对湿地的影响.结果表明,在未来2种情景下,2015-2050年的年平均气温升高显著,A2情景的增温速率(0.54℃·(10a)-1)高于B2情景(0.41℃·(10a)-1),与东北地区增温速率(0.56℃·(10a)-1)一致,B2情景增温速率低于东北地区增温速率;大兴安岭区域自2032年气温开始出现增暖突变现象,增温幅度显著增大.2种情景下季节平均气温的增温速率大小依次为夏季、冬季、春季和秋季,A2情景夏、冬、春、秋季分别为0.59、0.56、0.56、0.52℃·(10a)-1,B2情景分别为0.48、0.47、0.42、0.37℃·(10a)-1;各季突变增温时间点和增温趋势显著时段存在差异.2种情景下2015-2050年的年降水量有微弱的减少趋势,M-K检测基本无显著变化;季节降水总体而言,大兴安岭区域未来36a降水量仍以夏季为主,占全年降水量的60%左右;春季和秋季次之,各占全年降水量的18%~19%.未来大兴安岭区域气候呈现暖干化趋势,其中21世纪20、40年代大兴安岭湿地受到气候暖干化的胁迫相应较强,未来气候暖干化趋势是大兴安岭湿地生态系统萎缩和退化的主要诱因之一,未来大兴安岭湿地生态系统仍将受到气候暖干化趋势的巨大威胁,面临萎缩和严重退化趋势.  相似文献   

9.
青藏高原气温序列的均一性研究   总被引:2,自引:0,他引:2  
气象观测资料是气候变化研究的基础, 对气象资料进行均一性检验与订正能够提高气候变化研究的精度和准确性. 利用青藏高原及周边地区1961-2010年65个气象站的逐月平均气温资料, 运用PMFT方法对资料进行均一性检验与订正. 结果表明: 高原平均气温资料均一性状况较差, 有32个站被检测出存在间断点, 占总数的49%. 用订正后均一的气温数据分析得出, 高原1961-2010年年平均气温的升温率为0.32 ℃·(10a)-1, 春、夏、秋、冬季的升温率依次为0.24 ℃·(10a)-1、0.26 ℃·(10a)-1、0.32 ℃·(10a)-1及0.48 ℃·(10a)-1, 略小于用原始数据分析得到的结果. 研究还发现, 数据均一与否对高原整体气候变化分析结果影响不大, 但对局地尺度的气候变化分析结果影响较大. 鉴于高原的气候变化具有显著的区域差异性特征, 因此, 未来在对高原进行气候变化的差异性进行研究时, 气象数据均一性的检验与订正工作就显得尤为重要. 为提高数据均一性检验的精度, 未来应加强气候资料均一性检验技术的研究并尽可能详尽地收集台站的元数据信息.  相似文献   

10.
采用M-K检验、小波分析和Sen斜率等方法, 对1951-2010年60 a来洮河流域不同地理-生态区间水文气象要素变化的时空特征进行了综合研究.结果表明: 洮河流域水文气象要素呈现多种周期不同尺度的振荡特性, 气温、降水和径流的年代际变化周期以9~13 a和2~5 a最为常见.气温从1990年代中期开始明显上升, 突变的时间北部略早于南部, 西部明显迟于东部;除上游草原牧区外, 降水总体于1990年代初期开始减少;受降水变化影响, 流域河川径流量1990年代发生明显减少.过去60 a, 洮河流域气温以0.18 ℃·(10a)-1的速率增温;降水以0.03 mm·(10a)-1的速率减少;河川径流量以11.36 mm·(10a)-1的速率减小;近30 a来洮河流域以0.63 ℃·(10a)-1的速率增温, 降水以8.86 mm·(10a)-1的速率减少, 径流以21.00 mm·(10a)-1的速率减少.降水和径流变化在不同时期和不同生态-地理区间差异明显, 与区域气候和下垫面因素变化所致的流域能水通量过程的变异有关.  相似文献   

11.
符传博  丹利  吴涧  魏荣庆 《冰川冻土》2013,35(6):1410-1418
利用覆盖新疆大部分地区资料完整的93个站点资料,对1961-2005年新疆地区最大冻土深度进行了分析. 结果表明:新疆地区月最大冻土深度有明显的季节变化,低海拔区域(海拔<1 800 m)最大值出现在1月份,而高海拔区域(海拔≥1 800 m)的最大值出现在2月份,比低海拔区域要滞后. 新疆地区最大冻土深度的地理分布特征表现为北疆深于南疆,山区深于平原,且与气温的分布有很好的一致性. 全年和冬、春季最大冻土深度与气温场的空间相关系数分别为-0.795、-0.736和-0.848. 年际变化表明,近45 a来的最大冻土深度出现了较为明显的下降. 高海拔区域与低海拔区域年最大冻土深度的倾向率分别为-15.65 cm·(10a)-1和-9.48 cm·(10a)-1,且与气温的相关系数分别为-0.51和-0.69,均通过了0.001的信度检验. 同时发现,高海拔区域冬季下降多,而低海拔区域春季下降多. 新疆地区年最大冻土深度在近45 a有明显的突变现象,高海拔区域和低海拔区域突变发生年份分别为1996/1997年度和1978/1979年度,说明新疆地区高海拔区域的年最大冻土深度对气温变化的响应比低海拔区域要滞后. 突变年后高海拔区域与低海拔区域年最大冻土深度比突变年前的平均值分别降低了61.12 cm和26.67 cm.  相似文献   

12.
王秀娜  丁永建  王建  赵传成 《冰川冻土》2021,43(4):1179-1189
利用1960—2017年日降水量资料,采用线性倾向趋势分析、滑动分析和泰森多边形法等,对河西地区多年降水时空变化特征及不同量级降水日数及降水强度的变化趋势进行了研究.结果表明:河西地区年均降水量为99.0 mm,呈现明显的逐年上升趋势,平均倾向率为8.72 mm?(10a)-1,月降水量为单峰分布,5—10月夏秋汛期降...  相似文献   

13.
新疆降水特征及其对水资源和生态环境的影响   总被引:22,自引:9,他引:13  
新疆位于欧亚大陆腹地,空中水汽来源少,水资源匮乏,生态环境脆弱,降水有其独特的时空分布特征,且对水资源形成和生态环境有着十分重要的影响和作用.利用全疆106处水文、气象站1956-2005年的降水资料以及相关分析研究成果,从水资源的角度对新疆降水的形成条件、时空分布特征和对水资源、生态环境的影响进行了分析.结果表明:多年平均年降水总量为2588×108m3,折合降水深157.4 mm;90%以上的站点年降水量变差系数在0.2~0.7之间;连续最大4个月降水量在40%以上,平均降水产流系数为34%.新疆降水的稀少导致了其生态环境的极端脆弱,绿洲面积仅占全疆总面积的9%,而沙漠面积却达全疆的25.7%.未来新疆地区仍然是干旱、半干旱地区,大气降水资源有限,必须通过其它途径来解决新疆水资源短缺问题.  相似文献   

14.
1981-2013年气候因子变化对西藏拉萨河径流的影响   总被引:1,自引:1,他引:0  
张核真  卓玛  向飞  卓嘎  格桑 《冰川冻土》2015,37(5):1304-1311
采用1981-2013年西藏拉萨河流域2个气象站降水量、气温、蒸发量的实测数据,以及拉萨水文站径流序列资料,分析拉萨河流域降水、气温变化及其对径流量的影响.结果显示:近33 a来,拉萨河流域降水量呈增多趋势,冷季增多趋势显著,倾向率达到3.51 mm·(10a)-1;年、季平均气温、平均最高、最低气温呈显著增高趋势.平均气温倾向率年尺度为0.58℃·(10a)-1、暖季0.42℃·(10a)-1、冷季0.74℃·(10a)-1;年、季蒸发量呈显著减少趋势,倾向率达到年127.7 mm·(10a)-1、暖季82.2 mm·(10a)-1、冷季45.5 mm·(10a)-1.20世纪80年代降水量偏少、气温偏低、蒸发量大,是一个比较寒冷干燥的时期;90年代降水增多、气温增高、蒸发量减少,到21世纪初,降水、气温均达到各年代最高值,蒸发量为各年代最小,拉萨河流域进入一个相对温暖湿润的时期;拉萨河径流量年际变化较小,其变化趋势与降水、气温基本一致,20世纪80年代径流量最小,之后逐年代增大,21世纪初,年、季径流量达到各年代最大.1983年全流域出现的干旱少雨天气,导致20世纪80年代拉萨河年和暖季径流略偏枯,其他时段年、季径流无明显的丰枯变化,处于一个比较平稳的状态;拉萨河流域降水量的大小直接影响着径流量的大小,且暖季降水在拉萨河年径流的形成上起主导作用;气温的显著升高和人类活动对下垫面条件的改变,削减了降水量增多、蒸发量减少对径流形成的有利影响.  相似文献   

15.
以年极端洪水超标率来反映区域极端洪水, 分析了新疆区域极端洪水变化; 以年最大洪峰记录分析了天山山区主要河流极端洪水变化规律, 并用14站资料分析了天山山区气候变化特征, 讨论了天山主要河流极端洪水变化对区域气候变化的响应. 结果表明: 受气候变暖影响, 1957-2006年全疆极端洪水呈区域性加重趋势, 尤其南疆区域极端洪水明显加剧, 北疆区域也有加重趋势, 但相对较缓. 全疆及北疆、 南疆在20世纪90年代中期以来都处于洪水高发阶段. 近50 a来, 在新疆区域洪水呈加重趋势的变化背景下, 发源于天山南坡的托什干河和库玛拉克河年最大洪峰流量呈显著增加趋势, 发源于天山北坡的玛纳斯河与乌鲁木齐河年最大洪峰流量虽有增加, 但是变化趋势较缓. 以年最大洪峰流量发生转折年为界, 天山典型流域托什干河、 库玛拉克河、 玛纳斯河和乌鲁木齐河在20世纪90年代(或80年代)以来与前期相比, 呈现出相似的变化特征: 年最大洪峰流量明显增大, 年际间变化更加剧烈, 洪水年更频繁. 以年最大洪峰流量发生转折年份为界, 玛纳斯河、 托什干河和乌鲁木齐河后期的年最大洪峰集中日期较前期推迟2~9 d, 库玛拉克河却提前5 d. 玛纳斯河、 乌鲁木齐河和库玛拉克河后期的集中度较前期增加0.8%~8.3%, 托什干河减小1.1%. 1961-2010年, 新疆天山山区气温明显上升, 升温率为0.34 ℃·(10a)-1, 1997年以后明显增暖; 天山山区降水显著增加, 增加速率15.6 mm·(10a)-1, 同时极端降水强度增大、 频数增多. 近50 a来天山主要河流极端洪水变化与区域增温以及天山山区极端降水事件增多等有密切关系.  相似文献   

16.
北京地区大气主要温室气体的季节变化   总被引:7,自引:0,他引:7  
摘 要:报道了北京主要温室气体浓度最新变化情况,采用1993—2002年北京主要温室气体周平均浓度的数据,用时间序列分解的方法对其季节变化进行了分析研究,并对造成北京主要温室气体季节变化的原因进行了初步探讨。分析发现北京大气CH4的季节变化范围在-49.2×10- 9~ 55.7×10- 9(V/V)之间,并呈现出双峰模态;北京大气CO2浓度的季节变化范围在-26.4×10- 6~ 34.0×10- 6(V/V)之间;北京大气 N 2 O浓度变化没有明显的季节变化特点。  相似文献   

17.
利用中山站1989-2011年极昼期间的气温、气压、风、降水等高质量的地面气象观测资料, 对中山站极昼期间气象要素基本气候特征和变化趋势进行了统计与分析, 研究了极昼期间天气特征. 结果表明: 极昼期间年平均气温为-0.6 ℃, 呈缓慢下降趋势, 其变化速率为-0.2 ℃·(10a)-1;年平均风速为5.4 m·s-1, 变化速率为-0.5 m·s-1·(10a)-1;共出现降水日数459 d, 占极昼期间总日数的33.3%;年平均日照时数为763.8 h, 日照时数呈上升趋势, 变化速率为26.8 h·(10a) -1. 研究结果有助于了解和研究南极中山站气候概况, 对中山站度夏科学考察工作有重要的参考价值.  相似文献   

18.
天山南坡台兰河流域冰川物质平衡变化及其对径流的影响   总被引:22,自引:29,他引:22  
应用控制流域的径流及相关降水资料,通过模型重建了台兰河流域平均冰川物质平衡序列.结果显示,1957—2000年流域冰川平均年物质平衡为-287mm,累计冰川物质平衡-12.6m;44a来由于气温升温引起的冰川净消融相当于每年补给河流径流1.24×108m3,占河流年径流量的15%.1982年以后,流域冰川物质平衡一直呈负平衡,1957—1981年平均物质平衡为-168mm·a-1,1982—2000年平均为-445mm·a-1.随着气候由暖干向暖湿转型,降水量增加,但冰川对气温的敏感性更大,冰川消融加快,冰川融水量持续增加.气温和降水量的变化与北大西洋涛动和北极涛动变化一致,其突变年份都在1986—1988年左右.  相似文献   

19.
1961-2015年青藏高原降水量变化综合分析   总被引:2,自引:0,他引:2  
冀钦  杨建平  陈虹举 《冰川冻土》2018,40(6):1090-1099
降水量及其季节分配与降水形式变化一直是全球气候变化研究的热点之一。使用青藏高原72个气象站点1961-2015年的逐日降水量资料,基于趋势、波动特征和极端事件相结合的新视角,全面剖析了该地区近55年降水量的趋势、波动与极端事件变化。结果表明:(1)时间上,近55年青藏高原年降水量、年最大日降水量和一年中日降水量≥ 10 mm的天数分别以6.59 mm·(10a)-1、0.33 mm·(10a)-1和0.26 d·(10a)-1的速率显著增加,增幅分别达到36.2 mm、1.8 mm和1.4 d。(2)空间上,过去55年青藏高原绝大部分地区年降水量增加,不稳定性增强。但波动变化存在较大的地区差异,广大的中西部地区年降水量波动缓慢增强,而高原东部地区自北向南波动快速增强区与快速减弱区相间分布,极端降水强度与频数亦有类似的变化格局。(3)趋势、波动与极端变化三者组合预示,青藏高原东部的祁连山地区、柴达木盆地东部、青海湖流域与长江源区极端降水事件将明显增加,高原中西部地区发生强降水的可能性亦增加,而高原东南缘地区干旱事件将增多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号